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Abstract— This paper presents a computationally efficient
thermal model of a cylindrical lithium ion battery for real-
time applications. Such a model can be used for thermal
management of the battery system in electrified vehicles. The
thermal properties are modeled by volume averaged lumped
values under the assumption of a homogeneous and isotropic
volume. A polynomial approximation is then used to estimate
the radial temperature distribution that arises from heat
generation inside the cell during normal operation. Unlike
previous control oriented models, which use discretization of
the heat equation, this model formulation uses two states to
represent the average value of temperature and its gradient.
The model is parameterized using experimental data from a 2.3
Ah 26650 Lithium-Iron-Phosphate (LiFePO4 or LFP) battery
cell. Finally, a Kalman filter is applied based on the reduced
order thermal model using measurements of current, voltage
and surface temperature of the cell and ambient temperature.
The effectiveness of the proposed approach is validated against
core temperature measurements.

I. INTRODUCTION

Over the past decades, energy storage systems utilizing
lithium ion (Li-ion) batteries have become one of the most
critical components for realizing efficient and clean trans-
portation systems through electrification of vehicles, e.g.,
hybrid electric vehicles (HEVs), plug-in hybrid electric ve-
hicles (PHEVs), and electric vehicles (EVs). Li-ion batteries
have several advantages such as no memory effect, broad
temperature range of operation, and high power discharge
capability [1]. However, the Li-ion battery cycle life and
capacity are adversely affected by sustained operation at
high temperatures [2]. This presents a problem in automotive
applications where high current rates needed for vehicle
acceleration cause internal heating of the battery. Thus, being
able to estimate/predict the temperature distribution across
cells and packs is vital for formulating power management
strategies that are mindful of the performance limitations of
these versatile power/energy sources.

Physics-based thermal models are capable of accurate
prediction of temperature distribution [3]. In general, nu-
merical techniques such as finite difference method (FDM),
finite element method (FEM), and finite volume method
(FVM) are commonly used for solving heat or mass transfer
problems in the form of partial differential equations (PDEs).
However, these models are computationally intensive since a
large number of ordinary differential equations (ODEs) are
generated by discretizing governing equations.
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To overcome this drawback, reduced order models have
been proposed using techniques such as balanced truncation
method [4]. However, additional computations are required
to determine which are the important modes of the system. A
single or volume-averaged temperature model is used in [5].
A two-state lumped thermal model was used in [6], [7] for
improved core temperature prediction with minimal increase
in computational effort relative to the single state model.
Nevertheless, the assumption that the heat is generated at
the core of the battery cell may lead to an overestimation of
the core temperature.

In this paper, we propose a computationally efficient
thermal model for a cylindrical battery cell and its application
for estimating core and surface temperatures. Toward this
end, a polynomial is used to approximate the solution of
the heat transfer problem. This approach provides a method
to estimate the core and surface temperatures. The model
states are the volume-averaged temperature and temperature
gradient which can be directly used in the control prob-
lem formulation. Specifically, the temperature gradient can
indicate the imbalance of temperature distribution inside a
battery. The two-state lumped parameter model is expressed
in linear state-space form that can be used in control applica-
tions for battery management systems. As a specific example,
we develop a Kalman filter-based estimator for a cylindrical
battery cell using the proposed model.

This paper is organized as follows. Section II presents the
convective heat transfer problem for a cylindrical battery cell.
The two-state thermal model using polynomial approxima-
tion is addressed. The frequency responses of the transfer
function of the proposed model and analytical solution are
compared to show the accuracy of the proposed model.
Then, the thermal properties of the battery are experimentally
identified in Section III. In Section IV, a Kalman filter-
based estimator is developed using the proposed model for
monitoring core temperature of the battery and the developed
estimator is experimentally validated. Finally, conclusions
are drawn in Section V.

