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Abstract— In this paper we analyze the stability and two-
phase dynamics of the equilibrium water distributions inside the
porous media of a polymer electrolyte membrane (PEM) fuel
cell gas diffusion layer (GDL), which is described with first and
second-order parabolic partial differential equations (PDE).
A Lyapunov function-based stability criterion is implemented
for the liquid mass continuity PDE, while physics and math-
based arguments are used to demonstrate a key range of liquid
distribution that cannot attain equilibrium.

The quantity of water within the fuel cell directly affects per-
formance, efficiency, and durability. High membrane humidity
is desirable for proton conductivity, yet excess liquid water in
the anode has been experimentally shown to be a cause of
output voltage degradation. We identify the unstable state(s)
representing unbounded growth of liquid water and show that
stabilization of channel water mass is sufficient for a stable
liquid distribution.

I. INTRODUCTION AND MOTIVATION

A compact model of the multi-component (oxygen, hydro-

gen, water), two-phase (vapor and liquid water), spatially-

distributed and dynamic behavior across the gas diffusion

layer (Fig. 1) is investigated. The time-varying constituent

distributions in the GDL of each electrode are described by

three second-order parabolic PDEs for reactant (oxygen in

the cathode and hydrogen (H2) in the anode) concentration,

water vapor concentration, and liquid water volume. The

electrochemical reactions on, and the mass transport through,

the catalyst-covered membrane couple the anode and cathode

behaviors and, together with the channel conditions, provide

the time-varying boundary values for these PDEs. The water

(liquid and vapor) PDEs are coupled through the evapora-

tion/condensation rate. Further, the liquid water becomes a

nonlinearly distributed parameter that inhibits reactant gas

and water vapor diffusion. Liquid water occupies pore space

in the GDL, impedes the diffusion of reactant flow towards

the membrane, and reduces the fuel cell active area [1],

causing performance degradation.

We focus on the stability of the anode GDL water

distribution and associated anode channel water mass for

two reasons. First, mobile applications of fuel cells spend

a considerable time under low-to-medium load conditions,

where net water transport is from cathode to anode through

the polymer electrolyte membrane. Second, removal of ac-

cumulated liquid water is necessary to regain performance,

which is typically accomplished by surging an inlet flow
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Fig. 1. Conceptual schematic showing accumulation of liquid water in the
GDL and subsequent flow to the channel where reactant-blocking film is
formed

(e.g. anode H2 supply), resulting in efficiency loss. Allowing

liquid water to accumulate is undesirable for performance,

efficiency, and membrane durability reasons, hence estima-

tion and control of the liquid water distribution is critical for

effective fuel cell management.

The phenomenon of anode GDL flooding-induced voltage

degradation (loss) is addressed in this work, though the

methodology presented is applicable to the cathode GDL.

In fact, in order to understand and model the anode GDL

water accumulation and transport, the cathode water vapor

distribution must also be determined because the membrane

transport model requires cathode water vapor concentration.

Therefore, while the focus is on the anode GDL and channel,

the cathode water vapor distribution and channel balance are

included supplementally to complete the channel-to-channel

model. Finally, since the cathode liquid accumulation does

not affect the anode water distributions, it is not modeled

and all discussions of liquid refer to that of the anode side.

A. Observation of System Instability

We know from experiment and simulation that the fuel cell

will experience unbounded liquid water growth under many

normal operating conditions (flow regulated anode inlet,

high H2 utilization, etc). Figure 2 demonstrates the volt-

age degradation phenomena observed experimentally during

dead-ended anode operation (H2 utilization = 100% between

purges); namely that anode flooding is related to voltage

degradation.

It turns out that the apparent instability is directly related

to the channel water mass state. Specifically, we develop the

following result:
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Fig. 2. Experimental results support the hypothesis that anode flooding
causes voltage degradation that is recovered through anode channel purging.

Claim: Given the assumptions, partial differential equa-

tions and boundary conditions (BC) described in Sec. II, and

the analytic solutions from Sec. III, the anode liquid water

distribution is stable if the channel liquid water is stabilized.

Sketch of the Proof: The GDL liquid water is locally ex-

ponentially stable for fixed channel liquid BC (see Sec. IV).

Therefore, stabilization of the channel water mass state

results in overall water system stability. Thus if we view the

channel water mass as a controlled output, we essentially

establish the stability of the resulting infinite-dimensional

zero dynamics within the GDL as this output is held constant.

