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Abstract

Numerous studies and papers show that variable valve tim-
ing has the potential to significantly enhance the automo-
tive engine. Improvements in fuel economy, emissions, and
performance can be achieved, as well as cylinder deactiva-
tion, and the elimination of the throttle and external exhaust
gas recirculation. Actuation employing electromagnets has
been proposed as a replacement to the traditional camshaft
to achieve variable valve timing. Unfortunately, the resulting
ElectroMechanical Valve actuators suffer from large impact
velocities between the valve, valve seat, and the actuator it-
self due to the motion of the valve, leading to excessive noise
and wear on the system. Impact velocities comparable to
those achieved by a camshaft are required before the system
can be used in production vehicles. An Iterative Learning
Controller (ILC) is applied to achieve this performance. This
paper discusses the implementation issues associated with the
ILC and presents experimental results.

1 Introduction

Global fuel resources and environmental considerations are
pressuring the automotive industry to produce more fuel ef-
ficient vehicles. Throughout the last twenty years significant
improvements have been made by replacing mechanical sub-
systems with their electronic counterparts. Digital control of
spark timing, idle speed bypass valve, throttle, and air/fuel
ratio have led to more fuel efficient vehicles. Despite research
showing that variable valve timing has the potential to con-
tribute to higher fuel economy, such a system has yet to be
implemented. While several manufactures have implemented
variable profile camshafts to achieve a degree of flexibility in
valve timing, complete independent control of valve timing
remains elusive and is being actively researched.

A promising solution to achieve variable valve timing is the
ElectroMechanical Valve (EMV) actuator, shown in Figure 1.
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Figure 1: Schematic of the ElectroMechanical Valve (EMV)
actuator

The EMV actuator governs the opening/closing of the valve
through the forcing of a set of springs and electromagnets.
Initially the armature is held in one of the two extreme po-
sitions by an electromagnet, causing the spring on that side
to be more compressed than the opposing spring. When the
voltage across the magnetic coil is reduced to zero, the differ-
ence in the spring force drives the armature across the 8 mm
gap, thereby causing the valve to either open or close. As the
armature nears the other extreme position the electromagnet
is activated to catch and hold the armature in place.

While effective in ensuring opening/closing of the valve, the
EMV actuator suffers from large impact velocities between
the armature, valve, and valve seat leading to excessive noise
and wear on the system. In addition, transition times need
to be both quick and consistent to avoid collision with the
piston and variability in trapped mass. Before the actuator
can be implemented in production vehicles a solution to these
problems needs to be found.

Due to the repetitive nature of the motion with fixed ini-



tial conditions, an Iterative Learning Controller (ILC) is well
suited for this application. Although repetitive control ap-
proach is applied in [6] the resulting controller works well
when the reference signal is periodic. This is not the case
in engine variable valve timing applications because a new
opening process depends on the driver signal and the engine
management controller. The ILC, uses the position error from
the previous transitions to modify the input of the next tran-
sition in order to improve the tracking of a given trajectory.
By choosing a sufficiently smooth trajectory, as the tracking
error goes to zero, so should the impact velocity.

The system model and control difficulties are summarized in
Section 2. Section 3 presents an overview of ILC theory. Mod-
ifications due to implementation issues are presented in Sec-
tion 4. Experimental results are found in section 5.

2 Model and control Difficulties

2.1 System model

A nonlinear system model is developed in [7] and later ex-
tended to include impact dynamics in [5]. The model con-
sists of four states: the armature distance from the catching
coil, z, the armature velocity, v, the current in the lower coil,
17, and the current in the upper coil, i,,. To achieve fast re-
lease, a reverse pulsing technique is developed in [7] to drive
the holding current to zero very quickly. Thus, the holding
current has little influence on the motion of the armature.
By assuming that valve openings and closings are identical,
the four state system is redefined as the following three state
system:

i Catching coil current [A]
z Distance from the catching coil [mm|]
v Armature velocity [m/s]