II. HEAT TRANSFER PROBLEM IN CYLINDRICAL
BATTERIES

This paper considers the radially distributed (1-D) thermal
behavior of a cylindrical battery cell with convective heat
transfer boundary condition as illustrated in Fig. 1 [8]. A
cylindrical Li-ion battery, so-called a jelly-roll, is fabri-
cated by rolling a stack of cathode/separator/anode layers.
The individual layered sheets are thin, therefore, lumped
parameters are used so that material properties such as
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Fig. 1. Schematic for a A123 26650 cylindrical battery cell

thermal conductivity, density, and specific heat coefficient
are assumed to be constant in a homogeneous and isotropic
body. For spiral wound current collectors with multiple
connections to the battery tab, it is reasonable to assume
uniform heat generation along the radial direction [9]. The
thermal conductivity is one or two orders of magnitude
higher in the axial direction than in the radial direction.
Therefore, the temperature distribution in the axial direction
will be more uniform [10]. The governing equation of the 1-
D temperature distribution T (r, t) and boundary conditions
are given by

ρcp
∂T (r, t)

∂t
= kt

∂2T (r, t)

∂r2
+
kt
r

∂T (r, t)

∂r
+
Q(t)

Vb
, (1)

B.C.’s
∂T (r, t)

∂r

∣∣∣
r=0

= 0, (2)

∂T (r, t)

∂r

∣∣∣
r=R

= − h
kt

(T (R, t)− T∞), (3)

where t, ρ, cp and kt represent time, volume-averaged den-
sity, specific heat coefficient, and thermal conductivity of
the cell respectively. The radius of the battery cell is R,
Q is the heat generation inside the cell, and Vb is the
volume of battery cell. Ambient temperature for convection is
denoted by T∞. The boundary condition in (2) represent the
symmetric structure of the battery about the core. The other
boundary condition shown in (3) represents the convective
heat transfer at the surface of the battery.

A. Model reduction

With evenly distributed heat generation, the temperature
distribution along r-direction of the battery cell is assumed
to satisfy the following polynomial approximation proposed
in [11]

T (r, t) = a(t) + b(t)
( r
R

)2

+ d(t)
( r
R

)4

, (4)

where a(t), b(t), and d(t) are time-varying constants. To
satisfy the symmetric boundary condition at the core of
the battery cell, (4) contains only even powers of r. Thus,
the temperatures at core and surface of the battery can be
expressed as

Tc = a(t), Ts = a(t) + b(t) + d(t), (5)

where subscripts c and s denote core and surface respectively.

The volume-averaged temperature T̄ and temperature gra-
dient γ̄ are introduced as follows:

T̄ =
2

R2

∫ R

0

rTdr, γ̄ =
2

R2

∫ R

0

r

(
∂T

∂r

)
dr. (6)

These volume-averaged values are used as the states unlike
existing approaches in [12], [6], and [7].

By substituting (4) in (6), T̄ and γ̄ can be expressed in
terms of constants as

T̄ = a(t) +
b(t)

2
+
d(t)

4
, γ̄ =

4b(t)

3R
+

8d(t)

5R
. (7)

By rearranging (5) and (7), time-varying constants a(t),
b(t), and d(t) can be written by

a(t) = 4Ts − 3T̄ − 15R

8
γ̄,

b(t) = − 18Ts + 18T̄ +
15R

2
γ̄,

d(t) = 15Ts − 15T̄ − 45R

8
γ̄. (8)

By substituting (8) in (4), the temperature distribution can
be expressed as a function of Ts, T̄ , and γ̄

T (r, t) = 4Ts − 3T̄ − 15R

8
γ̄

+

[
−18Ts + 18T̄ +

15R

2
γ̄

]( r
R

)2

+

[
15Ts − 15T̄ − 45R

8
γ̄

]( r
R

)4

. (9)

The PDE (1) can be converted into ODEs by substituting
(9) in volume-averaged governing equation and its partial
derivative with respect to r as follows:

dT̄

dt
+

48α

R2
T̄ − 48α

R2
Ts +

15α

R
γ̄ − α

ktVb
Q = 0,

dγ̄

dt
+

320α

R3
T̄ − 320α

R3
Ts +

120α

R2
γ̄ = 0, (10)

where α = kt/ρcp is thermal diffusivity.

Using (3), the surface temperature Ts can be rewritten as

Ts =
24kt

24kt +Rh
T̄ +

15ktR

48kt + 2Rh
γ̄ +

Rh

24kt +Rh
T∞.