We proceed with analysis to justify this result.

II. FUEL CELL MODEL

Due to space limitations, only a summary of the first

principles model will be provided here. The details of the

model are identical to those presented in [2]. We proceed

with a one-dimensional treatment focusing on the anode,

using the following assumptions. The model is spatially

isothermal. Gas convective flow in the GDL is neglected.

Mass transport is in 1D, normal to the membrane. Water

transport out of the anode channel is assumed to be in vapor

form.

We designate x as the spatial variable, with x=0 corre-

sponding to the membrane location and x=L corresponding

to the anode channel location, and we let t denote time.

The state variables are as follows:

• cH2
(x, t) is the H2 concentration (mol/m3) at time t at

a cross-section of the GDL located at x, 0 ≤ x ≤ L;

• cv,an(x, t) is the concentration of water vapor at time t
at a cross-section of GDL located at x, 0 ≤ x ≤ L;

• The water saturation s(x, t) is the fraction of liquid

water volume VL to the total pore volume Vp, s = VL

Vp
.

s is thus a concentration-like variable for the liquid

water at time t, at a cross-section of GDL located at

x, 0 ≤ x ≤ L.

The following intermediate variables are useful:

• Wl(x, t) is the liquid water mass flow (kg/s) at time t
at a cross-section of the GDL located at x, 0 ≤ x ≤ L;

• S(x, t) is the reduced water saturation (m3/m3) at time

t at a cross-section of the GDL located at x, 0 ≤ x ≤ L,

S(x, t) =
s(x, t) − sim

1 − sim

, (1)

where it should be noted that S = 0 for s < sim.

The immobile water saturation sim works as stiction, i.e.

there is no liquid flow unless the water saturation s exceeds

sim. Finally, the evaporation rate rv is defined as,

rv(cv,an) =

{
γ (csat

v − cv,an) for s > 0,
min {0, γ(csat

v − cv,an)} for s = 0

where γ is the volumetric condensation coefficient and csat
v

is the vapor saturation concentration. Note that evaporation

can only occur if there is liquid water (s > 0) in the GDL.

Conservation of gas consituents and the liquid mass are

employed to determine the three second-order parabolic

PDEs that govern the anode reactant, water vapor, and water

liquid
∂cH2

∂t
=

∂

∂x

(

Dsim

H2

∂cH2

∂x

)

, (2)

∂cv,an

∂t
=

∂

∂x

(

Dsim

v

∂cv,an

∂x

)

+ rv(cv,an), (3)

∂s

∂t
=

∂

∂x

(

b1S
b2 ∂S

∂x

)

−

Mv

ρl

rv(cv,an), (4)

where Dsim
y is the diffusivity of y inside the GDL porous

medium, Mv is the vapor molar mass, and ρl is the density

of the liquid water.

A. Boundary Conditions

The boundaries for the GDL distributions are at the

interfaces with the membrane (x=0) and the channel (x=L).

The boundary condition for the reactants at the membrane-

GDL interface is a function of the current drawn. Water

vapor concentration on one side of the membrane influences

the water vapor concentration on the other side, thus there

are four BC needed to simultaneously solve both the anode

and cathode water vapor concentration second-order PDE.

These BC are influenced by inlet flow stoichiometries, tem-

peratures, and relative humidities, as well as the disturbance

stack current and the controllable outlet valve on the anode

outlet.

For cH2
(x, t), mixed Neumann-Dirichlet type BC are

imposed. The channel (ch) boundary condition is,

cH2
|x=L = cch

H2
= pch

H2
/ (RT ) , (5)

where R is the universal gas constant, T is the temperature,

and the H2 partial pressure in the anode channel, pch
H2

,

depends on the control input, ū, as discussed in Sec. II-B.

The membrane (mb) boundary condition is,

∂cH2

∂x

∣
∣
∣
∣
x=0

= −
1

Dsim

H2
|x=0

·
i(t)

2F
= −

N rct
H2

Dsim

H2
|x=0

, (6)
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where the rct indicates the reaction of H2 at the anode

catalyst, which depends on the current density i (A/m2), and

F is Faraday’s constant.

For cv,an(x, t), similar mixed BC are imposed:

cv,an|x=L = cch
v,an = pch

v,an/ (RT ) , (7)

where pch
v,an is the vapor partial pressure in the channel. The

slope of the water vapor distribution at the membrane is

determined by the water vapor flux across the membrane,

∂cv,an

∂x

∣
∣
∣
∣
x=0

=
−Nmb

Dsim
v

, (8)

where the membrane water molar flux Nmb is governed by

electro-osmotic drag and back diffusion.

