
ASSESSING FUEL ECONOMY FROM AUTOMATED DRIVING:
INFLUENCE OF PREVIEW AND VELOCITY CONSTRAINTS

Niket Prakash∗
Gionata Cimini

Anna G. Stefanopoulou
University of Michigan

Ann Arbor, Michigan 48109
Email: niketpr@umich.edu

Matthew J. Brusstar
US Environmental Protection Agency

Ann Arbor, Michigan 48105

ABSTRACT
Constrained optimization control techniques with preview

are designed in this paper to derive optimal velocity trajectories
in longitudinal vehicle following mode, while ensuring that the
gap from the lead vehicle is both safe and short enough to pre-
vent cut-ins from other lanes. The lead vehicle associated with
the Federal Test Procedures (FTP) [1] is used as an example of
the achieved benefits with such controlled velocity trajectories of
the following vehicle. Fuel Consumption (FC) is indirectly min-
imized by minimizing the accelerations and decelerations as the
autonomous vehicle follows the hypothetical lead. Implement-
ing the cost function in offline Dynamic Programming (DP) with
full drive cycle preview showed up to a 17% increase in Fuel
Economy (FE). Real time implementation with Model Predictive
Control (MPC) showed improvements in FE, proportional to the
prediction horizon. Specifically, 20s preview MPC was able to
match the DP results. A minimum of 1.5s preview of the lead
vehicle velocity with velocity tracking of the lead was required to
obtain an increase in FE.

The optimal velocity trajectory found from these algorithms
exceeded the presently allowable error from standard drive cy-
cles for FC testing. However, the trajectory was still safe and
acceptable from the perspective of traffic flow. Based on our re-
sults, regulators need to consider relaxing the constant velocity
error margins around the standard velocity trajectories dictated
by the FTP to encourage FE increase in autonomous driving.

∗Address all correspondence to this author.

1 INTRODUCTION
Vehicle autonomy is steadily increasing and in the coming

years several manufacturers would offer vehicles with the capa-
bility for highly autonomous driving. Presently, adaptive cruise
control systems lack the ability to navigate through all traffic
conditions and are recommended only at highway speeds for
safe operations [2]. However, autonomous vehicles at the very
least would have longitudinal traffic navigation capabilities at all
speeds and traffic conditions. The navigation algorithms for au-
tonomous vehicles can be designed to improve their fuel econ-
omy (FE), as compared to the FE obtained by a human driving
through the same traffic conditions.

In [3] a reduction of 0.5%− 10% in CO2 emissions is
achieved using an adaptive cruise control algorithm, acting in
the speed range 18 MPH-100 MPH. CO2 emissions can be fur-
ther reduced by eco-driving or trace smoothing strategies, which
entails reducing the total accelerations and decelerations. In-
deed, [4] conservatively estimated a reduction of 33 million met-
ric tons of CO2 annually by adopting eco-driving strategies. As
an example of a trace-smoothing following algorithm, [5] em-
ployed a time-headway based linear strategy that improved the
FE by increasing the time headway. In [6] a set of linear equa-
tions were used to reduce the accelerations and decelerations.
Both showed significant improvements in FE. However, these
results are obtained without imposing conditions on how far the
follower vehicle could fall behind the lead, resulting in possible
cut-ins that would change the velocity. Hence maintaining the
appropriate gap between the vehicles is an important considera-
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tion that limits the scope for trace smoothing.
The authors in [7] compared a linear quadratic and a Model

Predictive Control (MPC) following algorithm, showing a fuel
consumption decrease of 8.8% if a 5s look-ahead capability is
guaranteed. However, the authors employed time-invariant con-
straints on position. These could result in an awkward traffic
pattern since real-world driving varies the following gap based
on the speed. Moreover, they did not use standard drive cycles
and hence were unable to show how the controller would per-
form in known and regulated conditions. Also their baseline was
not a human drive cycle but a LQR derived trajectory.

In this paper, the Federal Test Protocols (FTP) and associ-
ated drive cycles are considered using the hypothetical lead vehi-
cle. The concept of a hypothetical lead vehicle for any standard
drive cycle was introduced in [1]. The idea was to find the lead
vehicle velocity trajectory followed by the driver of a standard
drive cycle. Autonomous vehicles could follow the same lead
with various algorithms. This method would allow for simula-
tion of actual traffic conditions associated with the Federal drive
cycles and also provide a consistent comparison between how
humans follow traffic and how optimal controllers would follow
the same traffic conditions. Obviously any vehicle with auto-
matic longitudinal control can employ these optimal controls.

