ME569: Powertrain Control Fall 2014 (3 credits), Mon/Wed 10:30-12:00 DOW 1010

Instructor: Professor Stefanopoulou, <u>annastef@umich.edu</u> Graduate Student Instructor: Sandro Nuesch, <u>snuesch@umich.edu</u>

Course statement: The course covers essential aspects of electronic engine control followed by recent control problems arising in direct injection, variable valve timing, active boosting, and flexible-fuel combustion. The course includes models and feedback control design of spark ignition (gasoline), compression ignition (diesel), and thermal ignition (HCCI) engines as well as a quick overview of control issues arising in electric powertrains with batteries, capacitors, and fuel cells. We will practice system identification, averaging, feedforward, feedback, multivariable control, and estimation.

* See MATH and control requirements below.

**Matlab and Simulink and other Mathworks toolboxes will be used.

Home Page: (https://ctools.umich.edu/portal): Lecture notes and handouts will be posted in ctools.

Email: CTools emailing and Piazza posts will be used to send you announcements. You can always email me with questions (use ME569F14 in your message subject) but we prefer piazza for questions or class discussion: https://piazza.com/umich/fall2014/mecheng569f14/home

*First describe the problem you are facing in the text of your post. This will help me when I travel and cannot open attachments or when I use my phone. You could **attach a pdf** with your question (m-file, sml-file, and resulting graphs in one PDF). If I need more info, I will ask you to send me your working m- and sml-file.

****** I typically try to respond within a day, but my ability to help declines as e-mail volume increases; so please do not wait until the last day. I typically cannot help during the due day of the HW because I have meetings during the day.

Textbook:

"Introduction to Modeling and Control of Internal Combustion Engine Systems" by L. Guzzella and C.H. Onder, Springer-Verlag 2004, ISBN 3-450-22274 <u>http://mirlyn.lib.umich.edu/Record/008158097</u> And/Or

"Modeling and Control of Engines and Drivelines (Automotive Series)" by Lars Eriksson and Lars Nielsen (Feb 27 2014), ISBN: 1118479998 (available online) <u>http://mirlyn.lib.umich.edu/Record/012844556</u>

Optional (available in the Library or online):

- 1. Internal Combustion Engine Fundamentals, Heywood, McGraw-Hill, 1988
- 3. Automotive Control Systems, U. Kiencke, and L. Nielsen, SAE and Springer-Verlag,
- 4. G. F. Franklin, J. D. Powell, A. Emami-Naeini, "Feedback Control of Dynamic Systems," Prentice Hall (available in CTools in pdf; please do not share outside class)

Grading: HW (30%), Exam 1 (35%), Exam 2 (35%)

Office Hours: Mon 4-5 (GSI), Tues 4-5 (Prof) & 5-6 (GSI), Fri 2:30-3:30 (Prof)

Prof. office hours @ 2044 Auto Lab (AL), whereas the GSI @ 3028 Phoenix Memorial Lab (PML)

Homework: Almost every week! The lowest homework score will be dropped. You may discuss the homework assignments with each other and with the instructor, but you <u>must write your own solutions</u> to the homework, which reflect your own understanding of the material. The homework has to be returned in paper **at the beginning of class the day it is due**.

Exam: Exam 1: Wed Oct 15 (xx:xx-yy:yy @ zzzz)

Exam 2: If Written, Scheduled for Mon Dec 15, 4:00-6:00pm, but might have an oral exam on Thu-Fr Dec 4-5 in the evening hours (depends on the class size after Exam 1)

<u>Course Outline:</u> Chapter 1: Background and Motivation

Chapter 2: Control Oriented Modeling – Manifold Filling Dynamics

The Basics: Ideal Gas Law, Mass Conservation, Energy Conservation The Assumptions: Space-averaging and Cycle-averaging The Fidelity: Detailed and Mean-Value Models

> Event-averaging in time- and crankangle-domain Regression and mapping data Linearization

Chapter 3: Basic Internal Combustion Engine Control Functionalities

Air-to-Fuel Ratio Control

For Fast Response: Feedforward Control with Air Charge Estimation For Accurate Response: Feedback with Oxygen Sensors (Linear and switching sensor) Cylinder-to-cylinder Maldistribution (Lifting Control technique)

Idle Speed Control

The Three Devils: Unmeasured Disturbance, Actuator Authority, and Model Uncertainty The Tools: Coordinated Feedforward and Feedback

