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Abstract
In this work, a physics-based method of estimating the residual mass in a recompression homogeneous charge compres-
sion ignition engine is developed and analyzed for real-time implementation. The estimation routine is achieved through
in-cylinder pressure and exhaust temperature measurements coupled with energy and mass conservation laws applied
during the exhaust period. Experimental results on a multicylinder gasoline homogeneous charge compression ignition
engine and dynamic analysis demonstrate the estimation routine’s ability to perform across a wide range of operating
conditions as well as on a cycle-by-cycle basis for highly variable combustion phasing data.
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Introduction

Autoignition timing control in homogeneous charge
compression ignition (HCCI) combustion requires
careful regulation of the temperature, pressure and
composition of the pre-combustion cylinder charge.1,2

The regulation of charge properties is carried out in
recompression HCCI by retaining a large fraction of
the post-combustion residual gases before they can be
exhausted3,4 in addition to controlling the fuel injection
timing.5–7 Accurate modeling of the residual gas frac-
tion is important due to HCCI’s high sensitivity to the
thermal energy associated with the residual gases.8–11 If
too much residual mass is trapped, the charge tempera-
ture is too high and combustion occurs very early caus-
ing a loss in efficiency and potential engine damage.12

If too little mass is trapped, the combustion becomes
very late and oscillatory.13,14 In the latter case, excess
oxygen and unburned fuel can cause heat release dur-
ing recompression which can result in efficiency loss,
misfires, torque fluctuations and potential engine dam-
age may occur.

Due to this sensitivity, it is desirable to estimate the
residual gas fraction online. There have been several
methods described in the literature15–18 for offline esti-
mation of the residual mass for steady-state conditions.
This work presents a method of residual estimation
which is computationally simple enough to be

implemented online while still maintaining a physical
basis and alleviating the need of steady-state condi-
tions. Analysis of the algorithm demonstrates fast con-
vergence and the capability to handle high variability
data. Furthermore, a sensitivity analysis is provided
which indicates that a tuning parameter can be used to
affect the dynamics and convergence of the algorithm.
A block diagram of how the method works with
respect to cycle events is given in Figure 1.

The article is outlined as follows: first, an offline
residual estimation technique is presented in section
‘‘Iterative estimation.’’ In section ‘‘Real-time estima-
tion’’ the method of section ‘‘Iterative estimation’’ is
modified for transients and online implementation. In
section ‘‘Dynamic analysis,’’ an analysis of the algo-
rithm is performed to demonstrate its convergence
properties and sensitivities. In section ‘‘Experimental
results and setup,’’ the experimental setup is explained
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and the experimental results are provided; conclusions
are drawn in section ‘‘Conclusion.’’

Residual mass estimation

Crucial for proper combustion analysis is the determi-
nation of residual mass. In section ‘‘Iterative estima-
tion,’’ we derive an algorithm for trapped internal
residual mass in an engine operating with negative valve
overlap (NVO), following the method of Fitzgerald et
al.15 Additionally, a modification to allow for highly
variable data, as outlined in Larimore et al.,19 is pre-
sented. This method is suitable for offline analysis.
Furthermore, the formulation is modified to minimize
the effects of steady-state assumptions and simplify the
algorithm for real-time implementation in section
‘‘Real-time estimation.’’

Iterative estimation

The trapped residual mass (mres) is defined as the in-
cylinder charge at the time of exhaust valve closing
(EVC) and is based on the ideal gas law mres=
PevcVevc/RTevc. The in-cylinder pressure is measured,
which provides Pevc and the cylinder volume at EVC,
Vevc, is known. The gas constant is for a burned gas
composition and is assumed constant and known,
R=290(J=kgK). Therefore, to determine the residual
mass, Tevc must be estimated. To do so, a system of
equations is developed from which Tevc, and conse-
quently mres, may be determined.