This paper will develop optimal control algorithms that use
the preview of the hypothetical lead vehicle to chart a velocity
trajectory for the autonomous vehicle. The constraints on the
autonomous vehicle are imposed by the position and speed of
the lead. The objective is to minimize fuel consumption of the
autonomous vehicle as it navigates through different traffic con-
ditions, represented by different drive cycles. Fuel consumption
is indirectly minimized by reducing energy consumed during ac-
celerations and energy loss in decelerations. The objective thus
translates into a constrained optimization problem.

To solve this optimization problem, Dynamic Programming
(DP) and MPC have been used. The DP method provides the
benchmark for performance improvements by solving the op-
timal control problem with a perfect knowledge of the future
behavior. Due to the high computational and prediction re-
quirements, DP cannot be used for real-time control of the au-
tonomous vehicle. On the other hand MPC is becoming a stan-
dard choice when dealing with multivariable, constrained sys-
tems and can be used for real-time control [8] of the veloc-
ity trajectory, which can then be used to evaluate FC. The Ad-
vanced Light-Duty Powertrain and Hybrid Analysis Tool (AL-
PHA) model developed at the US Environmental Protection
Agency (EPA) was used to evaluate fuel consumption [9] for a
2013 Ford Escape with a 1.6L EcoBoost R© engine [10].

The remainder of this paper is organized as follows. Sec-
tion 2 presents the model of the vehicle and the problem state-
ment. Section 3 shows the application and results of DP for the
following problem. Section 4 presents three different formula-
tions for MPC implementation and compares them. Section 5
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FIGURE 1. Position constraints to be applied on the following au-
tonomous vehicle based on the position and velocity of the hypothetical
lead

concludes the paper with a discussion on the results obtained.

2 Model Description
In this paper, the dynamics of the autonomous vehicle are

described by a simple point mass Linear Time-Invariant (LTI)
model, with position (p) and velocity (v) as states and accelera-
tion (a) as the only input, namely

xk+1 =

[
1 Ts
0 1

]
︸ ︷︷ ︸

A

xk +

[
0.5T 2

s
Ts

]
︸ ︷︷ ︸

B

uk (1)

with Ts = 0.1s the sampling time, x = [x1 x2] = [p v]′ ∈R2 com-
pletely measurable and u = a ∈ R. The simple dynamics allow
for fast online controller implementation. The velocity state v
can be used offline in the ALPHA model to estimate the Fuel
Consumption and hence the Fuel Economy of the vehicle. De-
fine U and Xk as polyhedral sets of constraints on inputs and
states respectively, such that

U= {u ∈ R |umin ≤ u≤ umax} (2a)

Xk = {x ∈ R2 | [xmin
1,k xmin

2 ]′ ≤ xk ≤ [xmax
1,k xmax

2 ]′}. (2b)

The acceleration and deceleration constraints are time-
invariant. For this paper they have been derived from the stan-
dard drive cycles to be umin ≡−6 m/s2, and umax ≡ 6 m/s2. The
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same is true for the state x2 or velocity v where vmin ≡ 0 m/s, and
vmax ≡ 40 m/s. Constraints on the state x1 or position p however,
are time varying as the position of the autonomous vehicle is de-
termined by the position and velocity of the hypothetical lead and
hence a speed dependent gap.

The gap between the hypothetical lead and the autonomous
vehicle is constrained by an upper and a lower bound. The up-
per bound is a safety limit and is the closest that the follower
vehicle can follow the lead vehicle. This is derived from be-
ing 1 car length behind the lead vehicle for every 10 MPH. The
lower bound is derived from assuming a distance that would pre-
vent safe cut-ins from adjacent lanes. This is kept at 4 ft/MPH or
2.7 m/m/s. The constraints are further relaxed at low speeds of
less than 20 MPH to 10 ft/MPH or 2.7 m/m/s. Indeed, at such low
speeds cut-ins are not expected and a longer gap reduces frequent
starts and stops, thus delivering better FE. Since the position con-
straints are dependent on the lead vehicle’s states at that instant,
these constraints are time varying. Fig. 1 shows the upper and
lower bounds on position at different velocities of the lead vehi-
cle. The constraints on position and speed are selected according
to

xmin
1,k = xL + vl L/10 (3a)

xmax
1,k = xL +

{
vl dmax if vl < 20MPH
vl dmin otherwise

(3b)

xmin
2 = 0 (3c)

xmax
2 = 40 (3d)

where xL is the position of the lead vehicle, vl is the velocity of
the lead vehicle, L is 1 car length, dmax is 10 ft and dmin is 4 ft.
The time-invariant limits on the speed are reasonable on almost
all U.S.A. roads [11].

