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ABSTRACT
In electric vehicle applications, batteries are usually packed

in modules to satisfy the energy and power demand. To facilitate
the thermal management of a battery pack, a model-based ob-
server could be designed to estimate the temperature distribution
across the pack. Nevertheless, cost target in industry practice
drives the number of temperature sensors in a pack to a number
that is not sufficient to yield observability of all the temperature
states. This paper focuses on formulating the observer design
and sensor deployment strategy that could achieve the optimal
observer performance under the frugal sensor allocation. The
considered observer performance is the estimation errors induced
by model and sensor uncertainty. The observer aims at minimiz-
ing the worst-case estimation errors under bounded model and
sensor uncertainty.

INTRODUCTION
Thermal management is an important function of the bat-

tery management system (BMS) in electric vehicles (EVs). The
electric current applied to the battery pack could be higher than
20 C-rate 1 for hybrid electric vehicles (FHEVs) operated in
the Charge Sustaining (CS) mode. The aggressive battery us-
age may result in excessive temperature rise and a large tem-
perature gradient across the cell, bringing challenges to thermal
management. As far as safety is concerned, thermal runaway [1],

∗Address all correspondence to this author.
1C-rate refers to the magnitude of current, defined as the ratio between the

current and the capacity of the battery in Ampere hour.

which happens under extremely high temperature needs to be
prevented. Furthermore, battery degradation is temperature de-
pendent as the capacity and power fade is accelerated at high
temperature [2–4]. Hence, the BMS needs to control battery tem-
perature within designed ranges.

Model-based temperature estimation [5–7] is a key enabler
for effective thermal management, which could provide detailed
information about temperature distribution across the battery
pack with limited number of temperature sensors. In [8], a ther-
mal model for a one-dimensional battery string of cylindrical
cells is constructed based on a single-cell thermal model, which
captures the surface and core temperature of the cell, and cell-to-
cell thermal interaction. Based on the thermal model and mea-
surements of the surface temperatures of a few cells, an observer
is designed to estimate all the temperature states in the string.
These states include the surface and core temperature of all cells.
It is highly desirable that the observer could i) significantly re-
duce the estimation errors under model uncertainty and ii) con-
verge from erroneous initial estimation errors quickly. Since the
thermal dynamics are stable, in an open-loop observer (without
output feedback), the estimation error under model uncertainty
will be bounded, and the errors caused by erroneous initial guess
will die out eventually. However, because the thermal dynamics
are slow, the eigenvalues of the model are close to the imaginary
axis of the complex plane. The estimation errors could be large
under model uncertainty, and the convergence from erroneous
initial conditions would be slow. A closed-loop observer could
guarantee i) and ii) if the model is fully observable. The num-
bers of temperature sensors needed for full observability have
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been determined from an observability analysis. For example,
it is found that for a string with 10 cells, at least 4 sensor are
needed to give full observability. However, the available sensors
in a commercial battery pack is much less than the derived num-
ber, e.g. 16 for 288 cells in Chevy Volt and 42 for 288 cells in
Toyota plug-in Prius. It may not be realistic to increase the num-
ber of sensors considering the cost and diagnostic requirement.
Therefore, an interesting research problem is to find the best per-
formance that can be achieved with the frugal sensor assignment
which leaves the temperature states not completely observable.

In this paper, the observer design and sensor deployment
problems for temperature estimation of battery strings are stud-
ied under unobservable conditions. The goal is to minimize the
estimation errors under model and sensor uncertainty, which are
assumed to be within a certain bound. The rest of the paper is
organized as follows. First, the thermal model of a battery string
is introduced. The estimation error of a closed-loop observer is
then derived. Based on the derived estimation error, the observer
design and sensor deployment problems are formulated as an op-
timization problem, which aim at minimizing the worst-case es-
timation error under all possible combinations of bounded model
and sensor uncertainty. Finally, a drive-cycle simulation is used
to show that the optimized observer could improve the overall es-
timation accuracy under dynamic current profile. Without loss of
generality, a battery string with 10 cells and 1 temperature sensor
will be considered as a design example.