For the liquid water PDE, mixed BC are again imposed.

Specifically, since water passing into the GDL is in vapor

form due to the assumed presence of a micro-porous layer,

∂S

∂x

∣
∣
∣
∣
x=0

= 0. (9)

The liquid water boundary condition at the GDL-channel

interface is an issue of ongoing research. A common assump-

tion is that the hydrophobic nature of the GDL porous media

essentially pushes the liquid water into the channel (formed

of hydrophillic material) with zero resistance ([3]). On the

other hand, Wang and his colleagues ([4],[5]) suggest that

the presence of liquid water on the GDL-channel interface

constitutes a resistance to flow into the channel. There does

not yet exist a physics-based method to relate the amount

of liquid water in the channel to resistance to flow from

the GDL. In [6], various values of s(L, t) were selected

without reason and kept fixed for simulation, and in [5]

a constant capillary back-pressure was assumed (7.7kPa)

without explanation for the choice.

Here we consider a general form of the liquid boundary

condition at the GDL-channel interface:

S(L, t) = g(mch
l (t)), (10)

where mch
l (t) is the mass of liquid water in the channel,

and g is an unknown function of that liquid. A form for

g is not proposed, and for the purposes of the claims made

herein, it is not necessary to know the function. It is assumed,

however, that g is monotonically increasing with mch
l , and

has an exponential bound of the form,

g(mch
l (t)) ≤ (a− e−bmch

l (t)), (11)

where a and b are positive constants. Thus (10) represents

levels of liquid accumulation in the channel such that the

GDL liquid boundary condition varies with the quantity

present.

B. Anode Channel Equations

For the anode ch, the governing equations for H2 and

water:

dmch
H2
/dt = W in

H2
−W out

H2
+WGDL

H2 ,

dmch
w /dt = WGDL

w − (W out
v −W in

v ).
(12)

In the general case, the anode will have a humidified inlet

stream, with the relative humidity (RHin) and the inlet flow

rate (W in
H2

) prescribed, thus,

W in
v =

P in
v

P in
H2

Mv

MH2

W in
H2

(13)

where P in
v = RHinP sat, and P in

H2
is dry inlet gas pressure.

The H2 and water vapor partial pressures, which represent

the channel side GDL BC, are calculated from:

pch
H2

=
mch

H2
RT

MH2
V ch

an
,

pch
v = min

{
mch

v RT

MvV ch , p
sat
v

}

,

pch = pch
H2

+ pch
v .

(14)

The anode exit flow rate to the ambient (amb) is modeled

as a linearly proportional nozzle equation,

W out = ū · kout(pch − pamb), (15)

where kout is an experimentally determined nozzle orifice

constant and ū is a controllable valve flow 0≤ū≤1 to remove

accumulated channel water and, unfortunately, H2,

W out
H2

=
mch

H2

mch
W out,

W out
v = W out −W out

H2
,

(16)

where mch = mch
H2

+ pch
v V chMv/(RT ).

The H2 and water mass flow rate from the GDL to the

channel are calculated using:

WGDL
H2

= −εAfcMH2

(

Dsim

H2

∂cH2

∂x

) ∣
∣
∣
∣
x=L

,

(17)

WGDL
w =−εAfc

(

ρlb1S
b2
∂S

∂x
+MvD

sim

v

∂cv
∂x

) ∣
∣
∣
∣
x=L

.

III. ANALYTIC SOLUTIONS MODEL

Analysis of the state equations (2)-(4) allowed us in [2]

to employ a steady-state analytic solution for the gaseous

constituents inside the GDL combined with the numeric

implementation of the liquid water state. We call these set

of equations as the semi-analytic solution model and will

be summarized here, along with analytic solutions for the

steady-state liquid water distribution, because it will facilitate

the derivation of equilibria distributions and their stability

analysis.