The model does not consider the engine, vehicle or power-
train dynamics and is a general formulation applicable to all ve-
hicle types. The resulting optimized velocity trajectory is applied
as an input to the ALPHA model [9] of a particular vehicle for
offline computation of fuel economy. The results for FE shown
in this paper are specific to the 2013 Ford Escape with a 1.6L
EcoBoost R© engine [10]. The absolute values of fuel economy
would change for different vehicles with other powertrain and
engine configurations.

3 Dynamic Programming
The objective of this paper is to indirectly minimize the

FE of the autonomous vehicle by minimizing its accelerations
and decelerations. The optimal velocity trajectory has to be
computed while keeping the vehicle within the position con-
straints governed by the lead vehicle. Assuming that all future
references, constraints, and disturbances are perfectly known,
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FIGURE 2. Comparison of standard US06 drive cycle with the DP
optimized velocity profile. The fueling rates are found from ALPHA
model simulations [9].

dynamic programming (DP) can be used to find a non-causal,
global-optimal input (acceleration) sequence that minimizes a
defined cost function [12]. In this work the input or the accel-
eration itself has to be minimized. The DP methodology would
provide the minimum input, acceleration and deceleration neces-
sary to ensure that the vehicle adheres to its position constraints.

Despite its limitation as an offline technique, DP results
serve as an upper bound on performance for the design of real-
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FIGURE 3. Fuel economy using various horizons and cost functions
in the MPC formulation

time control strategies. The formulation is as follows

min.
u

N f

∑
k=1
‖uk‖2

2 (4a)

s.t. xk+1 = Axk +Buk (4b)
uk ∈ U, xk ∈ Xk (4c)

where N f is the final time-step, A, B are defined as in (1) and U,
Xk are defined as in (2), constraints on Xk are defined as in (3).

For this paper the generic dynamic programming
MATLAB R© function in [13] has been used. It allows for
constrained optimal control problems, such as the one in (4).
In this work, the states and the inputs are discretized into 201
grid points. The same discretization is applied across all drive
cycles. All fuel economies, including those of the standard
drive cycles are calculated by applying the velocity trajectory
as an input to the ALPHA model of the 2013 Ford Escape
with a 1.6 L EcoBoost R© engine. The resulting optimal velocity
trajectory showed significant improvements in FE for four US
Environmental Protection Agency (EPA) drive cycles. The
highest increase was seen in US06 at 16.7% over the standard
US06 drive cycle [14]. Fig. 2 shows velocity trajectory of the DP
optimal trace as compared to the standard EPA defined trace. By
utilizing the entire gap between the upper and lower bounds, DP
is able to find the velocity trajectory with minimal accelerations
and decelerations while remaining close to the lead vehicle. The
absence of these acceleration spikes reduces fueling rates and
leads to the significant improvements in FE.

4 Model predictive control
Although DP provides the optimal solution, several reasons

prevent its use for online control such as the high computational
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FIGURE 4. Comparison of standard UDDS drive cycle with DP and
MPCa velocity traces. Clearly for MPCa with Np = 4s, at Time = 530,
605, 655 and 715 s the position is too close to the lower bound and
the MPCa controller applies significant acceleration to stay within the
bounds. These accelerations are less pronounced for the Np = 8s case
and absent in the DP case.

burden and the complete knowledge about the future behavior
of the system. The MPC methodology is becoming the stan-
dard technology to handle fast-sampled multivariable processes,
especially in automotive, aerospace and power electronics con-
trol [8, 15–17]. This methodology solves a constrained, finite-
horizon, optimal control problem, and by following the reced-
ing horizon policy it applies only the current inputs to the sys-
tem. At each sampling time the procedure is repeated and a
new open-loop optimal control problem is solved with a one-
step shifted horizon. Even if MPC drastically reduces the com-
putational complexity with respect to DP, the time required to
solve the optimization problem is still considerable, especially in
high frequency sampled systems [18]. However, recent advances
in convex and embedded optimization are enabling fast online
MPC implementations [19–21]. When dealing with LTI models,
quadratic cost function and affine constraints, MPC simplifies to
solving the following optimization problem at each sampling in-
stant

min
u

Ñp

∑
i=1
‖Wx(xk+i|k− rk+i|k)‖2

2 +‖Wuuk+i|k‖2
2 (5a)

s.t. xk+i+1|k = Axk+i|k +Buk+i|k (5b)