THERMAL MODEL OF A ONE-DIMENSIONAL BATTERY
STRING

A thermal model of a one-dimensional battery string has
been constructed in [8], which is based on the single-cell ther-
mal model studied in [9–11]. The schematic of a battery string
and the thermal model is shown in Fig. 1.

The equivalent-circuit single-cell thermal model, as shown
in the inset of Fig. 1, takes the form

Cc
dTc

dt
=Q+

Ts −Tc

Rc

Cs
dTs

dt
=

Tf −Ts

Ru
− Ts −Tc

Rc
,

(1)

where the surface temperature Ts and the core temperature Tc are
captured as the two states. The heat generation Q is modeled
with a lumped internal resistance Re [10] as

Q = I2Re, (2)

where I is the current applied to the cell. It can also be computed
based on a battery electrical model if available [12]. Heat ex-
change between the core and the surface is modeled by heat con-
duction over a thermal resistance, Rc, which is a lumped param-
eter aggregating the conduction and contact thermal resistance

Cc
dT c,i

dt
= I2Re,i +

Ts,i −Tc,i

Rc
,

Cs
dT s,i

dt
=

Tf ,i −Ts,i

Ru
−

Ts,i −Tc,i

Rc
+Qcc,i,

Qcc,i =

 (Ts,2 −Ts,1)/Rcc, i = 1
(Ts,i−1 +Ts,i+1 −2Ts,i)/Rcc, i = 2, · · · ,n−1
(Ts,n−1 −Ts,n)/Rcc, i = n

Tf ,i =

{
Tf ,in, i = 1
Tf ,i−1 +

Ts,i−1−Tf ,i−1
RuC f

, i = 2, · · · ,n

(3)

across the compact and inhomogeneous materials. A convection
resistance Ru is modeled between the surface and the surround-
ing coolant to account for convective cooling. The value of Ru is
a function of the coolant flow rate, and in some vehicle battery
systems, the coolant flow rate is adjustable to control the battery
temperature. Here, it is modeled as a constant as if the coolant
flow rate is fixed to accommodate the maximum required cooling
capacity. A model with the more complicated varying Ru has also
been investigated in [11]. The rates of the temperature change of
the surface and the core depend on their respective lumped heat
capacity. The parameter Cc is the heat capacity of the jelly roll
inside the cell, and Cs is related to the heat capacity of the battery
casing.

A thermal model of a battery string is constructed by scal-
ing up the single-cell thermal model and considering the cell to
cell heat conduction [5] and heat balance of the flowing coolant
[9, 13]. The string is considered as cells connected in series with
tabs and arranged in a row configuration along the coolant flow
path. The coolant flows through the space between cells from the
inlet to the outlet, and picks up the heat dissipated from the cell
surface through convection. For a string with n cells, the tem-
perature evolution of the kth cell in a cluster can be modeled as
in Eq.(3), where i is the index of the cell along the coolant flow
direction. In the model, heat conduction between adjacent cells,
Qcc, is modeled as heat flow over a conduction resistance Rcc,
driven by temperature difference between surfaces of the adja-
cent cells. It is noted here that Rcc is a lumped parameter, which
includes heat conduction resistance of the tab and other possi-
ble connections between cells, such as the air gap. Coolant flow
temperature entering the ith cell, Tf ,i, is determined by heat bal-
ance of the flow around the previous cell, obtained by dividing
the heat removed from the i−1th cell, Ts,i−1−Tf ,i−1

Ru
, by the heat ca-

pacity of the flow, C f . The coolant temperature for the first cell
is the inlet flow temperature Tf ,in, which is regulated by the cool-
ing system. Here, current I is same for all cells since the string
is considered as in series connection. The individual cell internal
resistance Re,i is not necessarily the same among all the cells, and
the imbalance may be caused by factors such as manufacturing
variability and degradation.
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Figure 1. SCHEMATIC OF A ONE-DIMENSIONAL BATTERY STRING AND THE ASSUMED EQUIVALENT-CIRCUIT THERMAL MODEL.