In steady-state conditions, the mass flowing out of
the cylinder during the exhaust stroke, mout, is equal to
mass of fresh air and fuel, mair and mf, respectively,
inducted into the cylinder within a given cycle

mout =mair+mf =min ð1Þ

The mass that leaves through the exhaust process
(exhaust valve opening (EVO) ! EVC) can be
described as

PevoVevo

RTevo
� PevcVevc

RTevc
=mair+mf ð2Þ

where the pressures at the valve events, Pevo and Pevc,
are measured, as are mair and mf. Equation (2) has two
unknowns, Tevo and Tevc; therefore, an additional rela-
tion is needed to solve for the unknown temperatures.

In addition to the steady-state conservation of mass
in equation (2), the exhaust process can be approxi-
mated by an ideal gas undergoing a reversible process.
The heat loss per unit mass, during the crank angle
interval u0!u1, is given by

ql(u0, u1)=

ðT(u1)
T(u0)

cpdT� R

ðP(u1)
P(u0)

T

P
dP ð3Þ

where cp is the specific heat of the exhaust gas which is
assumed constant and known. The exhaust process is
split into two parts, a blowdown phase and compres-
sion phase. The ratio of the heat losses for these two
phases is denoted by rex

rex=
ql(uevo, uref)

ql(uref, uevc)
ð4Þ

The point used to split the exhaust process, uref, is
referred to as the reference point. In Fitzgerald et al.,15

it is the point when exhaust runner pressure is equal to
1 atm. To accommodate boosted conditions, one could
instead use the point of minimum pressure as in
Hellström et al.20 However, in highly variable condi-
tions, the minimum could occur close to the valve
events. For example, it was observed that the minimum
may be at EVO following misfires, see Figure 2. To
avoid possible numerical issues associated with this sce-
nario, the reference point is fixed in the middle of the
valve open period, uref=(uevo+ uevc)=2.

By combining equations (3) and (4), with simplifica-
tions from Fitzgerald et al.,15 we arrive at the equation

(cp + a)Tevo+(cp � b)rex

Tevc =Tref cp � a+(cp + b)rex
� �

ð5Þ

where a=1=2R log Pref=Pevo and b=1=2R log
Pevc=Pref. The variables Tref and Pref are the measured
exhaust gas temperature and in-cylinder pressure at
uref, respectively.

The heat loss ratio rex is estimated by convective heat
transfer to the walls as governed by

dQl

dt
=Ahc(Tcyl � Tw) ð6Þ

where the heat transfer coefficient, hc, is determined
using the Woschni method from Heywood,21 and A is
the cylinder area. A constant wall temperature, Tw, is

Figure 1. A block diagram representation of the inputs and
outputs of the online residual mass estimation.
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assumed and the in-cylinder temperature, Tcyl, is obtained
using a polytropic process. The result of equation (6) is
substituted into equation (4) to yield the heat loss ratio as
a function of the temperature at the valve events

rex = f(Tevo,Tevc) ð7Þ

In summary, equations (2), (5) and (7) are three
equations with three unknowns Tevo, Tevc and rex. Due
to the nonlinear relationship in equation (7), the solu-
tion is found numerically. For a given rex, equations (2)
and (5) are solved for (Tevo, Tevc). Inserting the solu-
tions into equation (7) gives an implicit relation that is
solved numerically. The fixed-point iteration,
rex(k + 1)= f(Tevo(rex(k)), Tevc(rex(k))), rex(0)=1, was
a fast method of solutions, typically only five iterations
were required for convergence in most datasets with a
termination condition of jrex(k)2 rex(k2 1)j \ 1024.
With the solution (rex, Tevo, Tevc), the mass of residuals
may be found with the ideal gas law. The residual gas
fraction is then determined by

xr =
mres

mair+mf +mres
=

PevcVevcTevo

PevoVevoTevc
ð8Þ

Despite the fast convergence of this routine, it is too
slow for implementation in an industrial engine control
unit (ECU). To alleviate the need for iterations, we
could instead fix the value of rex as a constant.

