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[terative Learning Control for Soft Landing of
Electromechanical Valve Actuator in
Camless Engines

Wolfgang Hoffmann Kathy Peterson Anna Stefanopoulou

Abstract— Variable valve timing allows improvements of
internal combustion engines and can be achieved by camless
actuation technology. In this paper we consider an Elec-
troMechanical Valve (EMV) actuator. One of the main
problems in the EMYV actuator is the noise and wear as-
sociated with high contact velocities during the closing and
opening of the valve. The contact velocity of the actua-
tor parts can be reduced by designing a tracking controller
that consists of a linear feedback and a non-square itera-
tive learning controller (ILC). With the ILC methodology
we update the feedforward signal of the feedback controller
every cycle based on the error between the actual valve posi-
tion and the desired position. The methodology is reviewed
and both simulation and experimental results are presented.
We explore the disturbance rejection capability of the con-
trol scheme by simulating conditions with an unknown force
acting on the valve similar to the ones present during vary-
ing engine load.

I. INTRODUCTION

Various studies have shown that optimization of the
valve timing of an automotive internal combustion en-
gine results in high fuel efficiency, low emissions and im-
proved torque performance. Because of the potential ben-
efits many automotive engine manufacturers and research
laboratories are developing mechanisms that can provide
the valve event variability. A promising mechanism is the
electromechanical valvetrain (EMV) actuator shown in Fig-
ure 1. It relies on two electromagnets that catch and hold
an armature that moves with a damped oscillation between
two extreme positions under the forcing of two springs [8].
The control signal to the electromechanical actuator is the
voltage applied to either one of the coils of the two electro-
magnets. The control objective is to ensure accurate valve
opening and closing with small contact velocity V. of all the
moving parts. The small contact velocity (V. < 0.1 m/s),
also known as "soft landing," is a very important consid-
eration because high contact velocities correlate with noise
and component wear [11]. The opening and the closing of
the valves have to be achieved within a very small time
travel interval (6t. ~ 3.5 ms), otherwise engine operation
at high speed will deteriorate. These two requirements are
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obviously conflicting. Other control difficulties arise from
(i) the nonlinear characteristics of the actuator, (ii) the
limited range of actuation and control input saturation,
and (ii) unknown and varying gas flow forces acting on the
valves.
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Fig. 1. Electromagnetic actuator of the valve

To address the problem we design a tracking controller
for the valve position Y. The desired valve opening and
closing events are generated from the engine management
system. The desired trajectory Y, is designed to be a
smooth continuation of the free valve motion. The closed
loop system comprises of a fast inner loop controller and a
cycle-to-cycle outer loop controller. In the inner loop, the
lower coil voltage U; is equal to a preset constant voltage
UF"™ for large armature-coil gaps, and is the output of a lin-
ear feedback stabilizing controller otherwise. The feedback
is active only during the last portion of the armature travel
because the magnetic force is weak during large gaps. On
the other hand, the preset voltage U™ to the coils during
large gaps allows the flux to build up and prepares a power-
ful electromagnetic field for when the feedback is switched
on. The linear feedback stabilizing controller that drives
the armature to a reference constant position is designed
based on linearization and discretization of the plant at an
the contact point. It is important here to note that the
plant is unstable at any equilibrium close to the contact
point.

In order to improve the transient behavior of the inner
loop controller, an outer controller is designed that calcu-
lates the reference Y, armature position used by the feed-
back controller as well as the voltage U"". Both signals are
updated between consecutive cycles (full armature travel)
based on the error between the desired position Yy and the
actual position Y by using an Iterative Learning Control
(ILC) methodology [1], [17]. As a consequence, the cor-
responding learning algorithm has to calculate more input
values than error values. We first present how the ILC
approach accounts for a general non-square system by in-
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troducing decoupling learning algorithms. Then we param-
eterize the learning algorithm for the special case based on
a linearized model of the plant.