The resulting equations of motion are:

di  Ve—ritxi(i,2)v
a X2 (2) m
= 1000v (2)
at
dv 1 .
a = E (_Fmag (Z,Z) + ks (4_Z) —bU) (3)
where
. B 2k, i
xi(i,z) = 5+ 22 (4)
O E— 5)

1000 (kp + 2)

Fag (1,2) = ———> (6)

written compactly as

dz
= [i z g (8)
y = [0 1 0]z (9)

where V. is the catching coil voltage [V], r is the resistance [{],
m is the system mass [kg], ks is the spring stiffness [N/mm)],
b is the damping [Ns/m|, Fi,q4 is the magnetic force due to
the catching coil [N], x1v is the back EMF [V], and x» is the
inductance [H], and y is the output.

2.2 Control difficulties

The main difficulties stem from a lack of control authority
over the armature motion away from the catching coil and
the current near the catching coil. For large distances from
the catching coil the magnetic force is much less the spring
force, as shown in Figure 2. Therefore the system response is
dominated by the spring force and the controller has no au-
thority over the armature motion at large distances. Near the
catching coil the magnetic force does have influence over the
armature motion, but manipulation of equation (1) reveals
that the input voltage has little influence on the current dy-
namics. To demonstrate this consider the current dynamics:

ﬂ:lOOO (Vc—ri)(kb—kz)+ iv
dt Qka (kb + Z)
Note that ky < 1 and z is approaching zero. Then replacing
the term ky + z with the vanishing parameter e = k, + z,
results in

(10)

(11)

Therefore very near the catching coil, the input, V. has little
effect on the current dynamics. Physically, this is caused by
the back EMF and the changing inductance.

di (Ve —ri)e v
@1 wy
dt 000 < 2k, * €

To summarize, a well designed feedback controller should:

e Initially raise the current while the input can influence
the current dynamics in preparation for when the arma-
ture nears the catching coil.

e Apply high voltage at the end of the transition to coun-
teract the changing back EMF and inductance.

In [4, 5] this is accomplished through the use of linear and
nonlinear controllers, respectively.
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Figure 2: Magnetic force versus position for several values of
current

A linear feedback control analysis and design is presented in
[4]. A two stage LQR feedback controller is designed and im-
plemented to account for the changing control authority. The
first stage of the feedback (which acts for distances greater
than 1 mm away from the catching coil) penalizes current
much more than position or velocity in the LQR optimiza-
tion. As the feedback has control authority over current dur-
ing this time, it is able to raise the current to some nominal
catching value, while adjusting slightly for deviations in posi-
tion and velocity. Near the catching coil (distances less than
1 mm away) the controller switches to the second stage. In
the second stage the feedback penalizes position and velocity
heavily in the LQR optimization, to ensure that the arma-
ture is brought into contact with the catching coil. Current
is not penalized in the second stage as it becomes singular
perturbed near the catching coil, equation (11), and has been
removed via a model reduction [4]. This controller achieves
impact velocities with a mean of 0.16 m/s.

The linear control law for V, exacerbates the loss of control
authority by being proportional to the decreasing armature
distance (second state). It requires large gains to stabilize the
system and this leads to frequent actuator saturation near the
catching coil. A more appropriate solution is the nonlinear
feedback law:

Ky K
v+
Y+z B+z
designed in [5]. Where K;, K», v, and § are adjustable
gains. The input V, is inversely proportional to the decreasing
distance thereby alleviating the effect of the back EMF and
changing inductance near the catching coil. Away from the
catching coil the input voltage is sufficient to raise the current
in preparation for catching the armature. This feedback also
achieves impact velocities with a mean of 0.16 m/s.

(12)

c =

In [4, 5] an eddy current sensor is used to measure the ar-

mature distance, and a nonlinear observer is implemented to
estimate the unmeasured states and filter the noisy position
measurement. The nonlinear observer is given by

dz ~ e

=@ V) +Ly—9) (13)
~ . . >~ ~ ~7T .

where 7 is the estimated state vector [ 1z v ] , the gain

matrix L is chosen by using a Kalman filter, y is the mea-

sured position, 7 is the estimated position, and the function

f (&, V.) is the same as equation (7).