It can be hypothesized that the value of rex will be
greater than 1. This is due to the fact that blowdown, a
process in which a large amount of heat is lost due to a
rapid equalization of pressure between the exhaust
manifold and cylinder, occurs in the first part of the
exhaust process and the fact that we have defined the
two portions of equation (4) to be of equal length. The
exact value of this ratio is unknown without the

iterative process previously described. However, the
iterative analysis supports this claim where the average
value across multiple operating conditions is rex=1.5.
The effect of rex on the final result is small, as will be
shown section ‘‘Sensitivity.’’ It could therefore be dele-
gated as a tuning factor; for this analysis, it is assumed
a known constant.

Real-time estimation

Residual gas fraction was determined using the iterative
approach in section ‘‘Iterative estimation’’ is suitable
for offline analysis; however, the iterative nature limits
its use for real-time estimation. The iterations of this
algorithm were eliminated by assigning the variable rex
to a fixed value. However, the method is still not suit-
able for real-time estimation on an actual engine
because it is restricted to steady state.

In section ‘‘Iterative estimation,’’ steady state was
assumed through conservation of mass in equation (1).
To provide flexibility in this assumption, the unknown
temperatures of equation (2) can instead be defined
with the ideal gas law

Tevo=
PevoVevo

mevoR
ð9Þ

Tevc=
PevcVevc

mevcR
ð10Þ

and the masses can be defined by

mevo=min(k)+mres(k) ð11Þ

mevc=mres(k+1) ð12Þ

Equation (11) tells us that the mass of charge at uevo
is equal to the mass of inducted air and fuel as well as
the mass of residuals from the current cycle. After the
exhaust process is complete, the mass at the time of uevc
is equivalent to the mass of residual trapped for the
next cycle, according to the cycle definition of Figure 1.
This formulation provides flexibility during non-
stationary conditions as it allows mres to evolve in time
following real-time measurements of Tex and Pcyl. The
measurement of Tex is achieved with a thermocouple in
the exhaust runner port in this work. This could be
replaced with a model, or a fast sensor, in future work
to mitigate the potential issue of slow thermocouple
response times. The in-cylinder pressure sensor, how-
ever, is capable of responding on a crank angle resolu-
tion basis. The algorithm carries a high sensitivity to
Pcyl and a moderate sensitivity to Tex as will be dis-
cussed further in section ‘‘Sensitivity.’’

Equations (5), (9) and (10) can then be combined
and written as

(cp + a)PevoVevo

min(k)+mres(k)ð ÞR +
(cp � b)rexPevcVevc

mres(k+1)R

=Texfcp � a+(cp + b)rexg ð13Þ

Figure 2. Minimum in the in-cylinder pressure trace can be
seen to occur at EVO for some cycles in highly variable data with
misfires as shown in gray. This is contrary to normal combustion,
in black, where the minimum is typically close to the middle.
EVO: exhaust valve opening; EVC: exhaust valve closing.

476 International J of Engine Research 16(3)

 at UNIV OF MICHIGAN on February 18, 2016jer.sagepub.comDownloaded from 

http://jer.sagepub.com/


Equation (13) can be written more compactly by
grouping terms and lumping constant coefficients

mres(k+1)=
a(k)+b(k)mres(k)

A(k)+mres(k)
ð14Þ

where

a(k)=
rex(b� cp)

cp � a+(cp + b)rex

� �
PevcVevc

RTex

� �
min(k)

b(k)=
rex(b� cp)

cp � a+(cp + b)rex

� �
PevcVevc

RTex

� �

A(k)=
cp + a

cp � a+(cp + b)rex

� �
PevoVevo

RTex

� �
+min(k)

The values of Px, Tx and Vx are all from the k + 1
cycle. Equation (14) predicts the amount of residual
mass in cycle k + 1 based on previous measured data
and the value of the residual mass on the previous
cycle. Therefore, the only unknown is the initial guess
of mres(0). It will be shown in the following sections
that regardless of the initial guess, the difference equa-
tion will converge relatively quickly to a stable equili-
brium. A limitation of the algorithm is that it requires
a transient air mass as an input. Figure 1 provides a
visual representation of this algorithm and its inputs
relative to the cycle definition at EVO.