A. The Water Vapor Solution

From [2], the steady-state solutions implemented for the

cathode and anode GDL water vapor distributions are,

cv,an(x, t) = α1e
βx + α2e

−βx + csat
v , (18)

cv,ca(x, t) = ν1e
βx + ν2e

−βx + csat
v , (19)

where β =
√

γ/Dsim
v . (20)

The αi and νi are functions of the membrane water vapor

transport and the channel conditions [2].
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B. Liquid Water Governing Equation

An alternate form of the liquid water distribution in the

porous medium is obtained by replacing the cv,an(x, t)
coupling term in (4) by its steady-state solution (18) (since

it has been shown that the time constant of the water vapor

is orders of magnitude faster than that of the liquid water),

∂s

∂t
=

∂

∂x

(

b1S
b2
∂S

∂x

)

+
Mvγ

ρl

(α1e
βx + α2e

−βx), (21)

for s ≥ sim, and for 0 < s < sim:

∂s

∂t
=
Mvγ

ρl

(α1e
βx + α2e

−βx). (22)

For the s(x, t) ≥ sim case, (21) can be integrated twice

to obtain the steady-state solution,

Sss(x) =

(

βz

[

β(α1 − α2)(x− L) + cch
v,an − csat

v (23)

−(α1e
βx + α2e

−βx) +
S(L, t)

b2+1

βz

]) 1
b2+1

,

where β and αi are as defined in the cv,an(x, t) solution

previously, and βz = Mvγ(b2 + 1)/
(
ρlβ

2b1
)
.

For the 0 < s(x, t) < sim case, the time-varying solution

can be found easily by integrating (22) with respect to time,

s(x, t)=
Mv

ρl

γ(α1e
βx + α2e

−βx)t+s0(x), (24)

where s0(x) is the water saturation distribution at t = t0.

The governing behavior for 0 < s(x, t) < sim is such that

the water liquid will grow to exceed sim and go back in

the 21 case, or will decrease with time and cause all the

water liquid to be evaporated (s = 0) as discussed in detail

in later section.

Figure 3 demonstrates that the steady-state solutions to the

water PDEs lead to an exponential form for the vapor and a

fractional power polynomial for the liquid. These shapes are

highly dependent upon the choice of BC, as evidenced by

results from [7], where numeric results show much higher

water saturations (s>0.80) at the membrane and zero liquid

water at the channel, due to the assumptions of liquid water

transport across the membrane and s=0 at the GDL-channel

interface. Recent results [8] support the membrane boundary

condition (9) used here.

The dash-dot line in Fig. 3 demonstrates that GDL liquid

water in excess of the immobile saturation (i.e. flooding)

occurs when the water vapor concentration reaches its maxi-

mum value of csat
v in the channel. Under these conditions, the

liquid water will grow unbounded in the channel (instability).

The solid line represents a lower channel water vapor con-

centration, and we observe a channel condition (cch
v = cch∗

v )

below which the GDL liquid water begins to recede into the

GDL. The dotted line depicts the steady-state distributions

if cch
v < cch∗

v , where the liquid water front has receded into

the GDL (stable with s(L−) = 0).
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Fig. 3. Anode distribution of liquid water ratio for varying channel water
vapor concentrations.

IV. STABILITY ANALYSIS

We need to show the stability of the liquid water distribu-

tion when s > sim for 0 ≥ x ≥ L which will cause a non-

zero liquid flow to the channel. We show that if the liquid

water in the channel (feeds the boundary condition of the

liquid water distribution) is kept stable then the liquid water

GDL distribution is also stable. Linearization of the GDL

liquid PDE (21) for s > sim is accomplished by substitution

of a perturbation from an equilibrium distribution S(x, t) =
So(x) + ∆S,

∂s

∂t
=

b1

(b2 + 1)

∂2

∂x2

(

(So(x) + ∆S)b2+1
)

+ fo(x), (25)

where fo(x) = Mvγ
ρl

(α1e
βx +α2e

−βx). A linear approxima-

tion for polynomial expansion is,

(So(x)+∆S)b2+1
≃ So(x)

b2+1+(b2 + 1)So(x)
b2∆S. (26)

Inserting (26) into (25), it can be seen that the initial steady-

state solution is embedded within,

ṡo = 0

∂s

∂t
=

︷ ︸︸ ︷

b1
(b2 + 1)

∂2

∂x2
So(x)

b2+1 + fo(x) (27)

+b1
∂2

∂x2

(

So(x)
b2∆S

)

.

Since,

∆S =
∆s

(1 − sim)
, (28)

we get,

∆ṡ =
b1

(1 − sim)

∂2

∂x2

(

Sb2
o ∆s

)

(29)

Defining w , Sb2
o ∆s results in,

wt = K2S
b2
o wxx = ψ(x)wxx, (30)

where K2=b1/(1 − sim) and ψ(x) , K2S
b2
o .
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The BC of the new PDE are found by substituting the

original BC into the transformation. At x=0,

wx(0, t) = b2S
b2−1
o

∂So

∂x
∆s+ Sb2

o

∂(∆s)

∂x
= 0, (31)

because both the initial steady-state and perturbation distri-

butions must satisfy the zero-slope requirement at x=0.