xk|k = xk (5c)

uk+i|k ∈ U, xk+i|k ∈ Xk+i|k (5d)

where Ñp is the prediction horizon expressed in sampling in-
stants, Wx and Wu are square, diagonal, weight matrices, xk+i|k
denotes the prediction of the variable x at time k+ i based on the
information available at time k, and rk+i|k denotes the prediction
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of the reference r to be tracked at time k+ i, xk is the current state.
The influence of the prediction horizon, Np = Ñp.Ts expressed in
seconds, to the optimal velocity trajectory will be investigated
along with three different MPC formulations. All three formula-
tions share the same linear prediction model and the same con-
straints, as defined in Eqs. (1) and (2), respectively. They differ
from each other for the cost function, and we will refer to them
as

1. MPCa: penalty on acceleration;
2. MPCp: penalty on acceleration and position tracking;
3. MPCv: penalty on acceleration and velocity tracking.

MPCa can be considered as a reduced horizon version of the
optimal control problem (4), and its cost function is defined by
the following weights:

MPCa ,

{
W a

x = diag [0 0]
W a

u = wa
u = 1

(6)

The length of the prediction horizon plays an important role in
this control problem as not only the dynamics of the model are
predicted but also the constraints on the states and the eventual
reference trajectory. This means that high prediction horizons are
not only computationally demanding, but can even be infeasible
depending on the preview, look-ahead, and overall connectivity
responsible for accurately predicting the future behavior of the
system. Indeed, in [22], it was shown that while velocity tra-
jectories for short prediction horizons can be predicted well for
Np = 1.5s, a good accuracy for longer horizon is not very prob-
able.

For autonomous driving it can be assumed that these pre-
dictions come from different methods such as vehicle to vehicle
communication or from a traffic monitoring system. Given dif-
ferent prediction horizons, this work evaluates the potential in-
crease in fuel economy. It must be stressed that for this work,
perfect prediction of constraints along the prediction horizon is
assumed for all cases.

Fig. 3 shows that MPCa gives satisfactory results only for
Np ≥ 6s. This is a significantly long prediction horizon and
would not be feasible. For shorter prediction horizons Ns < 5s,
MPCa gives an FE that is even worse with respect to the standard
cycle. The reason is clarified in Fig. 4, which shows that with-
out enough prediction of the position constrains, MPCa keeps the
vehicle too close to the lower bound. This leads to acceleration
spikes to keep the vehicle within the bounds, decreasing the FE.
Fig. 3 also shows that, as expected, the performance of MPCa

equals the one obtained with DP after a certain prediction hori-
zon, i.e. 20s, as the two formulations are equivalent but for the
prediction horizon. The RMS error between the velocity trajec-
tory in DP and MPCa vary as 2.24m/s for Np = 4s, 1.26m/s for
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FIGURE 5. Comparison of standard UDDS drive cycle with two
MPC filtered velocity traces where the MPC has position tracking in
the cost function. Clearly with increased prediction horizon, the posi-
tion tracking improves. However, the reduction in acceleration between
the two MPC cases is small leading to very slight improvement in FE

Np = 8s and 0.58m/s for Np = 20s thus showing how the MPCa

results approach the DP ones.

4.1 Model predictive control with tracking penalty
From the results of MPSa, the vehicle had to be prevented

from falling too close to the lower bound on position. Since the
state vector is completely measurable, the deviation from the po-
sition or velocity reference can be penalized to ensure that the
vehicle is within acceptable bounds. The MPC implementations,
MPCp and MPCv introduce two different tracking penalties in
the cost function. It is straightforward to verify that penaliz-
ing the velocity or position tracking error worsens the FE for
longer prediction horizons, where MPCa works well. However,
as shown in Fig. 3, the performance improvement for shorter pre-
diction horizons is significant.

In MPCp, the position state is forced to track the upper
bound of the position constraints. This ensures that the position
of the vehicle is far from the lower bound. However, position
tracking limits the ability of the controller to utilize the entire
gap between the bounds and minimize acceleration. An alterna-
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tive is MPCv, where the controller is forced to track the velocity
of the lead vehicle. Tracking the lead velocity would ensure that
for short prediction horizons, the FE at least matches that of the
standard cycle. Additionally, acceleration optimization would
increase FE to a value beyond that of the standard cycle. The
tradeoff between acceleration optimization and velocity tracking
by employing appropriate weights for different prediction hori-
zons are discussed below.