Undefined sets. Due to the fact that equation (14) is
rational, there are sets of values (a, b, A) for which the
difference equation is undefined, namely, when division
by 0 occurs. The conditions are unphysical in nature;
however, it is important that we consider these possibi-
lities to understand any numerical issues that may arise.
For the following analysis, rex is assumed to be equal
to 1 for mathematical simplicity. Division by 0 occurs
when

A+mres(k)=0! mres(k)= � A

This scenario is obviously unphysical and can be
avoided by picking a positive initial guess of residual
mass. If mres(k) . 0, then mres(k + 1) . 0; this is dis-
cussed further in section ‘‘Convergence.’’

Another possible numerical issue occurs when
a=bA. This causes a single solution for all cycles

mres(k+1)=
bA+bmres(k)

A+mres(k)
=b 8 k50

Essentially, the algorithm could become ‘‘stuck’’ on
this solution if there were no changes in the coefficients.
However, if we evaluate the term a 2 bA=0, we see
that for this to be true

2cp +R ln
Pref

Pevo

� �
�4cp +R ln

P2
ref

PevoPevc

� �
0
B@

1
CA PevoVevo

RTex

� �
=0

Since we know the ratio inside the natural log is
always close to 1, the value of the logarithm is close to

0. Additionally, PevoVevo can never equal 0 and the
value of 2cp is always positive so it is unlikely this
expression is ever true.

Dynamic analysis

In a stationary condition, it is important to investi-
gate the existence of an equilibrium and the potential
multiplicity issue. Additionally, it is important to
understand the nature of convergence to an equili-
brium for transient conditions. In the following sec-
tions, an analysis of equation (14) will be performed
for which the coefficients a, b and A will be assumed
constant. Specifically, a proof that equation (14)
has two fixed-point solutions for a given set of inputs
is provided in section ‘‘Existence of two solutions’’
and an analysis that shows that the algorithm con-
verges to a physical solution is given in section
‘‘Convergence.’’ A sensitivity analysis is performed in
section ‘‘Sensitivity.’’

Existence of two solutions

An equation in the form of equation (14) is well known
in mathematics as the Riccati difference equation, as
shown in Kulenović and Ladas.22 Since the equation is
rational and of second order, it can have at most two
solutions; these solutions can be real or imaginary. It is
important to understand what these solutions are for a
given set of input data and the stability of each
solution.

To find the two solutions, we impose a change in
variables such that

mres(k)= (b+A)w(k)� A 8 k50

and substituting this into equation (14), we then have
the difference equation

w(k+1)=1� Q

w(k)
where Q=

bA� a

(b+A)2
ð15Þ

At steady state, w(k + 1)=w(k)=w, the expres-
sion can be written as w22w + Q=0. This is an easily
solved quadratic equation that yields the two possible
solutions

w�=
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Q
p

2
and w+ =

1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Q
p

2

ð16Þ

If Q\ 1=4, then equation (15) has two real solu-
tions. If Q. 1=4, then there are two imaginary solu-
tions, and if Q=1=4 then the solutions are
w�=w+ =1=2.

