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Lithium-Ion Battery State of
Charge and Critical Surface
Charge Estimation Using an
Electrochemical Model-Based
Extended Kalman Filter
This paper presents a numerical calculation of the evolution of the spatially resolved
solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid
concentration is driven by the macroscopic Butler–Volmer current density distribution,
which is consequently driven by the applied current through the boundary conditions. The
resulting, mostly causal, implementation of the algebraic differential equations that de-
scribe the battery electrochemical principles, even after assuming fixed electrolyte con-
centration, is of high order and complexity and is denoted as the full order model. The
full order model is compared with the results in the works of Smith and Wang (2006,
“Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for Hybrid
Electric Vehicles,” J. Power Sources, 161, pp. 628–639) and Wang et al. (2007 “Control
oriented 1D Electrochemical Model of Lithium Ion Battery,” Energy Convers. Manage.,
48, pp. 2565–2578) and creates our baseline model, which will be further simplified for
charge estimation. We then propose a low order extended Kalman filter for the estimation
of the average-electrode charge similarly to the single-particle charge estimation in the
work of White and Santhanagopalan (2006, “Online Estimation of the State of Charge of
a Lithium Ion Cell,” J. Power Sources, 161, pp. 1346–1355) with the following two
substantial enhancements. First, we estimate the average-electrode, or single-particle,
solid-electrolyte surface concentration, called critical surface charge in addition to the
more traditional bulk concentration called state of charge. Moreover, we avoid the
weakly observable conditions associated with estimating both electrode concentrations
by recognizing that the measured cell voltage depends on the difference, and not the
absolute value, of the two electrode open circuit voltages. The estimation results of the
reduced, single, averaged electrode model are compared with the full order model
simulation. �DOI: 10.1115/1.4002475�
Introduction
Lithium-ion battery is the core of new plug-in hybrid electrical

ehicles �PHEV� as well as considered in many second generation
ybrid electric vehicles �HEV�. Micro-macroscopic battery elec-
rochemical modeling is connected with the hybrid vehicle design,
cale-up, optimization, and control issues of HEV where the bat-
ery plays an important role in this area as high-rate transient
ower source. The battery models based on electrochemistry laws
1,2� are generally preferred to the equivalent circuit or to other
inds of simplified models because they also predict the physical
ells limitations, which have a relevant effect in the automotive
pplication where the battery suffers very often the stress of very
igh transient loads �3�.

The importance of lithium-ion battery has grown in the past
ears. Based on the the third lightest element, this kind of battery
as the right characteristics to be widely used in the hybrid ve-
icles, thanks to its high energy density, no memory effect, and a
low loss of charge when not in use. As the majority of advanced
attery systems, lithium-ion batteries employ porous electrodes in
rder to increase the active area between electrolyte and solid
ctive material, facilitating the electrochemical reactions �3–6�.
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Literature on electrochemical modeling of batteries is quite ex-
tensive, including both full order and simplified models. A first
electrochemical approach to porous electrodes modeling for bat-
tery applications was presented by Newman and Tiedemann in
Ref. �7�. In the porous electrode theory �7�, the electrode is treated
as a superposition of two continua, namely, the electrolytic solu-
tion and the solid matrix. The solid matrix is modeled as micro-
scopic spherical particles where the lithium ions diffuse and react
on the spheres surface. This approach was later expanded to two
composite electrodes and a separator by Fuller et al. in �8�. Based
on this model, Ramadass et al. in �9� accounted for the decay in
capacity of the cell while Sikha et al. in �10� included the change
in the porosity of the electrode material as a function of time using
a pseudo-two-dimensional approach. Unfortunately, due to the ir-
regular morphology, the electrode porosity increases the model
complexity. Thus, a macroscopic description of the cell is needed.
A micro-macroscopic coupled model meeting this requirement
with microscopic and interfacial phenomena, as described in the
porous electrode theory, rigorously and systematically integrated
into a macroscopic battery model was introduced by Wang et al. in
�11�. It incorporates solid-state physics and interface chemistry
and can be adapted to a wide range of active materials and elec-
trolyte solutions. Presented at the beginning for Ni-MH batteries
�12�, it was quickly expanded to lithium-ion batteries in �3,13�
where the thermal behavior was also described. The full order
electrochemical models predict the profile of solid concentration,

i.e., lithium concentration in the solid phase across the electrode,
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uring charge and discharge, but it is difficult to apply to a real-
ime on-board vehicle estimator due to the complexity of the

odel. As a consequence several approximations between the in-
ut and output of the dynamical system and the battery input and
utput are introduced to reduce the system order and complexity
4,14� and to allow the estimation of the battery state of charge
SOC�.

The SOC estimation and regulation is one of the most important
nd challenging tasks for hybrid and electrical vehicle control. In
act, when the batteries operate in a relative limited range of state
f charge, high efficiency, slow aging, and no damaging are ex-
ected. Several techniques have been proposed for the SOC esti-
ation, such as equivalent circuit model-based algorithms �15,16�

r black-box methods �as an example using fuzzy-logic �17��. The
ccuracy reached by these SOC estimations is approximately 2%
18�.