The string thermal model in Eq. (3) can be written in the
state space representation as

ẋ = Ax+Bu, x ∈ R2n, u ∈ R2

y =Cx+∆y, y,∆y ∈ Rm (4)

where n is the number of cells and m is the number of sensors,

x =
[
Tc,1 Ts,1 Tc,2 Ts,2 · · · Tc,n Ts,n

]T
,

B =

[Re,1
Cc

0 Re,2
Cc

0 · · · Re,n
Cc

0

0 1
RuCs

0 1
RcCs

RuC f −1
RuC f

· · · 0 1
RcCs

(RuC f −1
RuC f

)n−1

]T

u =

[
I2

Tf ,in

]
.

(5)

The matrix A is the state matrix shown in Eq.(6), y is the temper-
ature state(s) measured by the sensor(s) whose location is speci-
fied in the C matrix, and ∆y is the uncertainty in sensor measure-
ment.

PROBLEM FORMULATION - OPTIMAL OBSERVER DE-
SIGN FOR TEMPERATURE ESTIMATION

The objective in this paper is to design a model-based ob-
server that could achieve optimal performance in temperature

estimation under bounded uncertainty. The battery internal re-
sistance typically varies from cell to cell due to factors such
as degradation, manufacturing variability, and operating condi-
tions [14,15]. Since the observer can only use the nominal value
Re,0 for all the cells, there will be mismatch in battery resistance,

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T

=
[
Re,1 −Re,0 0 Re,2 −Re,0 0 · · · Re,n −Re,0 0

]T
,

(7)

which is the considered model uncertainty. The resistance uncer-
tainty are usually within certain bounds to be specified later.

In this paper, the closed-loop observer for estimating the
temperature states of the battery string takes the form

˙̂x = Ax̂+B′u+L(y− ŷ)

ŷ =Cx̂,
(8)

where x̂ and ŷ denote the estimates of the states and outputs, and
L is the observer gain. The input matrix is denoted as B′ instead
of B considering the uncertainty in internal resistance. The esti-
mation error, ex, is defined as the errors between x and x̂,

ex = x− x̂. (9)

The error dynamics can be derived by subtracting the observer
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(6)

dynamics in Eq. (8) from the plant dynamics in Eq. (4), as

ėx = (A−LC)ex +
∆Re

Cc
I2 −L∆y, ex(t = 0) = ex,0. (10)

The following section aims at finding the best observer per-
formance that can be achieved given the thermal model and lim-
ited sensor allocation. The considered observer performance is
the worst-case steady-state error induced by bounded model (re-
sistance) and sensor uncertainty. It will be shown later that the
observer could also reduce the estimation errors under dynamic
current input.

Minimization of Worst-Case Steady-State Estimation
Error under Model Uncertainty

The steady-state error under a constant current (or sym-
metric charging-discharging current pulse train) can be obtained
based on Eq. (10) as

ex,∞ =−(A−LC)−1(
∆Re

Cc
I2 −L∆y). (11)

The error ex,∞ is a 2n× 1 vector, consisting of the steady-state
error in each of the temperature state. Here, the performance
of the observer is evaluated based on the largest error in all the
states, which is represented by the infinity norm of ex,∞,

∥ex,∞∥∞ = ∥(A−LC)−1(
∆Re

Cc
I2 −L∆y)∥∞. (12)

Other norms, such as the 2-norm, can also be chosen as the cri-
terion. In Eq.(12), the resistance uncertainty, ∆Re, and sensor
uncertainty, ∆y, are usually within certain bounds. It is assumed
here that each ∆Re,i is bounded within ±10% of the nominal
value,

−0.1Re,0 ≤ ∆Re,i ≤ 0.1Re,0, ∀i = 1,2, · · · ,n (13)

and the uncertainty of each temperature sensor, ∆y j, is bounded
within ±0.5oC (typical of the T-type thermocouple),

−0.5oC ≤ ∆y j ≤ 0.5oC, ∀ j = 1,2, · · · ,m. (14)

Most likely, assigning a sensor on the cell with the largest re-
sistance uncertainty will help reduce the estimation errors. How-
ever, since no priori knowledge on the location of the cell with
the largest uncertainty is available, we assume that each ∆Re,i
follows uniform distribution within the specified bounds.