In MPCp the weights on the cost function are assumed to be

MPCp ,

{
W p

x = diag
[
wp

x 0
]

W p
u = wp

u
(7)

whereas the weights for MPCv are such that

MPCv ,

{
W v

x = diag [0 wv
x]

W v
u = wv

u
(8)

Since the main objective is minimization of acceleration, the
weights were chosen such that wp

u > wp
x and wv

u > wv
x. This rule

ensures that the penalty on tracking is less than the penalty on
high acceleration. In the proposed results, the weights are tuned
for each prediction horizon. For longer prediction horizons the
tracking accuracy can be reduced, thus giving freedom for higher
acceleration minimization. As an example, for the case Np = 1.5s
the weights are wp

u = wa
u = 1, wp

x = 0.8 and wv
x = 0.2.

Fig. 5 shows MPCp results for two prediction horizons, i.e.
4s and 8s. The upper bound is closely tracked by both cases and
the tracking performance increases slightly as prediction horizon
increases. The FE improves over the standard cycle even for
short prediction horizons. The close position tracking, however,
reduces the scope for optimization and hence the FE for both
cases is nearly the same. Fig. 3 shows that for Np = 8s, the
MPCa has a much better FE than MPCp.

It was found that MPCv showed an even better FE than
MPCp for short prediction horizons. In Fig. 6 it can be seen that
while staying within the position constraints, MPCv had lower
acceleration and engine torque demands than MPCa and MPCp.
Clearly the DP case with the entire drive cycle preview is the best
for FE. But, for Np = 1.5s MPCv shows the best results compared
to other possible real-time solutions. MPCv is therefore selected
as our real-time following control implementation.

5 Discussion
The objective of this paper was to find a controller that gen-

erates an optimal velocity trajectory such that the acceleration
is minimized. Table 1 shows the improvements in FE for both
the DP and MPCv cases. Significant improvements were shown
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FIGURE 6. Comparison of different drive cycles derived from follow-
ing the hypothetical lead using DP and MPC algorithms with different
cost functions at Np=4s. The acceleration profile of DP is the best fol-
lowed by MPC with velocity tracking, MPC with position tracking, the
standard cycle and finally MPC without reference. This is reflected in
the the engine torque and correspondingly the fueling rate.

in FE for the Dynamic Programming case between 13.1% and
16.7% indicating a potential for high gain in FE for autonomous
vehicles that enable real time optimization. Real-time imple-
mentation with MPCv controllers shows improvements between
5.3% and 11.8%, for the shortest prediction horizon of 1.5s.
While obviously not performing as well as DP, MPCv is able to
improve upon the baseline. For very long prediction horizons of
Np ≥ 20s, MPCa is able to match the DP results for all the given
cycles simulated in ALPHA for the selected vehicle.

The model used in the optimal controller was deliberately
kept as a simple point mass LTI acceleration model to generate
the optimal velocity trajectory without considering the vehicle
power train or engine dynamics. This was achieved by reduc-
ing the total accelerations and decelerations while maintaining
an acceptable distance from the lead vehicle based on acceptable
traffic patterns. This work shows that in meeting the simple ac-
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TABLE 1. MPG improvements with DP and MPC

Cycle
Name

Standard
Cycle [MPG]

DP
[MPG | Imp.]

MPCv (Np=1.5s)
[MPG | Imp.]

UDDS 28.3 32.0 13.1% 29.8 5.3%

US06 24.5 28.6 16.7% 27.4 11.8%

LA92 26.0 30.7 15.3% 28.2 8.5%

SC03 27.7 31.8 14.8% 29.2 5.4%

celeration objectives, FE can also be increased while following a
hypothetical lead vehicle with a velocity profile associated with
the federal test procedures [1]. An autonomous vehicle could
have this FE objective along with other safety and traffic flow
objectives. Tailoring the FE optimization by minimizing fuel
consumption instead of the generic acceleration could result in
even more benefits, given that not all accelerations are equally
fuel consuming. This optimization will require engine and trans-
mission data or models.

6 Conclusion
This paper shows the possibilities for improvement on

present vehicle technologies through autonomous driving. Of-
fline DP results achieve up to 17% improvement in FE. Simula-
tion of various MPC formulations with a reasonable horizon was
able to achieve 12% improvement in FE. The velocity trajectories
that achieved these improvements in autonomous vehicles were
significantly different from the velocity profile of the standard
cycles. The velocity difference was more than what is currently
allowed by regulations. In light of this work, regulators need to
reconsider the standard FE testing procedure that imposes a tight
band around the velocity trace to encourage use of algorithms
that increase FE, acceptable from both traffic and safety perspec-
tives.
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