Recently, the effort to use electrochemical models in order to
stimate the internal state of the battery has been intensified. Start-
ng from the model introduced by Wang in �19� a low order state
ariable model practical for real-time estimation and control has
een obtained. In �20�, based on a simplified representation of the
lectrode introduced by Haran et al. in �21�, a Kalman filter was
esigned in order to estimate an average value of the bulk solid
oncentration.

In this paper, we employ an electrode-average concentration
pproximation, similar but higher order than the single-particle
lectrode estimation of �20�. We then present an extended Kalman
lter for SOC, which typically relates to the bulk battery capacity

hrough integration of the current drawn, although in our work it
epresents the average particle concentration of the average-
lectrode. We also estimate the critical surface charge �CSC� es-
imation, which is the electrode-average solid concentration at the
lectrolyte interface. In the following, a general micro-
acroscopic lithium-ion battery model, as it is presented in �3�, is

ummarized and a numerical solution is shown. Then, the model
s simplified in order to make it compatible with a feasible solid
oncentration estimation. Finally, an extended Kalman filter
EKF� is designed based on the averaged model. The estimation
esults are compared with the high order numerical approximation
f the micro-macroscopic model prediction.

Battery General Feature
A battery is composed of three parts: the two electrodes and the

eparator. Referring to a porous battery, each electrode consists of
solid matrix inside an electrolyte solution.
In particular, for a lithium-ion battery, the anode �or referring to

he battery discharge, “negative electrode”� is composed of carbon
nd the cathode �or “positive electrode” during discharge� is a
etal oxide.
In the separator, the lithium-salt electrolyte is held in an organic

olvent such as LiPF6, LiBF4, or LiClO4, or in a solid polymer
omposite such as polyethylene oxide or poly-acrylonitrile
lithium-ion polymer battery�. Both the solvent and the polymer
onduct the ion but they are electronic insulators. As shown in
ig. 1, at the negative electrode, the solid active material particles
f lithium of the LixC6 diffuse until the electrolyte-solid interface
here the chemical reaction occurs, transferring the lithium-ion to

he solution and the electrons to the collector �3�. The produced
lectrolyte material travels through the solution to the positive
lectrode where, at the interface with solid material, they react and
nsert into the metal oxide solid particles. The chemical reactions
re as follows: negative electrode reaction

LixC6 � C6 + x Li+ + x e−

ositive electrode reaction

Liy−xMn2O4 + x Li+ + x e− � LiyMn2O4
et reaction
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Liy−xMn2O4 + Lix C6 � LiyMn2O4 + C6

where the two ways of the reaction refer to the battery discharge
reaction �right arrow� and to the battery charge reaction �left ar-
row�.

The phenomena occurring at the microscale can have strong
implications for the cell discharge and charge during pulse opera-
tions. However, due to the complexity of solid-electrolyte inter-
face morphology, it is problematic to solve the equations on a
microscopic scale �11�. So, in order to mathematically model the
battery, both macroscopic and microscopic physics have to be
considered. The equations describe the battery system with four
quantities, i.e., solid and electrolyte concentrations �cs ,ce� and
solid and electrolyte potentials ��s ,�e�. Table 1 summarizes the
nomenclature for the model development. The complete set of
equation for the micro-macroscopic model is �3,13�

�x�
eff�x�e + �x�D

eff�x ln ce = − jLi �1�

�x�
eff�x�s = jLi �2�

describing the potentials distribution and

x=0

Currentcollector

Currentcollector

Negative electrode Separator Positive electrode

Solid Material

Electrolyte

Unitary Volume

r

Solid�Electrolyte interfacecs(x,r,t)

cse(x,t)

Li+

e�

e�

xx=�sp x=Lx=�n
cs(x,r,t)

r

cse(x,t)

Fig. 1 Schematic macroscopic „x-direction… cell model with
coupled microscopic „r-direction… solid diffusion model. The
electrodes nomenclature refers to the battery discharge „repro-
duced from †11‡ and †12‡….

Table 1 Lithium-ion model nomenclature

Symbol Name Unit

ie Electrolyte current density A cm−2

is Solid current density A cm−2

�e Electrolyte potential V
�s Solid potential V
ce Electrolyte concentration mol cm−3

cs Solid concentration mol cm−3

cse Solid concentration at electrolyte interface mol cm−3

jLi Butler–Volmer current density A cm−3

�n Normalized solid concentration at anode –
�p Normalized solid concentration at cathode –
U Open circuit voltage V
Un Anode open circuit voltage V
Up Cathode open circuit voltage V
� Overpotential V
F Faraday’s number C mol−1

I Battery current A
R Gas constant J K−1 mol−1

T Temperature K
Transactions of the ASME
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��ece

�t
= �x�De

eff�xce� +
1 − t0

F
jLi �3�

�cs

�t
= �r�Ds�rcs� �4�

escribing the diffusion governed concentrations for the positive
p� and negative �n� electrode.