For the x=L Dirchlet BC,

w(L, t) = Sb2
o (L)∆s(L) = 0, (32)

because a fixed x=L BC, which is a requirement for steady-

state conditions, requires ∆s(L) remain zero. Thus for

any constant boundary condition at x=L, the BC of the

transformed system will be zero.

Modifying the steps described in [9] to fit our application,

a Lyapunov stability analysis is applied to the plant of the

transformed system (30). L=1 is taken for convenience, since

a coordinate transformation z = x
L

could be implemented

without loss of generality.

Using the candidate Lyapunov function,

V (w,wx) =
1

2

∫ 1

0

w2(x, t)

ψ(x)
dx+

1

2

∫ 1

0

w2
x(x, t)dx, (33)

where it should be noted that ψ(x) ≥ 0 over the range x ∈
[0, 1]. Since ψ(1) = K2S

b2
o (1) may be zero, for confirmation

we check,

w2(1, t)

ψ(1)
=

(Sb2
o (1)∆s(1))2

K2S
b2
o (1)

=
Sb2

o (1)∆s2(1)

K2
= 0, (34)

and thus V is defined over the entire range.

The time derivative of the candidate Lyapunov function,

V̇ =

∫
1

0

(
wwt

ψ(x)
−

1

2

w2ψt(x)

ψ(x)2

)

dx+

∫
1

0

wxwtxdx, (35)

where ψt(x) = 0 since ψ(x) is not a function of time.

Substituting the transformed PDE, wt = ψ(x)wxx, and

integrating by parts,

V̇ =

∫ 1

0

wwxxdx+

∫ 1

0

wxwtxdx, (36)

V̇ = wwx

∣
∣
∣
∣

1

0

−

∫ 1

0

w2
xdx+ wxwt

∣
∣
∣
∣

1

0

−

∫ 1

0

ψw2
xxdx. (37)

From (31) and (32) and wt(1) = 0,

V̇ = −

∫ 1

0

w2
xdx−

∫ 1

0

ψw2
xxdx. (38)

Since V̇ ≤ 0, we have stability in the sense of Lyapunov.

To show exponential stability, recognize that 0 < ψmin ≤ ψ,

and apply Poincare’s inequality to show,

−

∫ 1

0

w2
xdx ≤ −γψmin

∫ 1

0

w2

ψ
dx, (39)

and

−

∫ 1

0

ψw2
xxdx ≤ −γψmin

∫ 1

0

w2
xdx, (40)

where γ = 1
4 . Then,

V̇ ≤ −γψmin

(∫ 1

0

w2

ψ
dx+

∫ 1

0

w2
xdx

)

, (41)

which becomes,

V̇ ≤ −2γψminV, (42)

indicating that V→0 exponentially as t→∞. To show point-

wise convergence, use Agmon’s inequality (with w(1, t) =
0),

max
x∈[0,1]

|w(x, t)|2 ≤ 2||w(·, t)|| · ||wx(·, t)||, (43)

and the inequality 2||a||·||b|| ≤ ||a||2 + ||b||2 to find,

max
x∈[0,1]

|w(x, t)|2 ≤ ||w(·, t)||2 + ||wx(·, t)||2, (44)

where || · || denotes the L2-norm. Since ψ(x) > 0 for all x
and V → 0, ||w(x, t)|| → 0 and ||wx(x, t)|| → 0 as t→ ∞,

implying,

max
x∈[0,1]

|w(x, t)| → 0 as t→ ∞. (45)

Pointwise convergence is thus shown, and the liquid water

distribution within the GDL is exponentially stable.

V. ANALYSIS OF EQUILIBRIA

The form of (22) suggests that an equilibrium condition

for 0 <s(x, t)<sim does not exist because the αi are not

functions of s. It is also shown here that the concept of im-

mobile saturation introduces a range of s where equilibrium

does not exist.