Finally, a two-state thermal model can be given by the
following form:

ẋ =Ax+Bu,

y = Cx+Du, (11)

where x = [T̄ γ̄]T , u = [Q T∞]T and y = [Tc Ts]
T are

states, inputs and outputs respectively. System matrices A,
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Fig. 2. Comparison of frequency response functions between analytical
solution and polynomial approximation

B, C, and D are defined as follows:

A =

[
−48αh

R(24kt+Rh)
−15αh

24kt+Rh
−320αh

R2(24kt+Rh)
−120α(4kt+Rh)
R2(24kt+Rh)

]
,

B =

[
α

ktVb

48αh
R(24kt+Rh)

0 320αh
R2(24kt+Rh)

]
,

C =

[
24kt−3Rh
24kt+Rh

− 120Rkt+15R2h
8(24kt+Rh)

24kt
24kt+Rh

15Rkt
48kt+2Rh

]
,

D =

[
0 4Rh

24kt+Rh

0 Rh
24kt+Rh

]
. (12)

This state-space representation is used for the parametriza-
tion in Section III and the estimation of core temperature
using Kalman Filter in Section IV.

B. Frequency domain analysis

The frequency response of transfer function of the pro-
posed model, H(s) = D + C(sI − A)−1B, is compared to
that of the analytical solution in [4]. The variable I is the
identity matrix. Parameters used to generate the plots in Fig.
2 are summarized in Table I. The heat transfer coefficient of
h=5W/m2K is chosen since this value is typical of natural
convection condition.

Figure 2 shows that the effects of heat generation on core
and surface temperature, denoted by H11(s) and H21(s)
respectively, can be accurately predicted over the whole
range of frequency. On the other hand, the responses of core

TABLE I
PARAMETERS OF THE BATTERY [4]

Parameter Symbol Value Unit
Density ρ 1824 kg/m3

Specific heat coeff. cp 825 J/kgK
Thermal conductivity kt 0.488 W/mK

Convection coeff. h 5 W/m2-K
Radius R 12.93e-3 m
Height L 65.15e-3 m
Volume Vb 3.4219e-5 m3
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Fig. 3. Open Circuit Voltage of the 2.3 Ah 26650 LFP battery cell

and surface temperature excited by the ambient temperature,
H12(s) and H22(s), are nearly identical to the analytical
solution for frequencies below 10−2 Hz. In general, the
temperature of cooling media does not change rapidly. Thus,
the prediction of temperature distribution using the proposed
approach can be considered sufficiently accurate.

C. Heat generation calculation

Since heat generation rate Q is the input to the battery
thermal system, the input needs to be accurately calculated
from measurement data, such as current and voltage during
operation. In [5], Bernardi et al. proposed the simplified form
of heat generation rate with assumptions that heat generation
due to enthalpy-of-mixing, phase-change, and heat capacity
are negligible as expressed by

Q = i(U − V )− i
(
T
∂U

∂T

)
, (13)

where i, U , and V represent the current, the open-circuit
voltage (OCV), and the terminal voltage respectively. As
shown in Fig 3, the OCV is a function of the battery state-
of-charge(SOC). This function is experimentally obtained by
averaging the measured terminal voltages during charging
and discharging a battery with C/20 current rate under a
Constant Current Constant Voltage (CCCV) charging pro-
tocol. The OCV is then calculated at the estimated SOC
value by integrating measured current with respect to time
as ˙SOC = − I

3600Cb
where Cb is the battery capacity in Ah.

The sign convention is such that positive current denotes
battery discharging.

The last term in (13) is the heat generation from entropy
change. In this paper, heat generation due to entropy change
is neglected for simplicity. This simplification is warranted
since the typical SOC range of HEV operation is narrow in
which ∂U

∂T of the battery cell is insignificant as shown in [6]
for this chemistry. In addition, the reversible entropic heat
generation would have zero mean value when the battery
is operating in charge-sustaining mode, typical of HEV
operation.

III. PARAMETER IDENTIFICATION

In this section, the value of the lumped parameters in (11)
for a 2.3 Ah 26650 LFP battery cell by A123 are identified
through experimentation using the proposed model. Figure 4
shows current, voltage, calculated heat generation rate and
ambient temperature profiles over the Urban-Assault Cycle
(UAC) in [7] that is used for the parametrization. This cycle
used for simulating military ground vehicles has significantly
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Fig. 4. Data set used for parameter ID: current and voltage (top), heat
generation rate (middle), and ambient temperature (bottom) during Urban-
Assault Cycle

high power demands. The model is then validated using a
different duty cycle.