In order to simplify the model, we assume a constant electrolyte
oncentration ce. This simplification can also be found in Ref. �20�
nd is justified due to the insignificant ��5%� variations observed
n the electrolyte concentration in the detailed model �3�. Then the
et of equations can be simplified by neglecting the Eq. �3� and
implifying the Eq. �1�. Furthermore, introducing the solid current
s and the electrolyte current ie the second order partial differential
quations �PDE� system for the potentials can be rewritten as

ie�x� = − �eff�x�e �5�

is�x� = − �eff�x�s �6�

�xie�x� = jLi �7�

�xis�x� = − jLi �8�

ith the Butler–Volmer current density

jLi�x� = asj0�exp��aF

RT
�� − exp�−

�cF

RT
��� �9�

here R and F are the universal gas constant and Faraday’s con-
tant, T is the absolute temperature, and � is the overpotential,
btained as

� = �s − �e − U�cse� �10�

nd U is the open circuit voltage, function of the solid concentra-
ion at the electrolyte interface indicated with cse�x , t�
cs�x ,Rs , t�. The value of the concentration at the interface solid-
lectrolyte has a particular relevance during the cell pulse opera-
ions and it is called critical surface charge, defined as

CSC�t� =
� − �0%

�100% − �0%
�11�

here �=cse /cs,max is the normalized solid-electrolyte concentra-
ion. Its reference value, �100%, can be defined for each electrode
nding the concentration corresponding to a full charge battery,

.e., 100% of the state of charge. Thus, the 0% reference stoichi-
metry can be derived from �100% by subtracting the battery ca-
acity Q, with the appropriate conversion,

�0% = �100% −
Q

	
� 1

AF
cs,max
� �12�

here 	, 
, and cs,max have appropriate values for negative and
ositive electrode. The open circuit voltage for the negative elec-
rode, denoted with the subscript n, is calculated using the empiri-
al correlation introduced in �22�

Un��n� = 8.0029 + 5.0647�n − 12.578�n
0.5 − 8.6322 � 10−4�n

−1

+ 2.1765 � 10−5�n
3/2 − 0.46016 exp�15.0�0.06 − �n��

− 0.55364 exp�− 2.4326��n − 0.92�� �13�

or the positive electrode, denoted with p, the result obtained
rom �3� has been adopted

Up��p� = 85.681�p
6 − 357.70�p

5 + 613.89�p
4 − 555.65�p

3 + 281.06�p
2

− 76.648�p + 13.1983 − 0.30987 exp�5.657�p
115� �14�

he normalized solid-electrolyte at the negative and positive elec-

rodes are here indicated with �n and �p, respectively. The coeffi-

ournal of Dynamic Systems, Measurement, and Control
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cient j0 in �9� also exhibits a modest dependence on the solid and
electrolyte concentrations, according to

j0 = �ce��a�cs,max − cse��a�cse��c �15�
Finally, the cell potential, which is typically measured is com-

puted as

V = �s�x = L� − �s�x = 0� − RfI �16�

where Rf is the film resistance on the electrodes surface. In Fig. 2,
the model equations and their boundary conditions for the
x-domain and r-domain are shown. Note that the temperature spa-
tial and temporal gradients are neglected in this work.

For completeness the battery model parameters are summarized
in Table 2 and more details on the model and its parameters can be
found in �3,12�.

3 Numerical Solution
In order to solve the battery PDE model, the boundary condi-

tions are necessary. At the boundary with the current collectors of
the negative and positive electrode, i.e., at x=0 and at x=L �see
Fig. 1�, it is

ie�x = 0� = 0 �17�

ie�x = L� = 0 �18�

is�x = 0� =
I

�19�
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Fig. 2 Schematic representation of the set of equations and of
the boundary conditions for the potentials and solid concentra-
tion. The current I is assumed to be positive „battery discharge…
and provide boundary condition „boxes with dotted line… and
the nonlocal constraints „boxes with solid line… governing the
Butler–Volmer current density.
A
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is�x = L� =
I

A
�20�

ecause at the collector there is no electrolyte flux, and the solid
urrent, i.e., the spatial gradient of solid potential, corresponds to
he applied current density.

At x=	n and at x=	sp, i.e., the separator-electrode interfaces,
he boundary conditions are

is�x = 	n� = 0 �21�

is�x = 	sp� = 0 �22�
ecause no charge passes through the separator. Assuming a one-
imensional model, the sum of Eqs. �7� and �8� gives

d�is + ie�
dx

= 0 �23�

hich implies that the “total current” �is+ ie� has to be constant
long the cell. Furthermore, this constant value is known because
he boundary conditions �17� and �19� give the constant value

is + ie =
I

A
�24�

hich translates, considering Eqs. �21� and �22�, to

ie�x = 	n� =
I

A
�25�

ie�x = 	sp� =
I

A
�26�

It can also be shown, integrating Eq. �7� �or, equivalently, Eq.
8�� between x=0 and x=	n, that the condition �24� is equivalent
o