To prove this equation always has these two solu-
tions, we can show the value of Q is less than 1/4 and is
negative for any physically reasonable set of pressure
data. To do this, we examine the sign of Q. We may
first exclude the denominator because it is squared and
will always be positive. Therefore, the sign of Q is
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dictated by the sign of the numerator alone. The
numerator, bA2 a, can be rearranged as
b(A2min(k)), which can be evaluated in detail as

b A�min(k)ð Þ= PevcVevcPevoVevo

R2T2
ex

� �

�2cp +R ln Pevc

Pref

� �� �
2cp +R ln

Pref

Pevo

� �� �
�4cp +R ln

P2
ref

PevoPevc

� �� �2
0
B@

1
CA

From this, we can see that the sign of Q is deter-
mined by

�2cp +R ln
Pevc

Pref

� �� �
2cp +R ln

Pref

Pevo

� �� �

since the term (PevcVevcPevoVevo) is always positive.
Expansion of terms yields

� 4c2p +2cpR ln
PevcPevo

P2
ref

 !
+R2 ln

Pevc

Pref

� �
ln

Pref

Pevo

� �

ð17Þ

The sign of this term dictates the sign of Q. To find
the sign of this term, we must apply some constraints
on the pressures. We know during the exhaust process
Pevo, Pevc and Pref are all very close to one another,
therefore

PevcPevo

P2
ref

’
Pevc

Pref
’

Pref

Pevo
’1

Because of this, the last two terms of equation (17)
are very close to 0 and are small by comparison to the
first term, which is always negative. In fact, for equa-
tion (17) to become positive, the pressure ratios inside
the natural logs would all have to be greater than 20.
Since exhaust pressures are usually around 1 bar and
not more than 5 bar for most applications, pressure
ratios of this magnitude are not feasible. We can there-
fore conclude the sign of Q is always negative for physi-
cally reasonable data and there will always be two
solutions, w2 and w+, given by equation (16). Using
this same argument, we can support the claim in sec-
tion ‘‘Real-time estimation’’ that a 2 bA is not equal to
0. The preceding argument shows bA2 a is always less
than 0.

Convergence

Equation (14) predicts the amount of residual mass in
cycle k + 1 based on measured data and the value of
the residual mass in the previous cycle. Therefore, the
only unknown is the initial guess of mres(0). Since we
know the equation has two fixed-point solutions, as
shown in section ‘‘Existence of two solutions,’’ it is
desirable to know how the equation converges to these
solutions and if the solutions are stable.

If typical values of a, b and A are used in the resi-
dual mass estimation and held constant, the change
from one cycle to the next can be determined from the
discrete derivative of equation (14).

An example of this is shown in Figure 3 for initial
conditions ranging from 21000 to 1000mg. Here, the
equation has equilibria at 294.4 and 220.9mg. Clearly,
the negative solution is non-physical as we cannot have
a negative mass. If we linearize the function at each
one of the equilibria, we find that the slope at the nega-
tive solution is outside the criteria for a stable equili-
brium. Specifically, if the solution was stable, the slope
at the solution would be 21 \ m \ 1, where m is the
slope of the function at a particular point. The slope at
the positive solution is 20.57, and this equilibrium is
therefore stable and oscillatory. As such, an initial con-
dition that is close to stable equilibria will converge to
the positive solution for this set of coefficients. The fig-
ure shows how an initial guess of mres(0)=0 would
converge to the stable equilibrium in blue. Further sta-
bility properties of the Riccati difference equation can
be found in Kulenović and Ladas,22 Grove et al.23 and
Sedaghat.24

Figure 4 highlights the evolution of convergence
from various positive initial guesses. In this case, the
initial guess was purposely chosen to be far away from
the actual value to demonstrate the nature of conver-
gence at various conditions. In real operation, the ini-
tial guess is chosen to be more physically reasonable
and close to the actual value. It can be seen here that
the equation converges to the same predicted residual
mass within a small number of cycles. Additionally, it
converges to approximately the same value as a higher
fidelity offline analysis tool.15

Figure 3. Change in the value of the estimated mres, in
milligrams, from one cycle to the next. Two fixed-point solutions
are shown and the slop at each point indicates the solutions
stability.
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Sensitivity