Based on the infinity norm of the estimation error obtained
in Eq.(12), the observer design and sensor deployment problems
can be formulated as optimization problems at the following
three different level.

i) Performance Evaluation: the performance of an ob-
server (given sensor location specified in C and observer gain
L) is defined as the worst-case steady-state error under all ∆Re
and ∆y,

max
∆Re,∆y

∥(A−LC)−1(
∆Re

Cc
I2 −L∆y)∥∞

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T
,

∆y =
[
∆y1 ∆y2 · · · ∆ym

]T
,

s.t.−0.1Re,0 ≤ ∆Re,i ≤ 0.1Re,0, i = 1,2, · · · ,n
−0.5oC ≤ ∆y j ≤ 0.5oC, j = 1,2, · · · ,m.

(15)

ii) Observer Design: if the sensor location C is fixed but
the observer gain L remains to be designed, an optimal observer
could look at minimizing the worst-case error,

min
L

max
∆Re,∆y

∥(A−LC)−1(
∆Re

Cc
I2 −L∆y)∥∞, (16)

subject to the same constraints in Eq.(15).
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iii) Sensor Deployment: if the sensor location C could also
be chosen, the sensor deployment problem will be

min
C

min
L

max
∆Re,∆y

∥(A−LC)−1(
∆Re

Cc
I2 −L∆y)∥∞,

C s.t. permissible sensor locations.
(17)

If a battery string of 10 cells is considered and one sensor is avail-
able, the total number of permissible C is 10, which measures
the surface temperature of each cell respectively. For example,
when the one sensor is allocated at Cell 1, the C matrix will be[
0 1 0 0 · · · 0 0

]
. The optimal C∗ needs to be found among all

10 permissible C’s.
The first step is to find the worst-case error by solving the

maximization problem in Eq.(15) when C and L are given. It
is noted that the 2n×1 vector (A−LC)−1(∆ReI2 −L∆y) can be
viewed as 2n linear and thus convex functions with respect to
∆Re and ∆y. The infinity norm of (A−LC)−1(∆ReI2 −L∆y) will
still be convex to ∆Re and ∆y, since the maximum of multiple
convex functions is still a convex function [16]. As ∆Re and ∆y
are bounded by box constraints shown in Eq.(15), the permissi-
ble ∆Re and ∆y form a compact convex set. According to the
the maximum principle [17], the maximum of the convex cost
function in Eq.(15) is attained on the boundary (or vertices) of
the convex compact set formed by ∆Re and ∆y. The boundary
is defined by the combinations of ∆Re and ∆y, whose elements,
∆Re,i and ∆yi, take either the upper bound or the lower bound,

∆Re,i = 0.1Re,0 or −0.1Re,0, ∀i = 1, · · · ,n
∆yi = 0.5oC or −0.5oC, ∀i = 1, · · · ,m.

(18)

The maximization problem in Eq.(15) is hence transformed to

max
∆Re,∆y

∥(A−LC)−1(
∆Re

Cc
I2 −L∆y)∥∞

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T

∆y =
[
∆y1 ∆y2 · · · ∆ym

]T
,

s.t. ∆Re,i ∈ {0.1Re,0,−0.1Re,0}, ∆yi ∈ {0.5oC,−0.5oC}.
(19)

For the case of 1 sensor in 10 cells, there are a total of 10 ∆Re,i
that could take either 0.1Re,0 or −0.1Re,0, and 1 ∆yi that could
take either 0.5oC or −0.5oC. Hence the total number of vertices
is 210+1 = 2048. The worst-case error can be found by evalu-
ating the cost function at these 2048 vertices and choosing the
maximum.