	
0

	n

jLi�x��dx� =
I

A
�27�

s expected because the total current generated by the microscopic
hemical reactions is the integral along the cell of the microscopic
urrent density flux. The same condition can be found for the

Table 2 Bat

arameter Negative

hickness �cm� 	n=50
article radius Rs �cm� 1�
ctive material volume fraction 
s 0.
lectrolyte phase volume fraction �porosity� 
e 0.
onductivity of solid active material � ��−1 cm−1�
ffective conductivity of solid active material �eff

ransference number t+
0 0.

lectrolyte phase ionic conductivity � ��−1 cm−1� �=0.0158ce

ffective electrolyte phase ionic conductivity �eff=

ffective electrolyte phase diffusion conductivity
�D

eff =
2RT

F
lectrolyte phase diffusion coefficient De �cm2 s−1� 2.6�

ffective electrolyte phase diffusion coefficient De
eff= �

olid phase diffusion coefficient Ds �cm2 s−1� 2.0�
aximum solid-phase concentration cs,max �mol cm−3� 16.1

toichiometry at 0% �0% 0
toichiometry at 100% �100% 0.
verage electrolyte concentration c̄e �mol cm−3� 1.2�
hange transfers coefficients �a , �c 0.5

ctive surface area per electrode unit volume as �cm−1�
asn

lectrode plate area A �cm2� 10
ositive electrode

61302-4 / Vol. 132, NOVEMBER 2010
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	sp

L

jLi�x��dx� = −
I

A
�28�

By the way, the Eqs. �5�–�8� are two second order PDEs with two
sets of boundary conditions defining the slopes at the boundary.
Hence, the distribution shape of the potentials can be found but
not its absolute value. To provide the complete solution for �e�0
�x�	n� and �s�0�x�	n�, we first assume �s�x=0�=0 and then
we find �e�x=0� by using the constrain given in the �27�. Simi-
larly, to find the potentials �e�	sp�x�L� and �s�	sp�x�L�, we
apply the corresponding constrain for the positive electrode, i.e.,
Eq. �28�.

Regarding the solid active material, the boundary conditions
connect the concentration with the chemistry of the reactions
through the surface microscopic current density. So the boundary
condition at r=0 is


 �cs�x,t�
�r



r=0

= 0 ∀ x �29�

and at r=Rs, the boundary conditions are

Ds
 �cs�x,t�
�r



r=Rs

= −
jLi�x,t�
asp

F
�30�

for positive electrode’s particles

Ds
 �cs�x,t�
�r



r=Rs

= −
jLi�x,t�
asn

F
�31�

for negative electrode’s particles.
Finally, in Fig. 2, the complete set of equations is provided and

a graphical representation of the boundary conditions for
x-domain and r-domain is shown.

The lithium-ion PDE system with its initial and boundary con-
ditions was simulated and numerically solved in the MATLAB/

SIMULINK environment by using the finite difference method. To
reproduce the spatial dependence of the model variables, the cur-
rents �is and ie�, the potential ��s and �e� and the Butler–Volmer
current jLi were spatially discretized and the differential Eqs.
�5�–�8�, with the Eq. �9�, were solved using the finite difference

parameters

ctrode Separator Positive electrode

10−4 	sep=25.4�10−4 	p=36.4�10−4

4 – 1�10−4

– 0.500
0.5 0.330
– 0.1

� – �eff=
s�
0.363 0.363

�0.85ce
1.4� �=0.0158ce exp�0.85ce

1.4� �=0.0158ce exp�0.85ce
1.4�

1.5� �eff= �
e�1.5� �eff= �
e�1.5�
f

�t+
0 − 1� �D

eff =
2RT�eff

F
�t+

0 − 1� �D
eff =

2RT�eff

F
�t+

0 − 1�
−6 2.6�10−6 2.6�10−6

1.5De De
eff= �
e�1.5De De

eff= �
e�1.5De
−12 – 3.7�10−12

0−3 – 23.9�10−3

– 0.936
– 0.442

−3 1.2�10−3 1.2�10−3

– 0.5, 0.5

e

s –
asp

=
3
e

Rs

– 10,452
tery

ele

�
10−

580
332
1
=
s

363
exp

�
e�
�ef

10

e�
10

�1
.26
676

10
,0.5

=
3


R
,452
method. Referring to the negative electrode, let Nx the number of
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iscretization steps. The algebraic variables, depending on time,
re �sl

�t�, �el
�t�, isl

�t�, iel
�t�, and jl

Li�t�, and the algebraic system,
o be solved each simulation step, is

isl
= isl−1

− jl−1
Li � x

iel
= iel−1

+ jl−1
Li � x

�sl
= �sl−1

−
1

�eff isl−1
x

�el
= �el−1

−
1

keff iel−1
x

�l = �sl
− �el

− U�cse�

jl
Li = asj0�cse��exp��aF

RT
�l� − exp�−

�cF

RT
�l�� �32�

ith l=1, . . . ,Nx and x=	n / �Nx−1�.
Critical are the boundary condition at l=1. Equations �17� and