In the preceding analysis, the heat loss ratio rex was
assumed to be 1 for mathematical simplicity. However,
it will most likely always be greater than 1. To better
understand the influence that this parameter has on the
residual mass estimate, an analysis was done in which
the state was allowed to converge to steady state for a
guess of mres(0)=250mg and for values of rex ranging
from 0.75 to 2. The result can be found in Figure 5.
Here, it can be seen that the positive solution (w+) is
mostly insensitive for values of rex greater than 1. A
change of approximately 1mg is observed from rex=1
! 2. Therefore, due to the insensitivity, it is a valid
assumption to allow this parameter to stay constant. It
could also be tuned to offline data analysis results. For
the data presented in Figure 7, the average value from
offline analysis was found to be rex=1.5.

Figure 5 shows the sensitivity of the unphysical solu-
tion (w2) to the heat loss ratio. This solution does have
a high sensitivity; however, as rex is increased, the solu-
tion becomes more negative. It can also be seen how
the slope of the function changes at these two equili-
bria. For the positive solution, the slope remains stable.
The unphysical solution is persistently unstable.

Since the residual estimation state depends on mea-
surements of the exhaust gas temperature and fresh air
mass, it is important to determine the sensitivity of the
equation to these parameters. Figure 5 also shows how
the residual mass changes as a function of an error in
the measurement of exhaust gas temperature and fresh
air mass. The effect of these errors is approximately
affine and relatively flat, indicating moderate sensitiv-
ity. The result is more linear and less sensitive for a heat
loss ratio greater than 1.

In summary, the steady-state value of the residual
estimation is relatively insensitive to the heat loss ratio

rex. However, the heat loss ratio does have an effect on
the dynamics and convergence properties. Also, there
are moderate sensitivities to errors in the measure
exhaust gas temperature and inducted air mass. The
estimation routine carries its highest sensitivity to the
measured in-cylinder pressure which can be obtained at
high speed with good measurement accuracy.

Experimental results and setup

A four-cylinder 2-L General Motors LNF Ecotec
engine with direct injection is used as the baseline plat-
form, see Figure 6. EPA Tier III Certification fuel was
used for all tests. To accommodate HCCI combustion,
the compression ratio was raised to 11.25:1 and cam-
shafts with shorter duration and lower lift were used to
allow for unthrottled operation. A small supercharger
(Eaton M24) was added to the air path in series with
the stock turbocharger to provide additional boosting
capabilities. Engine coolant temperature was controlled
to a set-point of 90 �C for all tests. The spark was left
on, but at a position of 40� after top dead center
(aTDC). The mixture is lean and highly diluted with
residuals for the tests in this work, and as such the
spark will have little influence on the combustion.
Having the spark on late only helps to prevent the plug
from fouling.

Cylinder pressures were sampled at a resolution of
0.1� crank angle degree (CAD) for offline pressure
analysis; however, real-time estimation of combustion
features was done at a resolution of 1� CAD. The esti-
mation algorithm was implemented using a combina-
tion of C and MATLAB code and was tested in real-
time using an ETAS ES910 rapid prototyping module.
The module uses an 800MHz Freescale�

PowerQUICC III MPC8548 processor with double-
precision floating point arithmetic and 512MB of
RAM. In the experiments presented here, the air and
fuel masses used for real-time residual estimation were
found using manifold filling dynamics, a cylinder filling
model and a torque estimation model on the Bosch
Motronic ECU. The models used for air and fuel mass
determination are computationally simple and use only
production sensors as they must run in real-time on the
ECU, which is intended for production and is very lim-
ited in computation capacity. The model for air charge
determination is calibrated with experimental data to
ensure accurate estimation. As discussed in section
‘‘Sensitivity,’’equation (14) carries a moderate sensitiv-
ity to the value of inducted air mass, as such it is
important to have an accurate model, or sensor, for
this input. Examples of air charge determination mod-
els can be found in Rausen et al.25 and Buckland et
al.26 For offline analysis, the air and fuel masses are
determined through post-processing of data from sev-
eral sensors. The offline determination of air charge is,
in general, more accurate than the cylinder filling
model from the Bosch ECU.