A. Identifying thermal properties

Parameter identification is important for accurately pre-
dicting the temperature distribution inside a battery cell as
the parameters kt, cp, ρ, and h determine the dynamics of
thermal model. The density can be measured. Therefore,
only three parameters such as kt, cp, and h are considered
for the parameter identification. The experimental set-up is
described in [7]. Measured cell current, voltage, surface and
core temperatures of the battery cell, and ambient tempera-
ture are used for the parameter identification.

Let the error between the measured temperatures and
model outputs at each time step k in vector form be

e(k, θ) = [Tc,e(k, θ) Ts,e(k, θ)]
T − [Tc,m(k) Ts,m(k)]T ,

(14)

where θ = [kt cp h]T , Tc,e and Ts,e represent the model
parameters, core and surface temperatures respectively. The
battery is allowed to rest at ambient temperature to equili-
brate, that is, x(0) = [T∞ 0]T .

Parameters are identified by minimizing the Euclidean
norm of the difference between the measured and simulated

TABLE II
IDENTIFIED THERMAL PROPERTIES

Parameter Symbol Value Reference
Density ρ 2047* 2118 [13]

Sp. heat coeff. cp 1109.2 1004.9–1102.6 [6], [7]
Thermal cond. kt 0.610 0.488–0.69 [4], [13]
Conv. coeff. h 58.6 65.99 [7]

* calculated using measured mass and volume
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Fig. 5. Comparison between measured and simulated temperatures (top)
and errors (bottom)

temperatures as given by

θ∗ = argmin
θ

Nf∑
k=1

||e(k, θ)||2, (15)

where Nf is the number of measurement points. The min-
imization problem is solved by using the fmincon function
in MATLAB. The parameters in Table I are used as initial
guess for the identification.

Table II presents the identified thermal properties for the
26650 battery. These parameters are close to the values pre-
sented in the literature. The identified specific heat coefficient
cp is five percent larger than the mean value determined
in [6] where cp was determined by measuring transient
responses of the battery under different pulses. Forgez et al.
suggested that the deviation in identified value of cp might be
caused by measurement uncertainty in temperature and the
temperature dependency of the heat capacity. The identified
thermal conductivity kt is within the range of values reported
in literature [4], [13].

Despite using similar experimental data and setup, the
identified convection coefficient is 11% smaller than the
coefficient calculated by using thermal resistance and battery
surface area in [7]. This difference may be due to the two
different model structures. Lin et al. in [7] considered two
different materials, namely one for the core and one for the
surface, whereas we assume the battery is a homogeneous
and isotropic body. To accurately determine the convection
coefficient, the temperature measurements of a pure metal
during thermal relaxation can be used.

Figure 5 shows the measured and simulated temperatures
at the core and surface of the battery. The error between the
measurements and simulated temperature is less than the sen-
sor accuracy of 0.5oC. Thermocouples used for temperature
measurements are T-type whose accuracy is the maximum of
0.5oC or 0.4% according to technical information from the
manufacturer, OMEGA. Figure 6 shows the volume-averaged
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Fig. 6. Cell temperature (top) and temperature gradient (bottom)

temperature and its gradient of the battery respectively. There
is no significant difference between the volume-averaged
temperature and the linear average of core and surface
temperatures, i.e. (Ts + Tc)/2. Existing approaches in [6],
[7] have the capability of predicting the core temperature.
However, in the case of a cell with larger radius [14], the
volume-averaged temperature gradient is different from the
linear temperature gradient, i.e. (Ts − Tc)/R. In particular,
the volume-averaged temperature gradient is 1.36 times
greater than linear temperature gradient under the UAC
test. Since non-uniform temperature distribution can lead to
accelerated capacity losses of inner core [14], the volume-
averaged temperature gradient is an important metric to
describe severity of temperature inhomogeneity inside the
battery.