19� give an initial input to recursively solve Eq. �32� with respect
o currents is and ie, but to solve the whole system the values of
he potentials at x=0 are needed. As discussed above, we fix

s�x=0�=0.
With this assumption, the problem is how to find the correct

lectrolyte potential value at the collector, i.e., �e�x=0�, satisfying
ne of the equivalent conditions �21� and �25� or �27�. The solu-
ion has been obtained by numerically minimizing �iS�	n�� via a

ATLAB/SIMULINK optimization tool. Note that if the dependence
f the Butler–Volmer current on the solid concentration is not
eglected, the model needs the optimization of the parameter
e�x=0� at each simulation step.
The input of the algebraic recursive system �32� is the battery

urrent I while the solid concentration can be considered as a set
f parameters that, as we are going to show, can be derived start-
ng from the Butler–Volmer current.

The dependence of the solid concentration cs�r ,x , t� on x can be
escribed by applying the same discretization procedure that turns
nto csl

�r , t�, with l=1, . . . ,Nx. For each l, the partial differential
4� governs the r-dependent csl

behavior. For a state-space formu-
ation of the solid concentration diffusion equations, let the battery
urrent I be the model input, which governs the boundary condi-
ions of �5�–�8� as shown in Fig. 2. For each x-dimension discreti-
ation step, an ordinary differential equation �ODE� is obtained by
sing the finite difference method for the r variable �23�. This
esults in 2Nx different systems �Nx for the negative and Nx for the
ositive electrode�, each of �Mr−1�-order, driven by a time-
ependent nonlinear function of the battery input I through the
utler–Volmer current. Making explicit the r-derivative in �4�, it

s

�cs

�t
= Ds� �2cs

�r2 +
2

r

�cs

�r
� �33�

y dividing the solid material sphere radius in Mr−1 intervals,
ith Mr large enough, of size r=Rs / �Mr−1�, the first and the

econd derivative can be approximated with the finite difference.
o the partial differential equation becomes

dcsq

dt
= Ds� 1

r
2 �cs�q+1�

+ cs�q−1�
� −

2

r
2csq

+
1

r

1

rq
�cs�q+1�

− cs�q−1�
��
�34�

ith q=1, . . . ,Mr−1 and rq=qr. The boundary conditions can
e rewritten linearly, approximating the dependence of cs on r at

enter,
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cs0
= cs1

csMr
= cs�Mr−1�

− r

jl
Li

FasDs
�35�

The discretized PDE system at the l location along the
x-dimension forms the l-state cs= �cs1

,cs2
, . . . ,csMr−1

�T showing ex-

plicitly the dependency on the Butler–Volmer current jl
Li,

ċsq
= �q + 1

q
��1csq+1

− 2�1csq
+ �q − 1

q
��1csq−1

ċsMr−1
= �Mr − 2

Mr − 1
��1csMr−2

− �Mr − 2

Mr − 1
��1csMr−1

− � Mr

Mr − 1
��2jl

Li

�36�

with q=1, . . . ,Mr−2, l=1, . . . ,Nx, �1=Ds /r
2, �2=1 /Fasr, and

jl
Li�cse , I�=Ul�cse , I�, where the dependence on the input I of the

Butler–Volmer current, through the �32�, is explicitly highlighted.
It follows

ċs = Acs + bUl �37�

where A and b can be determined from �36� and the Ul can be
considered as a set of Nx parameters, each of them appearing in
one of the respective Nx state-space systems and has to be derived
from �5�–�8�. The output of the system is the value of the solid
concentration on the sphere radius that can be rewritten as

cse = csMr−1
−

�2

�1
Ul�cs,I� �38�

These equations show that solid concentrations and potentials
are related through the Butler–Volmer equation through the
boundary condition. Furthermore, along each electrode, as the
boundary condition, i.e., the input Ul, depends on x the system
output cse is also function of x.

For the positive electrode the same procedure was applied. Also
in that case, one needs to fix the boundary conditions at the col-
lector, so the optimization tool was used to find the value of �s�L�
that satisfies the condition on the solid current at x=L. On the
contrary, at the separator, the discretization can be avoided and the
analytical solutions can be obtained. For 	n�x�	sp, the current
of the solid material is zero; hence, the electrolyte current has to
be

ie =
I

A
�39�

to satisfy the Eq. �24�. Thus, using Eqs. �25� and �26�, it is

�e�x� = �e�	n� −
I

Akeffx �40�

Equations �39� and �40� were used in the simulation.