To improve the transient response the use of feed-forward
compensation from cycle to cycle using an Iterative Learn-
ing Controller is investigated in [3]. Manufacturing varia-
tions, disturbances, and wear make it impractical to robustly
achieve the stringent transient response requirements with a
feedback loop. As the valve motion is repeated many times
per second (i.e. 50 times per second, when the engine is run-
ning at 3000 rpm), the feedback in [3] is augmented with an
ILC. Using the tracking error from the previous valve tran-
sitions, the ILC modifies the input of the next transition to
decrease the tracking error. Here, implementation issues as-
sociated with applying an ILC to the EMV actuator are in-
vestigated, and experimental results are presented.

3 Iterative Learning Controller

3.1 ILC by singular value decomposition

Iterative Learning Control exploits the repetitive nature of
a system to improve the tracking of a desired trajectory, yq,
from cycle to cycle.

Let the input and the output of the system be given by w [k]
and y [k]. Where u [k] and y [k] are the k* input and output
trajectory respectively. Let us define the mapping I' : R™ —
R™ as y[k] = T (u[k]). Using the impulse response sequence
{h[n]} of the closed loop discrete linearized system to form
the convolution-matrix

h[1] 0 0 0
h[2] K] 0 0
P=| ' (14)
h[N =1 R[N -2 h[1] 0
ANl R[N —1] h[2] K[l

that provides a linear approximation of the system near the
equilibrium I' (v [k]) = Pu [k].

The purpose of the ILC is to find the input, u*, such that
yq = Pu*. A linear ILC is given by

ulk+1] = Sulk] + E (ya — y [k]) (15)



where the matrix S is the weight on the previous input and
the matrix E is the weight on the previous error. S and E
need to be selected such that

u* = lim ulk]. (16)
k— o0
As suggested in [1, 3], let S and E be given by
LT
S=1I, andE = —RL (17)

Oo

where R and L contain the right and left singular vectors
of the singular value decomposition, P = LART. A is
a diagonal matrix whose elements are the singular values
of the convolution-matrix, o;, arranged in decreasing order,
Op 2012+ 20;2: " ON-2 > ON-1.

Assuming y [k] 2 Pu [k], equation (15) is rewritten as

ulk+1 = Sulk]+ E (yq — Pulk]) (18)
= RTuk+1] = (1 - %A) RTulk] + UiLTyd (19)

Applying the linear transformation v [k] = RTu[k], and p =
LTy4 results in

1 1
vik+1] = (I——A)v[k]+—,u (20)
o, O,
which can be rewritten into N separate equations
g; 1 .
vi[k+1] = 1—0— v k] +—p Vie[0, N -1]. (21)

Thus our choice of S and FE yields a de-coupled learning algo-
rithm. The convergence of the ILC is governed by the eigen-
values of the N scalar equations in (21). Each eigenvalue is
given by A; = (1 - g—) Convergence is guaranteed for each
scalar equation if [A\;| < 1. As o, > 0; > 0, |Nj| < 1is
ensured. Solving equation (21) recursively yields

”i[k]=<1—g—i>kvi[0]+ﬁ

Hi (22)

which converges to

. 1
kl;ngo vilk] = v} = o1

(23)

(28}

Since the convergence rate is determined by 1 — Z- and v} is

proportional to o, ! output components that require small

inputs are learned faster than output components requiring
large inputs, which is useful in helping to avoid actuator sat-
uration.

Transforming equation (23) back into y4 and v we find
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Figure 3: The iterative learning controller as applied to the
EMYV actuator

RTw* = ALYy,

which after noting that RT = R~! and LT = L~ yields

u* = RA'LTy,. (24)

After convergence the plant output is equal to the desired
trajectory:

y = Pu*
=y = LARTu*
=y = LARTRA LTy,
=Y = Yd

So in essence the iterative learning controller is finding the
plant inverse from cycle to cycle to achieve tracking of the
desired trajectory.