Our first results on a square iterative learning controller
that only adjusts the reference position Y, are reported
in [5]. The extension to non-square ILC in [4] gives good
simulation results and show that the landing velocity of
the valve is decreasing faster from cycle to cycle if UP" is
manipulated by the learning controller. Similarly to our
work the authors in [13], [14] use stability and convergence
condition for repetitive control to the learning (repetitive
learning) control problem and achieve small and repeatable
contact velocity (average of 0.06 m/s) with a 42 V power
supply. However, the actuator has very soft springs that
result in a long travel interval (8.0 ms). Note here that a
classical repetitive controller is not adequate for this prob-
lem since the initial conditions flux, position and velocity
are to be reset at the beginning of each trial (reset after
landing and switched to a previously defined "hold" volt-
age). Also, it is not known before hand, when a new open-
ing process will start. The initiation of the valve motion
depends on the engine management system through the
crankshaft and the driver demand signals, so the reference
signal is not periodic.

The authors in [2] mention the use of adaptive control
but do not specify which error they used in their cycle
adaptation. Finally, the authors in [12] reported the use
of adaptation based on the momentum at the middle po-
sition only. In general, one-point adaptation entails high
sensitivity and low repeatability especially because of vari-
ability due to combustion and noise. Our iterative algo-
rithm forms a weighted error between the desired and the
actual valve position sampled every 0.1 ms. The weights
are selected using singular value decomposition to achieve
fast cycle-to-cycle learning and convergence to the opti-
mum feedforward control signal without large unnecessary
corrections that can reduce the system repeatability [4].
Moreover, an ILC does not require an explicit feedforward
controller, which parameters are adapted. Investigations
regarding the feedforward controller structure and its out-
put range capability in creating a signal that will achieve
soft landing can be simplified. In ILC, the commanded ref-
erence input is generated directly. As stated in [10] "ILC
derives the output of the best possible inverse of the sys-
tem dynamics." Also, ILC calculates the feedforward signal
off-line, whereas, adaptive techniques usually work online,
so less computation power needed.

We show here that soft landing (below 0.05 m/sec) can
be achieved even under the influence of a varying external
force acting on the valve F,. The profile of the F;, used
in the simulations is similar to the one observed in a firing
camless engine reported in [15]. In the simulations pre-
sented here, the peak force increases 2 N every 10 cycles
(iterations) to emulate a varying engine load. Experimen-
tal results show good tracking performance and a signif-
icant reduction of the impact velocity (0.04 m/s) during
valve landing after 35 cycles. The average travel interval is
3.9 ms.

The paper is organized as follows. The electromechanical
valve actuator model and analysis at different equilibria are
briefly presented in Sections IT and III, respectively. The
controller objectives and structure are presented in Section
IV. The linear feedback controller design and simulations
are shown in Section V. Section VI shows the develop-
ment of the learning controller. Closed loop simulations
are shown in Section VII, experimental results are shown
in Section VIII and concluding remarks are presented in
Section IX.

II. PRELIMINARIES AND MODEL

In the sequel, continuous time variables and their asso-
ciated signals are denoted by S (¢). Their discrete counter-
parts are denoted by S [n]. The variable at an equilibrium
point (e.p.) is denoted by S°, and the deviation between
the signal and e.p. is denoted by s[n] = S[n] — S°. The
discrete signal of the k" cycle is denoted by s[n,k]. And
finally, bold face font style, v and M, is used for vectors
and matrices.

A brief description of the model of the EMVC actuator
is presented. For detailed analysis and validation of the
model see [15]. The actuator consists of a mechanical and
an electro-magnetic subsystem that can be described by
the following variables. The desired and actual armature
position is denoted by Y; and Y and the upper / lower
position limit by Y,, — h/Y; + h, where 2 - h is the armature
thickness (all in meters (m)). The armature velocity is
denoted by V in (m/s), the voltage applied to the upper /
lower coil by U, in Volts (V), the current in the upper /
lower coil by I,,;; in (A), the flux of the upper / lower coil
by @,/ in (Nm/A). The magnetic force is denoted by F,
in N and the valve force due to pressure F, in (N).

The mechanical subsystem can be modeled as a spring—
mass—damper system including the external magnetic
forces F), of the upper and F; of the lower electromagnet
and the forces acting on the valve due to the pressure differ-
ence between the cylinder and the intake/exhaust runners
F,. A force balance yields

av (t)

"0

=-DY(t)-GV )+ F (t)+ F.(t) + F, (t) (1)
where, m = 0.2 (kg) is the mass of the moving parts,
G = 6.0 (kg/s) is the friction coeflicient, and D = 150,000
(kg/s?) is the spring constant.