The next step is to design the observer gain L to minimize
the worst-case error by solving Eq.(16). The traditional methods
for observer design, such as Kalman filtering and pole placement,
are not suitable for this problem. The Kalman filter, which seeks

the optimal estimation under Gaussian process and measurement
noises, will not necessarily be the optimal observer here under
bounded constant model uncertainty. For pole placement, it is
not clear how to find the optimal pole locations to minimize
the worst-case estimation error. Therefore, several optimization
methods have been attempted for the optimal observer design,
which include applying a) Matlab command fmincon and b)
Matlab command fminimax. The application of a) is straight-
forward. For b), the built-in Matlab command fminimax is
designed to minimize the maximum of a set of functions, which
share a common variable. Here, the function set consists of the
cost function Eq.(12) evaluated at each vertex in Eq.(18), and the
common variable is the observer gain L. It needs to be pointed
out that the above problem is not convex optimization, as the cost
functions are non-convex. Consequently, the optimization results
may fall into local minimum. In order to reduce the likelihood
of encountering local minimum, the two methods have been at-
tempted under different initial guesses during the optimization
procedures. For the case to be demonstrated, the same minimum
worst-case errors ∥ex,∞∥∗∞ have been obtained. The optimized
observer gains L∗ are not exactly the same though, probably be-
cause the thermal model is not completely observable. Since the
observer gain L will not have much effect on the unobservable
subspace, some entries of L, which mainly associated with the
unobservable subspace, could be non-unique when achieving the
minimum worst-case error. The obtained observer gains have
also been checked to satisfy the stability condition as A−LC is
Hurwitz.

Finally, for the sensor deployment problem in Eq.(17), the
optimal sensor location (C) can be determined by solving Eq.(16)
for all permissible sensor locations and choosing the one with the
minimum error.

The outlined optimization procedures have been applied to
a cell string with 10 cells, and the cases when only 1 temperature
sensor is available are considered. The optimized worst-case es-
timation errors in steady state under 10 C constant current for
each sensor location are shown in Fig. 2. The dashed line shows
the worst-case steady-state estimation error under open loop, and
the solid line shows the errors under the optimized observer for
different sensor locations. It can be seen that the optimal sensor
location is at Cell 8, and the minimal worst-case estimation er-
ror is 3.15oC, reduced from 4.26oC under open loop. As seen
in the figure, the optimized estimation errors are large when the
sensor is placed at the surface of the first few cells, and decrease
as the sensor is moved to the middle section of the string. Af-
ter achieving the minimum at Cell 8, the estimation error starts
to increase again towards the end. The cases of ∆R∗

e that yield
the worst-case errors under open loop and some sensor locations
are demonstrated in Fig. 3. It is shown that ∆R∗

e , which is the
combination of the cell resistance uncertainty that corresponds
to the worst-case estimation error, is different for different sen-
sor locations. It is also interesting to investigate the distribution
of the steady-state estimation error at all the vertices specified in
Eq.(18). As an example, the error distribution when the sensor
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Figure 2. Optimized worst-case estimation errors in steady state at each
sensor location when 1 sensor is available for 10 cells (under 20 C con-
stant current).
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is placed at Cell 8 is shown by the histogram in Fig. 4. The
x-axis denotes the values of the infinity norm of the steady-state
errors, and the y-axis shows the occurrence of the error values
among the vertices as a percentage of the total number of ver-
tices. The characteristics of the error distribution, including the
maximum (worst-case), mean and median, are also denoted in
the figure for both open loop and the optimized observer. It is
noted that while the optimized observer reduces the worst-case
error by 1.1oC as compared to that in open loop, the mean and
the median of the errors at all the vertices do not see a significant
improvement. The reason might be attributed to the fact that the
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Figure 4. Distribution of the steady-state error norm at all vertices under
open loop and optimized observer (sensor located at cell 8). Vertices:
the combinations of ∆Re, each element of which takes either the upper
bound 0.1Re,0 or the lower bound −0.1Re,0, as specified in Eq.(18).

battery string model is unobservable when only one surface tem-
perature is measured. The moderate reduction in worst-case error
and insignificant improvement in error mean and median may re-
flect the fundamental limitation imposed by the unobservability,
but the detailed mechanism remains to be investigated.