3.2 ILC as applied to the EMV actuator

In this paper, the ILC is applied to the EMV Actuator as
shown in Figure 3. Where the output, y, is the armature
distance from the catching coil, and the input, u, is a pure
feed-forward voltage.

To properly derive the linear model from the nonlinear system
(7), let

V. = Vfb + fo (25)

where Vy, is the feedback voltage from the nonlinear con-
troller (12), and Vs is the feed-forward voltage, u, from the
ILC as explained in section 3.1. Substituting into equation
(1), the closed loop current dynamics are



dic _ Vip +Vip —ri+ x1v (26)
dt X2

diq A{Iilzv + ﬁlffz + Vi —ri+x1v (27)
dt - X2

The A, and B matrices of the closed loop linear system

Z—j = Acll’-f-Bclfo (28)
y = [0 1 0]z (29)
are given by
b, )
Ag = 0 0 e =)
3 o (dv o (dv 5 (ﬁ)b%q
o1 ( t)|z7xeq oz ( t)|z7xeq v ( t)|x:zeq
(30)
and
avry (3 |ome.,
Bcl - 0 (31)
0

where z., = [ e 0 O ] is the equilibrium state, and i, is
the value of current such that Fy,q4 (i, 0) = 4ks.

Therefore the input voltage depends on the feed-forward and
feedback as shown in the block diagram in Figure 3. The
convolution matrix, P for the ILC, is formed by the impulse
respounse of the discrete version (with a sampling rate 20kHz)
of equations (28), (29), (30), and (31).

4 TImplementation issues

This section presents modifications to the ILC to compensate
for nonlinearities, noise, and computational load.

4.1 Computational limitations

The iterative learning controller needs to run real time within
an event (consecutive valve opening or closing) so the com-
putational load is constrained by our processing capabilities.
In this section we present how the computational load can be
reduced by careful consideration of the performance objective
and actuator authority.

The main purpose of the ILC is to achieve soft landing of the
armature against the catching coil. As such, it only needs
to achieve tracking of the desired position at the very end of
the armature transition. Let us partition the output space,
y [k] = Pu k], into

(7 Py
ML @
where y; and y» are the initial and final portions of the posi-
tion trajectory output respectively. The distinction between
the two portions is defined by the distance that corresponds
to magnetic force higher than the spring force. The magnetic
field becomes strong even for the equilibrium (low) current
values for distances less than 0.3 mm. The output space par-
tition is then defined as:

e y; be the portion of the position trajectory output for
distances greater than 0.3 mm away from the catching
coil.

e y> be the portion of the position trajectory output for
distances less than 0.3 mm away from the catching coil.

Therefore to achieve tracking of only y, the mapping em-
ployed by the ILC is reduced to y, = Pou. The computational
load is further decreased by taking into account the control
authority issues raised in Section 2.2.

The input space y» = Pou can now be separated as

31
Y2 = [ Py Py Po3 ] Uz
us

(33)

where u; contains the input signals applied while the arma-
ture is greater than 3.5 mm away from the catching coil, us
contains the input signals applied while the armature is be-
tween 3.5 mm and 0.3 mm away from the catching coil, and
us contains the input signals applied while the armature is
less than 0.3 mm away from the catching coil. Similarly, P»;
maps the effect of inputs applied while the armature distance
is greater than 3.5 mm away from the catching coil to y2, Pao
maps the effect of inputs applied while the armature distance
is between 3.5 mm and 0.3 mm away from the catching coil
to y2, and P»3 maps the effect of inputs applied while the ar-
mature distance is less than 0.3 mm away from the catching
coil.

The significance of these regions in the input space can be
described as follows. First, since the input has little effect
on the current dynamics for small distances, equation (11),
there is no need for the iterative learning controller to modify
the input voltage at small distances from the catching coil,
y < 0.3mm. Second, as the magnetic force is much less than
spring force at large distances, there is also no reason why the
iterative learning controller should modify the input voltage
when the armature is very far away from the catching coil,
y > 3.5mm.