The electromagnetic system of the upper and the lower
coils is modeled by a resistance/reluctance—circuit:

U (t)=RI + dqz t(t) (2)
Ud(t)=RI, + —dq)é‘t(t) (3)

with R = 50 in (Q) being the coil resistance.

The coil currents [;/, (t) are modeled with a nonlinear
function fr of the armature gaps (Y —Y;—h and Y, —Y —h)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, MONTH 200X 3

and the flux:
I = fr(®,Y =Y, —h)
I, = (®,,Y,—-Y —h)
. _ @
with fr (‘I), Y) = Lf—ALf(l—efy/Yf) .

The mechanical and electromagnetic subsystems are linked
by the magnetic force equations of the two electromagnets,

F = _fmag ((ﬁl;Y_le _h)
F, = frag (B0, Ye =Y — h).
-Y/
with fmag (@,Y) — ALf<I>2e Y/Yy .

2Yf (Lf*ALf[lfe_y/yf])

The distances ¥; = —4.1 (mm), Y,, = 4.1 (mm) and h = 0.1
(mm) and the parameters Ly = 0.06 (Vs/A), ALy = 0.027
(Vs/A) and Yy = 0.5 (mm) are calibrated based on data in
[15].

To summarize, the plant has two inputs, upper voltage
U, (t) and lower voltage Uj (t), respectively. The plant out-
put is the armature position Y (¢). The four elements of
the state vector are position Y (t), velocity V (t), lower flux
®,; (t) and the upper flux @, (¢).

Thus, the state—space description of the model is given
by

dY
— 4
i |14 (4)
— = Sy vy litv (5)
dt m m m m m
do,,
= - Iu u
i RI,+U (6)
do,
— = —RI .
q RI+ T, (7)

A block diagram representation of above equations is
shown in Figure 2. The upper coil is not included because
of symmetry. Due to the symmetry between the open-
ing and the closing problem, we will concentrate on the
opening phase from now on. The model is implemented in
Matlab/Simulink.

Resistance / Reluctance

FV(I)‘ Spring / Mass / Damper

e Y(0)
Force

=

Y(t)

iy

T

Fig. 2. Block diagram of the EMV actuator model without represen-
tation of the upper coil.

III. ANALYSIS

The equilibrium points are obtained by solving the state
space equations for & [V (¢),V (t),®; (t),®. (t)] = 0 and
constant inputs. The assumption U, (t) = 0 and U, (t) =

UP yields a stable equilibrium point at [0,0,®?,0]"
an unstable equilibrium point at [Y°,0, @?,O]T. Figure 3
shows the spring force and the magnetic force for constant
flux values during small armature-coil gaps. The equilib-
rium gap is defined at the intersections of the magnetic
force with the spring force when we assume zero valve force
F, = 0. The slopes of the two forces are such that a small
perturbation will cause the armature to accelerate towards
the contact point, or to accelerate towards the stable equi-
librium (near the middle position). Fast control of the flux
is then required to stabilize the armature. The electromag-
netic system dynamics is, however, slow due to the large
coil inductance imposing a stringent bandwidth constraint
to the control loop.

Apart from the bandwidth limitations, the electromag-
netic system has limited control authority. It can be shown
that the system cannot be driven into the unstable equi-
librium point if Y° > —3.25 mm due to voltage saturation
at U"*® = 200 V (Figure 4). Note also that the mag-
netic force of the upper coil F,, is approximately zero in
equilibrium points Y° < —3.25 mm.
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Fig. 3. Force diagram.

The analysis of the plant is continued by linearizing the
state—space equations around one of the above examined
unstable equilibrium points. Since the magnetic force of
the upper coil F}, is negligible for the unstable equilibrium
close to the lower coil, the input U, (t) and Eq. 6 don’t
have to be considered in the following linearization. The
state vector reduces to [Y (£),V (t),® (t)]".