4 Simulation of Full Order Model
It is difficult to validate the micro-macroscopic battery model;

hence, we repeat the test presented in �3� where the model was
validated with a current profile according to FreedomCAR test
procedure, an U.S. Department of Energy program for the zero-
emission vehicle and technology research, as reported in �24�. The
test procedures, shown in the top plot of Fig. 3, consist of a 30 A
battery discharge for 18 s, an open circuit relaxation for 32 s, and
a 22.5 A charge for 10 s followed by open circuit relaxation.
Figure 3 is inspired by �3� and tried to reproduce the numerical
solution used to validate the model. In �3�, the battery voltage
prediction for several battery SOC initial conditions is shown. The

initial SOC can be related with the initial conditions on the solid
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oncentration by introducing the stoichiometry ratio �b
c̄sb /cs,max, where c̄sb is the average bulk concentration that can
e obtained as

c̄sb =
3

R3	
0

Rs

r2cs�r,t�dr �41�

hen, the state of charge of the battery is, with a good approxi-
ation, linearly varying with �b between the two stoichiometry

alues �0% and �100%

SOC�t� =
�b − �0%

�100% − �0%
�42�

We here assume, according to �3�, a single cell with a nominal
apacity Q=6 A h, and, for simplicity, we set uniform initial con-
itions on the solid concentration.

Figures 4 and 5 show the solid and electrolyte potential and the
olid material concentration during the battery discharge and
harge. The figures refer to the 50% SOC line in Fig. 3. In detail,
he discharge refers to a battery current I=30 A after 2 s �i.e.,
fter 4 s of whole test� and the charge refers to a current I=
25 A after 3 s �i.e., after 55 s of the whole test�. Note that the
otential profiles during the discharge agree with the slope im-
osed by the boundary conditions.

Figures 4 and 5 point out that the solid concentration is a func-
ion of the position along the electrodes. The critical values for
lectrodes depletion and saturation effects are the lowest one for
he ion-production electrode and the highest one for the ion-
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insertion electrode. Because of the solid concentration profile dur-
ing charge and discharge, as shown in Figs. 4 and 5, the critical
points are x=	n and x=	sp both during discharge and during the
charge.

5 Average Model
A model simplification can be provided neglecting the solid

concentration distribution along the electrode and considering the
material diffusion inside a representative solid material particle
for each electrode. This approximation leads to an average value
of the solid concentration that can be related with the definition of
battery state of charge and of critical surface concentration. Al-
though this simplified model results in a heavy loss of informa-
tion, it can be useful in control and estimation applications and
still maintains a small connection with the physical phenomena
and dimensions �25�.

In accordance with the average solid concentration, the spatial
dependence of the Butler–Volmer current is ignored and a con-
stant value j̄Li is considered, which satisfies the spatial integral
�27�, giving for the negative electrode �and can be reproduced
accordingly in the positive electrode, considering Eq. �28��

	
0

	n

jLi�x��dx� =
I

A
= j̄n

Li	n �43�

where 	n is the negative electrode thickness, as shown in Fig. 1.
The battery voltage �16�, using Eq. �10�, can be rewritten as

V�t� = ��L,t� − ��0,t� + ��e�L,t� − �e�0,t�� + �Up�cse�L,t��

− Un�cse�0,t��� − RfI �44�
and using the average values at the negative and the positive elec-
trode instead of the boundary values, the following relation is
obtained:

V�t� = �̄p − �̄n + ��̄e,p − �̄e,n� + �Up�c̄se,p� − Un�c̄se,n�� − RfI

�45�
Using the microscopic current average values and imposing the
boundary conditions and the continuity at the interfaces, the solu-
tions of Eqs. �5�–�8� are, for the negative electrode

�e�x� = �e�0� −
I

2Akeff	n
x2 �46�

�s�x� = −
I

A�eff�x −
x2

2	n
� �47�
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for the separator
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�e�x� = �e�0� −
I

2Akeff	n −
I

Akeff�x − 	n� �48�

hich correspond with Eq. �40� with value of �e�	n� computed by
q. �46� and for the positive electrode,

�e�x� = �e�0� −
I

2Akeff	n −
I

Akeff	sep +
I

2Akeff	p
�x − 	sp�2

−
I

Akeff�x − 	sp� �49�

�s�x� = �s�L� +
I	p

2�effA
−

I�x − 	sp�2

2�effA	p
�50�

here 	sep=	sp−	n is the separator thickness. The approximate
olutions �46� and �49� lead to

�̄e,p − �̄e,n = �e�L� − �e�0� = −
I

2A
� 	n

keff + 2
	sep

keff +
	p

keff� �51�

urthermore, considering

j̄n
Li =

I

A	n
= asj0�exp��aF

RT
��̄n�� − exp�−

�cF

RT
�̄n�� �52�

j̄p
Li = −

I

A	p
= asj0�exp��aF

RT
��̄p�� − exp�−

�cF

RT
�̄p�� �53�

here �̄n and �̄p can be estimated as

�̄n =
RT

�aF
ln ��n + ��n

2 + 1� �54�

�̄p =
RT

�aF
ln ��p + ��p

2 + 1� �55�

here

�n =
j̄n
Li

2asj0
and �p =

j̄p
Li

2asj0
�56�

Finally, the battery voltage �45� can be written as a function of
attery current and of the average solid concentration,

V�t� =
RT

�aF
ln

�n + ��n
2 + 1

�p + ��p
2 + 1

+ �̄e,p − �̄e,n + �Up�c̄se,p� − Un�c̄se,n��

− RfI �57�
Thus, the averaging Butler–Volmer current leads to consider a

epresentative solid material particle somewhere along the nega-
ive and positive electrode. This simplified model has similarities
ith the “single-particle” model introduced in Ref. �8�. In Ref.