From the union of these sets, the iterative learning controller
only adjusts the feed-forward voltage between 3.5 mm and



0.3 mm away from the catching coil. At a sampling rate of 20
kHz this corresponds to approximately 30 samples, which is
the maximum size that our processing board can implement
in real time. To keep the matrices square, the size of ys is set
to be 30 samples.

The final mapping employed by the ILC is thus y» = Paous.
The weighting matrices Sand E of equation (15) are deter-
mined by the singular value decomposition of Pss.

Due to sampling and measurement noise, it is not possible to
have uy start and end exactly at 3.5 mm and 0.3 mm away
from the catching coil. Nor is it possible to have y, start ex-
actly at 0.3 mm away from the catching coil. To clarify, thus,
the computations we introduce additional notation based on
the discrete sampled events. Let us index the k" iteration of
the input voltage, us, which has length 30 as

U2 [k] []u] for j, € (07 30)7 (34)
and define us [k] [0] = 0. For distances greater than 3.5 mm
away from the catching coil j, is held at zero. After the
controller detects a position less than 3.5 mm away from the
catching coil, j, increases incrementally with the sampling
rate.

Similarly, let us index the k" iteration of the output, ys,
which has length 30 as

yz2 [k] [jy] for jy € (1, 30) (35)
where y» [k][jy] stores the measured output at the current
time step. For distances greater than 0.3 mm away from
the catching coil j, is held at 1. Thus, the controller keeps
rewriting the value of y» [k][1] at each time step. After the
controller detects a position less than 0.3 mm away from the
catching coil, j, increases incrementally with the sampling
rate. Therefore the control captures approximately the last
0.3 mm of the transition.

There exists some variation in where exactly us and y, begin
and end due to the sampling rate and noise. However, j, is
always allowed to reach 30, even if this means that the ILC
will modify the voltage for distances less than 0.3 mm away
from the catching coil.

4.2 Selection of desired trajectory

By truncating the portion of the trajectory we wish to track,
we have inadvertently introduced another complication. The
desired trajectory, y4, must be a “smooth extension” of y
for it to be feasibly tracked by y». Specifically, the position
and velocity at the start of y; must match the position and
velocity at the end of y.

To satisfy this constraint let

v[k][1] /.
ya [k] [y = ys [K] [1] evetit s DTS

(36)

where v [k] [1] is the velocity of the armature when the sample
y2 [k] [1] is recorded and TS is the sampling time.

A small negative value is chosen for v [k][1]that will ensure
that y4is decaying exponentially and thus as the tracking error
decreases so should the impact velocity. The fixed v [k][1]
value does not guarantee a smooth trajectory but it is a simple
solution for the case of zero air flow disturbances. Ideally,
we could use a velocity sensor for an accurate value of the
initial velocity or we could use the estimated velocity from
the observer in (13).

4.3 Noise compensation

To prevent the ILC from attempting to compensate for sensor
noise, the measured trajectory needs to be filtered. While
the observer does filter the output, it does not completely
eliminate the noise. Again, the repetitive nature of the system
is exploited to improve the filtering.

Instead of updating every cycle, the ILC is modified to update
every third cycle. The tracking error is thus determined by
the difference between the desired trajectory and the average
of the previous three measured trajectories. Equation (15) is
now given by

uln+1] = Suln]+ Eyerror for n = 3k (37)
ulpn+1] = wuln] for n # 3k (38)
where
i
yerror:yd_gzy[n_j]- (39)

Jj=0

5 Experimental results

The following experiments are conducted to gauge the effec-
tiveness of the ILC. If well tuned, the nonlinear feedback given
by equation (12) achieves impact velocities with a mean of
0.16 m/s. The output of the well tuned nonlinear feedback
matches the desired trajectory closely, as shown in Figure 4.
The free response is also included in Figure 4 for comparison.