Defining as @ = [y (t),v (t), @ (t)]T the deviation from
the nominal equilibrium point [Yo, Vo, <I>0] a linear state—
space description

de _
de —
Y

Aoz + by,
T (8)
Cy I.
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Fig. 4. Voltage in the unstable equilibrium points for various posi-
tions. The dotted line corresponds to the maximum voltage of the
available source. For YO = ¥; — h, the gap is closed.

is derived by linearization of the model equations. The
values and units of the elements of A4,, b,, and ¢, are given
below:

[0 (s71) 1 0 (m/(Vs?))
A, = | 150000 (s72)  —30 (s}
| 04868 (V/m) 0 (Vs/m) —833 (s°1)
0 (m/(VS)) I
b, = 0 (m/(Vs?)) | and ¢, = | 0 (s)
|1 0 (m/(Vs))

The three poles and two zeros of the corresponding dis-
crete transfer—function depend on the equilibrium point.
Their locations in the z-plane are shown in Figure 5.
The linearized and discretized plant is unstable and non—
minimum phase in all the considered equilibrium points.
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Fig. 5. Zeros and poles loci of the linearized discrete plant in the
equilibrium points Y° € [0,1,2,3,4,5] - 0.1 mm. The sample time is
chosen to be T's = 0.1 ms.

IV. CONTROLLER STRUCTURE

Variable valve timing is used to optimize the engine op-
eration with respect to emissions, fuel economy, and driv-
ability. The engine management system typically generates
the commands for the initiation of the valve motion (open-
ing or closing) based on the driver’s torque demand and
other vehicle variables. These commands are not typically
periodic during engine acceleration and decelerating condi-
tions which precludes the use of repetitive control. On the
other hand, the states of the valve actuator are known and
defined at the initiation of motion that suggests the use of
ILC for this application.

The “valve travel interval” (dt.) is defined as the time in-
terval from the beginning of the valve motion to the contact
timing t., where Y — (Y} + h) < 107> m. The correspond-
ing velocity is defined as the contact (or impact) veloc-

ity Ve X V(t.). The EMCV control system is required to
achieve the following two objectives:

e First, it should reduce the armature-coil and valve-
cylinder contact velocities. High contact velocity results
in noise and component wear. Engine manufacturers are
designing camshafts to achieve a low contact velocity V. <
0.1 m/sec.

e Second, it should ensure a small and consistent valve
travel interval dt. ~ 3.5 ms This requirement ensures that
the actuator can open and close the engine valves even
during high crankangle speed.

These two objectives are conflicting and thus difficult to
achieve. Moreover, we need to achieve them indepen-
dently of unknown forces acting on the valve due to the

—47434 (m/(s® V)) ghs flow. During valve opening events the gas flow forces

can be positive or negative depending on the upstream
and downstream valve pressure conditions. To achieve the
above two conflicting requirements and avoid use of exces-
sive power and actuation saturation, we design a controller
that acts only at the last phase of the valve motion (for
feasible equilibrium points). We call ¢y, the time when

Yso = Y (ts) < —3.70 mm based on the discussion in Sec-
tion II. The controller achieves tracking of a reference tra-
jectory Yy with a small travel interval and contact velocity
that is a smooth continuation of the initial valve motion
(t < typ) with

Vfb _
Va(t) = (Vi + ) + (Vo = (Vi + B))e T ) gg)

where, Yy, and Vyy is the position and velocity of the valve
motion during the feedback controller activation.

Figure 6 shows the controller structure. The armature
is assumed to be held by the upper electromagnet in the
position Y, —h and then to be released by disconnecting the
upper voltage source at t = to. As the armature approaches
the defined position Y7, the actuator input signal U [n] is
switched from U™ [n] to the output of an observer based
feedback controller. The feedback controller is absolutely
necessary here because the open loop actuator dynamics is
unstable. Note here that the ILC is a feedforward controller
that gets recomputed every cycle and thus cannot alter the
open loop system stability.

In order to improve the transient behavior of the “plant
with feedback”, a feedforward controller changes its inputs
Y;[n] and U™ [n]. The new inputs are calculated by an
Iterative Learning Controller (ILC) and updated between
consecutive cycles (full armature travel) k and k + 1. The
ILC is processing the error between the desired position
Y4[n] and the actual position Y'[n, k]. Detailed information
about the learning controller is given in section VI. The
next section discusses the design of the feedback controller.
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Fig. 6. Controller structure with the inner feedback controller and the
outer iterative learning controller.

V. STABILIZING FEEDBACK CONTROLLER

The armature is assumed to be held by the upper elec-
tromagnet in the position Y,, — h and then to be released
by disconnecting the upper voltage source at t = to. As the
armature approaches the defined position Y /*, the plant in-
put signal U; (t) is switched from a constant previous value
UP"¢ to the feedback controller signal. UP"° is used to pre-
set the state ®; (¢) close to the equilibrium point value ®°.