A. Claim: No equilibrium solution s exists for which

0 < s(x) < sim at some x

We claim that there exists no equilibrium condition such

that an s(x) within the GDL is non-zero, but less than the

immobile saturation. To see this, we take (4) and substitute

the evaporation term,

∂s(x, t)

∂t
= −

Mvγ

ρl

(csat
v − cv(x)). (46)

First, considering the cases where cv,ss(x) 6= csat
v , the

RHS of the (46) dynamic equation is not a function of

s(x, t), and therefore no condition exists that will satisfy

∂s/∂t = 0. Thus, while 0<s(x, t)<sim, s(x, t) will either

grow (positive ∂s/∂t, i.e. cv(x)>c
sat
v ) until it exceeds sim,

causing S to be re-introduced as an opposing factor for the

condensation or decrease under evaporation (negative ∂s/∂t,
i.e. cv(x)<c

sat
v ), which will cease only when s(x, t)= 0.

It remains to show cv,ss(x) 6= csat
v when 0 < s(x) < sim.

B. Claim: cv,ss(x) 6= csat
v for 0 < s(x) < sim

We claim that anywhere in the GDL that the liquid satu-

ration steady-state is less than the immobile saturation, the

water vapor pressure will not match the saturation pressure.

To demonstrate this, we provide a continuity of solution

sketch of proof.

This claim can be proven by contradiction. Specifically, if

there exists x̄ such that cv,ss(x̄) = csat
v while 0 < s(x̄) <

sim, it can be first shown, by continuity, that 0 < s(x) < sim
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Fig. 4. Example of anode GDL liquid distributions where W GDL
l

, as the

product of Sb2 (L) and dS
dx

|x=L, reaches equilibrium when S(L) increases

by matching W mb with decreased dS
dx

|x=L.

for all x in an open interval U containing x̄. From (18) and

(22) it then follows that

cv,ss(x)−c
sat
v =α1e

βx +α2e
−βx =0 ⇒ e2βx =−

α1

α2
(47)

for x ∈ U . Since β 6= 0, the last relation cannot hold for all

x ∈ U and we reach a contradiction, which implies the truth

of Claims A and B.

VI. BEHAVIOR OF THE CHANNEL WATER MASS

In the previous section we showed that the liquid water dis-

tribution within the GDL is stable if the channel water mass

has been stabilized. Within the literature, constant values

of S(L, t) suggested include S(L, t)=0 ([3]); S(L, t)=0.01,

0.4, 0.6 ([6]); and S(L, t)=0.153 ([5]). Through control

of the anode channel outlet valve described in Sec. II-

B, using feedback of voltage and relative humidity, it is

possible to stabilize the channel liquid mass ([10]). This

stabilization can take the form of removal of the channel

liquid water (mch
l =0) or maintenance of channel liquid mass

below a predetermined threshold. In either case, the method

of Sec. IV can be used to demonstrate stability of the GDL

liquid water distribution for typical channel liquid BC found

in the literature.

Figure 4 demonstrates the balancing role played by the

liquid water transport out of the GDL. As can be seen from

(4), the mass flow rate of liquid water is a function of

the volume of liquid present (S(L)) and the slope of the

distribution at the GDL-channel interface ( dS
dx

|x=L). As the

x = L BC grows, the magnitude of the slope decreases, with

the final value determined by the GDL-channel flow required

to balance the liquid mass in the GDL. Thus, for every

constant channel BC, the distribution reaches equilibrium,

and as S(L) gets larger, the equilibrium distribution flattens

to nearly constant.

VII. CONCLUSIONS

It has been demonstrated that for a PEM fuel cell model

with a GDL liquid water boundary condition coupled to the

amount of liquid water in the channel, system liquid water

stability can be attained by stabilization of the channel water

mass. This is the same result as for the commonly assumed

case where the channel liquid has no influence on the GDL

liquid. Lyapunov stability analysis is used to show that the

liquid water distribution within the anode GDL is locally

exponentially stable (does not experience unbounded growth)

if the anode channel liquid water mass is bounded. This

provides confidence that the stability results are robust to

variation in channel BC, as long as those conditions can be

stabilized.

Analysis of the GDL liquid water dynamics indicates that

the inclusion of an immobile saturation creates a range for

which the water saturation s will not reach equilibrium

(0<s<sim). This result influences stability and control as

this unstable region acts as a buffer (delay) to observability of

the GDL liquid via the channel water state. While s(L, t) <
sim, liquid flow from GDL to channel is zero, and therefore

the effect of changes to channel water concentration on

GDL liquid distribution cannot be observed using measurable

outputs (cell voltage, outlet humidity). Feedback control

using these outputs must consider this non-equilibrium phe-

nomenon.
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