SIMULATION UNDER A DRIVE-CYCLE
In this section, the performance of the designed observer is

evaluated under drive-cycle simulation. It is shown that the ob-
server, though designed primarily to minimize the steady-state
estimation error, could also improve the estimation accuracy
under dynamic current profile. Besides model uncertainty, the
temperature estimation may also be affected by errors in initial
guesses. This issue is of particular interest for the following rea-
sons. First, at every start-up, initial temperature gradient could
exist in a battery pack caused by factors such as external condi-
tions and insufficient relaxation from previous operation [8, 18].
Due to the scarcity of the temperature sensor, the temperature
gradient would turn into error in initial temperature estimation.
Second, under open loop, although the initial errors would even-
tually die out since the thermal system is stable, the convergence
would be seriously delayed by the slow battery thermal dynam-
ics [8]. This aspect is also considered in the drive-cycle simula-
tion.

The considered drive cycle is plotted in Fig. 5, where the
top plot shows the current profile in C-rate. The evolution of
the highest temperature, which is the core temperature of Cell 10
Tc,10, and the lowest temperature, namely the surface tempera-
ture of Cell1 Ts,1, are demonstrated in the bottom plot to show
the temperature gradient across the battery string. The current
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profile consists of three parts, a first sub-cycle, a 5 mins rest, and
a second sub-cycle. Because the rest between the two sub-cycles
are very short, the cells would not reach thermal equilibrium at
the end of the rest, and temperature gradient exists across cells
at the start of the second sub-cycle. Since only one tempera-
ture sensor is available, the reading of the sensor will be used to
initialize all the temperature estimation, leading to initial errors
in most states. The performance of the open-loop and the opti-
mized observer during the second sub-cycle is plotted in Fig. 6,
which shows the maximum estimation error among all the states,
max |ex|, at each time instant. The assumed resistance uncer-
tainty ∆Re is the first case shown in Fig. 3, and the optimized
observer is the one with sensor at cell 8. It can be seen that the
optimized observer could not only reduce the estimation errors
when the temperature states enter the ”semi steady-state” after
around t = 4000 s, but also accelerate the convergence from the
initial estimation error. The performance of the observers can
be evaluated based on the normalized L2-norm of the maximum
estimation error,

∥ex,max(t)∥L2 =
(∫ T

0
(max|ex(t)|)2dt

) 1
2 /T, (20)

where T is the duration of the cycle. The distribution of
∥ex,max(t)∥L2 at all the vertices specified in Eq.(18) is shown in
the histogram in Fig. 7. The x-axis denotes the values of the L2-
norm of the maximum estimation error, and the y-axis shows the
occurrence of the error values among the vertices as a percent-
age of the total number of vertices. The characteristics of the er-
ror distribution, including the maximum (worst-case), mean and
median, are also denoted in the figure for both open loop and
the optimized observer. Improvement of the estimation accuracy
similar to that in steady-state shown in Fig. 4 is observed.

CONCLUSION
In this paper, temperature estimation in battery string is stud-

ied under frugal sensor allocation. Optimal observers are de-
signed to minimize the estimation error under model/sensor un-
certainty. The estimation problem is formulated as optimization
problems in three different levels. The first level involves de-
termining the worst-case error under bounded uncertainty or ini-
tial errors, which is defined as the performance of the observer.
In the second level, the observer gain is designed to minimize
the worst-case errors. The third level addresses the sensor de-
ployment problem by selecting the sensor location that allows
the best observer performance. With the designed observer and
sensor location, it is guaranteed that the steady-state estimation
errors for all the temperature states will be within the specified
limit as long as the assumed bounds on model uncertainty and
initial conditions hold. As shown in drive-cycle simulation, the
observer could also accelerate the convergence of the estimation
from erroneous initial errors and improve the overall estimation
accuracy under dynamic current profile. A battery string model
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Figure 6. Evolution of the maximum estimation error among all states
over time.

with 10 cells and 1 sensor is used as an example to illustrate the
introduced methodology. The presented worst-case temperature
estimation errors may not be considered as critical by some stan-
dards (even for the open loop estimation), which might justify
the frugal sensor allocation that is being applied in the industry
practice. It may also be due to the specific parameters and con-
figuration of the battery string that is considered. The methodol-
ogy developed here can be applied to other battery packs, whose
parameters and configuration may induce more significant esti-
mation errors in temperature estimation.
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