In each experiment the feedback is perturbed slightly, and the
ILC is used to track the desired trajectory. For consistency
with our previous work [4, 5, 7] the position plotted in the
following figures is the deviation from the middle position (4
mm distance from the coil).
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Figure 4: Comparison of the desired trajectory and the out-
put achieved by a well tuned feedback

5.1 Matched perturbation

For the first experiment the feedback is modified between 3.5
mm and 0.3 mm such that the input is held constant during
this period. As the ILC operates over the same range, this
presents an easy scenario for it to handle.

The average of the 1°¢ set of three trajectories, the average of
the 10" set of three trajectories, and the desired trajectory
are plotted together for comparison in Figure 5. Initially the
tracking error is quite large and the armature bounces against
the catching coil. Ten iterations later, the output is much
smoother and the error has decreased significantly.

The change in the input voltage between the 1°¢ and 10"
iteration is shown in Figure 6. The dotted line represents
the voltage that would have been given by the non-modified
feedback.

5.2 Detuned feedback

In this section the feedback is perturbed throughout the tran-
sition, while the ILC remains limited to acting between 3.5
mm and 0.3 mm away from catching coil. The gains of the
nominal feedback are adjusted such that the new feedback,
VfJg, is always greater than the nominal feedback. As seen in
Figures 7 and 8 the ILC is able to adjust the voltage in seven
iterations to achieve better tracking of the desired trajectory.
endfigure

If the gains of the nominal feedback are adjusted such that the
new feedback, Vi, is always less than the nominal feedback,

a problem occurs. If Vf; is significantly less than the nominal
feedback the armature is no longer brought into contact with
the catching coil, and returns to the mid position. At which
point the system needs to be re-initialized to get the armature
moving again. If Vi is slightly less than the nominal feedback
the error is initially very small. As explored in section 5.3,

this causes the performance of the ILC to deteriorate.
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Figure 5: Comparison of the 1%* and 10" iteration for the
matched perturbation case.
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Figure 6: Comparison of the 15* and 10" iteration input volt-
age for the matched perturbation case.

5.3 Performance deterioration

For each of the previous experiments, once the error between
the output and desired trajectory is sufficiently small, the
performance begins to deteriorate. This is seen in Figures 9,
10, and 11 which show the output, input voltage, and 2-Norm
of the error respectively.

The dynamics of the error exhibit non-monotonic behavior
that causes initial convergence, followed with divergence. As
described in [2] this is caused when the error at different
points along the trajectory converge at different rates. In our
case, a large divergence may prohibit landing of the armature
against the catching coil, which requires a re-initialization
procedure. The convergence/divergence of individual points
along the trajectory are plotted in Figures 12 and 13. From
these plots it appears that before the error diverges at the
10" iteration:
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1. Points at the beginning of the trajectory are not neces-
sarily convergent.

2. Points in the middle of the trajectory converge slowly.

3. Points at the end of the trajectory converge quickly.

Due to the significant nonlinearities in the system near the
catching coil the convolution matrix is probably not accurate
enough to ensure monotonic behavior at all points in the tra-
jectory.

5.4 Impact velocity

While tracking improves in sections 5.1 and 5.2, it is impor-
tant that the impact velocity decreases as well. As plotted
in Figure 14, the impact velocity decreases, but the ILC does
not achieve impact velocities as small as those achieved in [4,
5]. Perhaps if the ILC can be improved to avoid the perfor-
mance deterioration seen in section 5.3, the impact velocity

would decrease further.

6 Conclusion

While the Iterative Learning Controller is able to improve the
tracking performance of the ElectroMechanical Valve Actua-
tor, its effectiveness is limited by several factors:

1. Control Authority
2. Processing Capability

3. Measurement Noise

The methodology presented here attempts to account for
these problems, but does not overcome each one completely.
However, experimental results do show a decrease in the
tracking error. Future work will investigate the development
of a more accurate convolution matrix to avoid the conver-
gence followed by divergence phenomenon.
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