Figure 4. Convergence of the state mres, in milligrams, from
various initial guesses. Simulation was run using experimental
data at 1800 r/min, 3 bar IMEP and a combustion phasing of 8�
after top dead center.
IMEP: indicated mean effective pressure.
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Comparison to steady-state data

To validate the online residual estimation’s accuracy, it
was compared to the results from the offline estimation
presented in section ‘‘Iterative estimation.’’ Ideally, the
results from the online analysis would be compared
against measurements of the residual mass.
Unfortunately, sampling of the in-cylinder charge is
extremely difficult; it has, however, been done in
Steeper and Davisson.27 This method, however,
requires steady-state operation and the engine cannot
continue to run once a sample has been taken.

The dataset used for comparison spans multiple
speeds, loads and actuator settings and is therefore rep-
resentative of the range of inputs that the equation
would receive when operating online. The results in
Figure 7 show that for values of rex=1, the fit is good

Figure 5. Sensitivity of the residual mass to errors in the measured exhaust gas temperature. The sweeps are performed for
various heat loss ratios, and the results are linear for a physically reasonable value of rex.

Figure 6. Multicylinder recompression HCCI engine used for
testing along with all rapid prototyping hardware and
instrumentation.
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with the exception of a few outliers. The outliers corre-
spond to higher load points. For these, the pressure in
the cylinder at the point of EVO was high due to higher
peak pressures. The result is a larger blowdown event
which would make the value of rex necessarily greater
than 1. The results are better when a heat loss ratio
greater than 1 is used and nearly identical to the offline
analysis when the value of rex from the iterative method
is used. This comparison of the data was made offline.

Cycle-by-cycle trends

Since the residual mass trapped in the cylinder can
change quickly on a cycle-by-cycle basis, it is important
to quantify how well the algorithm can capture these
fluctuations. Figure 8 shows the result of the online dif-
ference equation and offline analysis for a highly vari-
able dataset. These data were made variable by

reducing the amount of NVO and therefore trapped
residual mass such that the combustion phasing
became sufficiently late to induce oscillations in the
combustion phasing and cylinder pressure.14 Figure 8
shows that the online estimation well approximates the
offline result in terms of direction of change from one
cycle to the next in the presence of this high variability
in Pcyl. However, it is possible that in the extreme vase
of frequent misfires that the algorithm could saturate
and have difficulty converging back to a solution.

The standard deviation of the online result is higher
than that of the offline. This is due to the oscillatory
convergence of the online estimation. When a heat loss
ratio greater than 1 is used, the amplitude of oscilla-
tions is reduced. This is the same result deduced from
Figure 5 where we see that the slope of the function at
the physical solution is approaching 0 as the heat loss
ratio is increased. This slope is analogous to the eigen-
value of the system. In discrete time, an eigenvalue on
the left-half plane and inside the unit circle is stable but
oscillatory. As we move the eigenvalue closer to posi-
tive values, the dampening of the system increases.
Additionally, errors could result from the different
means by which the cycle-by-cycle air mass is deter-
mined. For the online solution, the air mass is deter-
mined using the Bosch ECU and a cylinder filling
model as outlined in section ‘‘Experimental results and
setup.’’

To further check the statistical properties of the
algorithm, we consider the full test from Figure 8 which
is 3000 cycles long. The results are presented in Figure
9 with return maps and normal probability plots. A
return map shows the relationship between consecutive
cycles which provides insight on the dynamic behavior
of the cyclic variability (CV). Here, the return map is
the plot of the residual mass in cycle k versus the resi-
dual mass in cycle k + 1. When comparing the online
and offline results, we can see that the online analysis
results are stretched slightly perpendicular to the diago-
nal indicating oscillatory behavior. This is most likely
caused by the heat loss ratio being tuned slightly low as
previous results would indicate. The results for both
cases are mostly Gaussian as indicated by the normal
probability plots.