Adaptive Control Methodology

Spark Compensation—sequential loop closing

Spark Timing Control

The Easy Way: The Look-Up Table

The Right Way: Feedback with Knock Sensor

The Other Right Way: Combustion sensing, Estimation and HCCI control

Exhaust Gas Recirculation

External EGR Control Internal EGR Control

Control of Variable Camshaft Timing and Variable Valve Timing

Boosting

The standard: Control of Wastegate The challenge: Coordinated control of VGT and EGR The fun: Optimal Control of Electrically Assisted Turbocharging

Chapter 4: Control of Advanced Combustion Engines

Lean Combustion & Exhaust Aftertreatment Control Ethanol-Gasoline Flex Fuel Vehicles (FFV) Low Temperature Combustion Control (HCCI, PCCI, PCI) On-board Diagnosis

Chapter 5: Drive Cycle Simulation for Fuel Efficiency Estimation

Chapter 6: Control of Electrochemical Engines

Control of Power from Fuel Cells

Polymer Electrolyte Membrane (Hydrogen-based)-Principles	
The air, the hydrogen, the cooling, the water management	
Solid Oxide Fuel Cell and Fuel Processing	
Battery: Principles, Types and the application	
The electrical view- Equivalent Circuit Models and SOC estimation	on
The thermal view: Joules heating, Cooling, Thermal Runaway	

				Торіс		out	due				
	weel	Date	D								
1	1	3-Sep	W	Intro	review	1					
2	1	8-Sep	М	Throttled Breathing Model							
3	2	10-Sep	W	Manifold Filling Dynamics	model	2	1	adiabatic	+WOT	-	
4	2	15-Sep	М	Air Charge Estimation+MAF/MAP sensor				MAF+MA	IAF+MAP, eEGR, iEGR		
5	3	17-Sep	w	Sensitivity, FuelPudle, Hot Wire Anemometer	estim+sens	3	2				
6	3	22-Sep	m	AFR feedback UEGO							
7	4	24-Sep	w	Idle Speed Control (ISC)	AFR+SW	4	3				
8	4	29-Sep	m	ISC-Throttle							
9	5	1-Oct	w	ISC-Throttle & Spark	ISC-Throttle	5	4				
10	5	6-Oct	m	ISC-TISO State Space							
11	6	8-Oct	w	review	ISC-SS	6	5	review			
br	6	13-Oct	m	break							break
12	7	15-Oct	w	exam				exam			СНВС
13	7	20-Oct	m	Flex Fuel Vehicles (FFV)							
14	8	22-Oct	w		FFV	7	6	read pap	paper from DSCC DSCC		DSCC
15	8	27-Oct	m	lambda estimator+Compression Detection							
16	9	29-Oct	w	Variable Valve/Cam Timing	VCT timecst	8	7				
17	9	3-Nov	m	Jake Brake							
18	10	5-Nov	w	Turbocharging	GTDI	9	8				
19	10	10-Nov	m	Model-Tutorial				Pat G			Hopkinson
20	11	12-Nov	w	Throttle-Wastegate							
21	11	17-Nov	m	Diesel+EGR/VGT							
22	12	19-Nov	w	Spark Ignition, Combustion, Knock	knCntr+CV	10	9				
23	12	24-Nov	m	Cycle-to-Cycle Variability							
24	13	26-Nov	w	Knock Control						Before	Thx
25	13	1-Dec	m	НССІ							
26	14	3-Dec	w	Aftertreatment: Three Way Catalyst Oxygen Sto	rage		10	Sandro S			
27	14	8-Dec	m	Drive Cycle Simulations (Vehicle Model+Switch	Mode)			Sandro S			China
28	15	10-Dec	w	OBD				Mike H.		last cla	China
		15-Dec	m							schexn	n 4:00-6:00pm

Open to graduate or senior students in Mechanical, Electrical, Chemical, Aerospace, and Marine Engineering with basic control engineering and dynamics background (ME360 and ME461 equivalent). Permission from the instructor is required for senior undergraduate students.

As you know ME461 is a pre-requisite for this class. Below is a list of the MATH and Controls notions I will be using a lot in the class and you should know.

1. Ordinary Differential equations

- 2. Linearization
- 3. Laplace and transfer functions (poles, zeros, DC gain)

4. Frequency Domain Representation of systems and signals: bandwidth, roll-off rate, DCgain, natural, damped frequencies ...

- 5. Stability, characteristic equation, eigenvalues
- 6. Time responses, overshoot, undershoot, settling time, damping ratio, time constant, rise time ...
- 7. States, state-space representation
- 8. Basics of PID controllers, Root locus ...

Items 1-6 are a must! Do not take this class if you do not know or feel comfortable with 1-6. You can probably study items 7-8 and catch up while taking this class.