8�, the diffusion dynamics are approximated with a first order
DE, whereas in the electrode-average model a �Mr−1�-order
DE is used. Furthermore, in the electrode-average model, the

ell voltage depends, through Un and Up, on the solid-electrolyte
oncentration instead of the average single-particle bulk concen-
ration.

Figures 6–10 demonstrate the performance of the reduced order
odel driven by the �Mr−1�-order ordinary differential Eq. �37�,

omparing the simulated signal with the full order model given by
q. �37� resolved at Nx locations across the x-direction. In particu-

ar, Fig. 6 shows a good cell voltage prediction at different dis-
harge rates from 10 A to 300 A. The depletion and saturation
ffects, respectively for negative and positive electrode, are evi-
ent for higher discharge rate where a sudden drop of initial SOC
nd cell voltage can be noticed. Note that the average voltage
esponse reproduces the full order model numerical solution with
omparable precision for different discharge rates and SOC levels.
igure 7 show a good battery voltage prediction during a

reedomCAR test procedure with a maximum error of 0.3 mV for
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the considered charge and discharge rate. Figure 8 shows the tem-
poral distribution of solid concentration, highlighting a good
agreement between the distributed value of the solid concentration
and the predicted average. Figure 9 shows the error between the
average solid concentration and the solid concentration at the
electrodes depletion/saturation effects critical points, i.e., the
electrodes-separator interfaces, as it is predicted by the full order
model. Figure 10 shows the spatial distribution of electrodes solid
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urface concentration at various times during a 30 A discharge
constant for the average model� and the error introduced by av-
raging the spatial distribution with the average solid concentra-
ion value. Finally, Fig. 11 highlights, particularly for the negative
lectrode, that the solid material depletion is deeper during the
ulse operations, implying an unavoidable degradation of the av-
rage model performance. The predicted gradient in solid surface
oncentration throughout the electrode here is smaller that the
nes shown in �19� but as far as we know, nobody has really
hown experimentally what the exact spatio-temporal profile of
he Li-ion concentrations is.

Kalman Filter State of Charge Estimation
In most cases the battery voltage is measured and along the

nown input �current demanded�, one needs to estimate the bat-
ery SOC and CSC. The physical quantity related to the battery
harge is the solid concentration at the electrodes. As the solid
oncentration is a function of the position along the electrodes, the
ritical values for the state of charge estimation, able to predict
orrectly the electrodes depletion and saturation effects, are the
owest one for the ion-production electrode and the highest one
or the ion-insertion electrode. Unfortunately, a spatially resolved
oncentration estimation cannot be probably realized in real-time
ue to the iterative process involved in the 300-state numerical
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solution for the full order model. A solid concentration estimation
that predicts the critical concentration levels would have been
more elegant. Unfortunately, the key feature of SOC estimation
relies on the Butler–Volmer current values at the electrode bor-
ders. The microscopic current is not measurable, so it should be
derived from the battery current by solving the PDEs �5�–�8� or
the discretized equivalent �30� and �35� 2Nx times, which is simi-
larly intractable. Instead, we explore the estimation using the av-
eraged model of Sec. 5.

Specifically, the average dynamical system describes the diffu-
sion effects into two solid material particles, one for the positive
electrode and one for the negative electrode and allows the com-
putation of the solid concentration at the spheres radius, which
represents an average value of the solid concentration along the
electrodes. However the cell voltage �33� depends on �Up�c̄se,p�
−Un�c̄se,n�� making the difference of the open circuit voltage ob-
servable but does not necessarily guarantee the observability of
each open circuit voltage. Indeed, the system that includes both
positive and negative electrode concentration states is weakly ob-
servable �in the linear sense� from the output cell voltage.

It is possible to find a relation between the positive and nega-
tive electrode-average solid concentrations, which can be used for
the estimation of the negative electrode concentration based on
the positive electrode. As it is shown below, the positive electrode
concentration states are observable from the output cell voltage.
Then, the voltage measurement is used to compute the voltage
prediction error and it is then fed back to the positive �alone�
electrode concentration observer. The enabling relation for realiz-
ing the negative electrode concentration as a function of the posi-
tive electrode concentration can be found in the SOC definition
introduced in Eq. �42�. In particular, we assume equal average
solid concentration of both electrodes and allow the SOC estima-
tion using a single averaged electrode solid concentration, even
though it would have been safer to estimate SOC based on the
most critical level of the solid concentration along the electrode,
which can be at the electrode ends and not in the middle. By
assuming that the SOC value is equal at the two electrodes, using
Eq. �42�, the negative electrode concentration can be computed as
function of positive electrode concentration as

c̄se,n = cs,max,n��n0% +
c̄se,p − �p0%cs,max,p

��p100% − �p0%�cs,max,p
��n100% − �n0%��

�58�

where �n0%, �n100%, �p0%, and �p100% are the reference stoichiom-
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Hence, introducing the state vector x
�c̄s,p1 , c̄s,p2 , . . . , c̄s,p�Mr−1��T, the dynamical system is