Even though the residual gas fraction data in Figure
9 appears to have fairly low variability, the effect on the
combustion is actually significant and non-Gaussian.
This is made clear by the return maps of combustion
phasing and heat release in Figure 10.

Actuator steps

To evaluate the effectiveness of the residual gas fraction
estimation in transients, actuator steps of the model
inputs were performed in open loop. Sensor measure-
ments were obtained in real-time from the engine’s
ECU and used by the model for real-time prediction of
xr. A step in EVC is shown in Figure 11 for cylinder 1.
The step is from 256� to 253� aTDC and back again

Figure 7. Comparison of the online residual estimation with
that of an iterative offline analysis tool from Fitzgerald et al.15.

Figure 8. Cycle-resolved results of residual mass for different
values of rex. Despite the data’s high variability, the algorithm
captures cycle-by-cycle trends well. The increased value of rex

dampens oscillations.
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and causes the amount of NVO to increase as a result.
Intuitively, the amount of residual mass trapped in the
cylinder should also increase; this is reflected in the pre-
diction of the residual gas fraction. The EVC step is
small because this is the largest step change that can be
achieved in open loop at this particular operating con-
dition. Without compensation from other actuators,

the engine transitions between nearly misfiring and
ringing with this slight change in residual gas fraction
as seen by the response of combustion phasing in
Figure 11. Also shown is the result of the offline analy-
sis of the residual gas fraction from Fitzgerald et al.15

and Larimore et al.19 While the absolute difference
between the two results is not 0, the magnitude and

Figure 9. Return maps and normal probability plots of the online and offline residual estimation for a highly variable dataset.

Figure 10. Return maps of heat release and combustion phasing for the data presented in Figure 9. Here, it can be seen that
despite the low variability in the return maps of residual gas fraction, the combustion is erratic in terms of u50 and heat release.
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direction of the transient response are similar. The
absolute value of the two results differs due to the dif-
ferent methods used to calculate the inducted air mass
as discussed in section ‘‘Experimental results and
setup.’’

Conclusion

A physics-based method of estimating the trapped resi-
dual mass in a recompression engine using cylinder
pressure measurements has been presented and evalu-
ated through dynamic analysis and experiments. An
accurate estimation of residual mass is important to
understand and control HCCI dynamics due to its large
sensitivity to thermal properties of the charge mass. In
recompression HCCI, the charge temperature is most
directly effected by the trapped residual mass.

The algorithm is viable for real-time implementation
due to its simplicity and it has been shown that the esti-
mation is valid for highly variable datasets. This is due
to the algorithm’s ability to converge quickly from per-
turbations. Furthermore, an analysis has been done to
show sensitivity properties to a tuning parameter and
measurement errors. The tuning parameter rex has little
influence on the steady-state result but does impact the
dynamics and convergence of the algorithm. A limita-
tion of the algorithm is that it requires a transient air
mass as an input. The results from the residual

estimation are sensitive to errors in this input as indi-
cated by Figure 5 and so it is imperative that a well-
parameterized charge determination model is used
when implementing the algorithm online.

Declaration of conflicting interests

This report was prepared as an account of work spon-
sored by an agency of the US Government. Neither the
US Government nor any agency thereof, nor any of
their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately
owned rights. Reference herein to any specific commer-
cial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation,
or favoring by the US Government or any agency
thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the
US Government or any agency thereof.

Funding

This material was supported by the Department of
Energy (National Energy Technology Laboratory) DE-
EE0003533 as a part of the ACCESS project consor-
tium with direction from Hakan Yilmaz and Oliver
Miersch-Wiemers, Robert Bosch, LLC.

References
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