B. Model validation

To validate the performance of the proposed model with
the identified parameters, the battery was tested under a
different HEV drive cycle, the Escort Convoy Cycle (ECC)
[7]. The current and voltage profiles for this cycle are
illustrated in Fig. 7. Figure 8 shows that there are slight
differences between the measured and simulated tempera-
tures; in particular, the root-mean-square errors (RMSE) of
core and surface temperatures are 0.4 and 0.3oC respectively.
These differences may be explained with the assumption of
radially uniform heat generation and high conductivity in the
axial direction. Additionally, the entropy change of the LFP
battery is not properly considered in heat generation formu-
lation (13), which might introduce error in the calculation
of heat generation rate. Nevertheless, since the comparison
of temperatures shows good agreement and reasonably small
RMSEs, it can be concluded that the proposed model with
identified thermal properties is sufficiently accurate for ther-
mal management during HEV drive cycles.
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Fig. 7. Current (top) and voltage (bottom) profiles during Escort Convoy
cycle

IV. TEMPERATURE ESTIMATION

In this section, we develop a Kalman filter-based (KF)
estimator for monitoring the core temperature of the battery
whose thermal properties were identified in previous section.

By discretizing (11), the linear discrete-time model at time
step k can be obtained as follows:

x(k + 1) = Adx(k) +Bdu(k),

y(k) = Cx(k) +Du(k), (16)

where Ad and Bd are system matrices in discrete-time
domain. Since the determinant of system matrix A in (12),
det(A) = 960α2h/(R3(24kt +Rh)), is always positive
except for the case when the cell is insulated (h = 0), A
can be considered non-singular; thus, Ad and Bd can be
calculated by

Ad = e(A∆T ), Bd = A−1(Ad − I)B,
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where ∆T is the sampling time of 0.1 second.
The design of a KF estimator is given as following update

processes.
Time update:

x̄(k) =Adx̂(k − 1) +Bdu(k − 1),

P̄ (k) =AdP (k)ATd +Qw,

Measurement update:

K(k) = P̄ (k)CT2
[
C2P̄ (k)CT2 +Rv

]−1
,

P (k) = [I −K(k)C2] P̄ (k),

where x̄ and x̂ are the a priori and a posteriori estimates
of the state, and P̄ and P are the a priori and a posteriori
error covariances respectively. Covariance matrices Qw and
Rv are determined by zero-mean Gaussian noise in process
and measurement respectively. The subscript 2 denotes ele-
ments in the second row relating to surface temperature Ts,
which is the measurable output.

We assume that initial temperature distribution inside the
battery is uniform at 40oC, i.e. x̂(0) = [40 0]T . The
actual temperature is 26oC. The covariance matrix Qw =
β2diag(1, 1) describes the process noise where β>0 is a
parameter for tuning based on model inaccuracy. The noise
covariance Rv = σ2 is determined from the standard
deviation of temperature signal σ = 0.05oC. Ultimately,
the initial condition of the error covariance matrix and the
tuning parameter are chosen as P (0) = diag(1, 1) and β =
0.0005 through repeated simulations. As seen from Fig. 9,
the core temperature can be accurately estimated using the
KF estimator. In particular, the RMSEs of core temperatures
by the KF estimator and open-loop prediction are 0.2 and
2.1 oC respectively.

V. CONCLUSION
In this study, a radially distributed 1-D thermal modeling

approach for a cylindrical battery cell is proposed. Poly-
nomial approximation is applied to obtain a reduced order

model. Frequency domain analysis shows that the proposed
model provides sufficiently accurate prediction of core and
surface temperatures with a reasonable assumption that the
temperature of cooling media does not change rapidly.

The proposed model is used to identify thermal prop-
erties and convective coefficient for a 2.3 Ah 26650 LFP
battery cell using a set of measured data: current, voltage,
temperature at core, surface and ambient temperatures over
the UAC test. The identified parameters are close to the
values in literature. The proposed thermal model can ac-
curately predict core, surface, volume-averaged temperature,
and volume-averaged temperature gradient of a cylindrical
Li-ion battery. Particularly, the volume-averaged temperature
gradient captures the imbalance of temperature distribution
which is useful for controlling battery cooling system.

The identified properties are then used to estimate battery
core temperature by applying Kalman filtering theory during
a different vehicle drive cycle, the ECC. The results shows
that the core temperature can be accurately estimated by
using the proposed model with measured current, voltage,
surface and ambient temperature which are relatively easy
to measure in practice.
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