ẋ = Apx�t� + Bpu�t� with u = j̄p
Li and y = V�x,u� �59�

here the matrices Ap and Bp are obtained from Eq. �36� with
eference to the positive electrode. For a linear state-space formu-
ation, the linearized battery voltage results in an output matrix
=�V /�x, which is a row matrix with zeros in its first Mr−2

lements and the last nonzero term being

�V

� c̄s,p�Mr−1�
=

�Up

� c̄s,p�Mr−1�
−

�Un

� c̄se,n

� c̄se,n

� c̄s,p�Mr−1�
�60�

ue to the fact that the battery potential V is only a function of the
olid concentration at interface. This output matrix C leads to a
trongly observable system.

The nonlinear system observability was also studied. Equation
59� leads to a �Mr−1�-dimensional codistribution H of the ob-
ervation space H, which imply that the system is strongly locally
bservable ∀c̄se,p�0 �26�.

Based on the average model developed in the previous section,
Kalman filter can be designed according to

ẋ̂ = Apx̂ + Bu + Ke�y − ŷ�

ŷ = V�x̂,u� �61�

here x̂ and ŷ are the estimated state and output, respectively, V is
he output nonlinear function in Eq. �57�, Ap and Bp are the ma-
rices describing the dynamical system defined in Eq. �59�, C is
efined in Eq. �60�, and Ke is the Kalman gain, obtained as fol-
ows

Ke = PCR−1 �62�

here P is the solution of the Riccati equation

Ṗ = ApP + PAp
T − PCR−1CTP + Q

P�0� = P0 �63�

nd Q and R are weight matrices appropriately tuned.
Note that one of the main advantage of the filter proposed in

his paper is that the bulk and the interface solid concentration are
stimated, allowing the estimation of both the CSC and the SOC.

Figures 12–17 highlight the filter performance. In particular,
igs. 16 and 17 show the simulation results for some reasonable
hoice of Q and R when band-limited white noise is added to the
attery current and voltage in order to simulate the sensors noise.
ore noisy �and less expensive sensors� will require more filter-
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ng, which will slow down the estimation rate and future work on
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an experimental battery needs to address these issues. The fourh
order Kalman filter estimation results are compared with the full
300th order model. The error in the initial condition, close to 10%,
is fully and quickly recovered, showing that the filter is able to
estimate the correct value of the battery state of charge even if its
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Fig. 13 Kalman filter: error between the average solid concen-
tration estimation and full order model prediction at the
electrolytes-separator interface. The transient in the EKF esti-
mation is not shown.
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pen loop model prediction was 10% wrong. The step in current
emand results in a step in solid concentration, which is again
stimated by the filter, as shown in a zoom of the same figure. In
articular, the Fig. 13 shows explicitly the error between the esti-
ated solid concentration and the solid concentration depletion/

aturations critical values, which are the interesting quantities to
stimate for a refined estimation. It is shown that the error is less
han �0.4% and �3.0% in the positive and negative electrodes,
espectively. The negative electrode has higher prediction errors
han the positive electrode due to the lack of direct observability
rom the voltage prediction error. In Fig. 14, the estimation of the
SC and SOC is compared with coulomb counting �CC� that
valuates the battery charge with the integral of battery current. As
t is shown, the CC is unable to recover the error in the initial
onditions. Figure 14 also highlights that the discontinuity in the
SC during the current steps, which is slowly recovered due to

he diffusion into the particle, is only partially observable through
he SOC estimation.

Furthermore, the reduced order model-based Kalman filter pro-
ides also a good estimation for the single electrode open circuit
oltage even though just the open circuit voltage Up−Un is ob-
ervable. This accuracy is accomplished because the measured
utput V is not very sensitive to Un, so the correct value of the
attery voltage can be predicted uniquely by the positive electrode
olid concentration, as confirmed by the results shown in Fig. 15.
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Figures 16 and 17 show that the filter performance is barely
affected by the measurement imprecision. Introducing the sensors
noise into the simulation, in fact, increases the estimation conver-
gence time and reduce the precision. However, the performance is
still satisfying.

7 Conclusion
An isothermal numerical calculation of the solid concentration

evolution in the two electrodes of a lithium-ion battery cell driven
by a spatially distributed Butler–Volmer current was presented.
The numerical solution is implemented in MATLAB/SIMULINK using
the finite difference method. The isothermal electrochemical
model of the lithium-ion battery cell was then used to derive an
averaged model coupling, the average microscopic solid material
concentration with the average values of the chemical potentials,
electrolyte concentration, and current density. The full and the
reduced order models were then compared and simulation results
were shown and discussed. Finally, an EKF, based on the
electrode-average model, was designed for the CSC and SOC es-
timation. Using a typical discharge followed by a charge test the
estimation results show a �0.4% and �3.0% error in predicting
the critical solid concentrations in the positive and negative elec-
trode, respectively.
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