As feedback controller we use a linear-quadratic state-
feedback regulator with observer, designed based on a lin-
earization of the plant at the contact point Y° = Y; + h.
The output feedback is designed to stabilize the unstable
armature position dynamics based on the linear quadratic
regulator (LQR) methodology. Tuning of the LQR con-
troller gains is a challenging task due to the design require-
ments of fast transition and zero-overshoot. Note here that
any overshoot in the armature response will cause excessive
contact velocity and potential bouncing. Beyond the poor
performance, bouncing results in discontinuous response
which might inhibit the ILC controller from learning and
improving the transient system behavior. Additional pre-
caution should be applied when tuning the LQR gains in
order to avoid input voltage saturation. After several de-
sign iterations the state weight matrix, @, is selected to be
the identity and the actuator weight, r, is one (@ = I and
r=1).

The observer poles are set four times faster than the re-
sulting poles of the closed loop system: (—4453 + 56157,
—4453 — 56155, —5452) . The controller input is never dis-
connected from the plant in order to reduce observer error.
This is a critical feature of our controller. Small velocity
and flux estimation error are necessary before the feedback
controller activation. Recall that the desired valve trajec-
tory in Eq. (9) is implemented using the filtered valve
position Yy, and estimated velocity Vy,. Finally, a discrete

version of the controller is obtained by emulating the re-
sulting controller functions using Tustin’s method.

In Figure 7 the dashed line shows the armature travel for
the open loop system (damped oscillation). The solid line
corresponds to the armature travel with the observer based
feedback controller. The detail of the armature travel just
before the contact with the lower coil is shown in Figure
9 (for k = 1). Detailed comparison between the observed
and the actual states can be seen in Figure 8. The feedback
controller is stabilizing the armature close to the contact
point but the transient behavior is rather poor.
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Fig. 7. Position of the armature with (solid) and without (dashed)
feedback controller.
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Fig. 8. Observed states (solid) tend to the states (dotted). Transient
errors are small at 7, when the controller is switched on.

VI. TRACKING ITERATIVE LEARNING CONTROLLER

In order to achieve better tracking of the desired position,
the cyclic character of the process is exploited by use of the
Tterative Learning Controller (ILC) introduced in Section
IV. In the next two sections we review the learning control
methodology and introduce a class of decoupling learning
algorithms.

A. Iterative Learning Control

Let the input and output sequences of a system be u [n]
and y [n], respectively. To formulate ILC in a compact
way, we need to define the following mapping by defining
the operator I' : RM — R" as y = I' (u), introducing the
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vectors

u[n] y[n+1]

: and y= : ,
wln+ M —1] y[n+ N]

where u € RM and y € RY. The purpose of the ILC is
to find some vector u* with the property I' (u*) = y,, the
vector y, is some desired output vector. If more than one
solution exists, u* is supposed to have the smallest Lo—
Norm of all the solutions. In order to solve this problem,
the cyclic characteristic of the process is exploited. Let the
cycles be numbered with k. In the first cycle, the input
vector u [1] is applied to the system. This vector and the
corresponding output vector y [1] are used to generate an
improved input vector u [2] for the next cycle, and so forth.
Thus, a linear formulation of the ILC algorithm reads as

—ylk),

where the matrices § € RM*M and E € R"*"N weight
the previous input w [k] and the previous error e [k] = y,—
y [k], respectively. They have to be chosen in a way that
the sequence {u [k]} converges in the sense of the Ly—norm
to

ulk+1]=Sulk]+ E (y, (10)

u* = lim w[k].
k—o00

(11)

B. Decoupling Learning Controllers

The class of Decoupling Learning Controllers is now de-
rived by linearizing the discrete process I' at the equilib-
rium point, yielding a matrix P € RM*M with the prop-
erty y = ' (u) = Pu. The entries of P will be discussed
later. In the following we assume M > N, as we need this
case later. To derive the decoupling learning controller, we
apply the singular value decomposition (svd) to the ma-
trix P, yielding P = LApR”, where R € RM*M and
L € RV*YN are orthonormal matrices. General information
about svd can be found in [3]. The matrix Ap € RV*M
has the singular values o9 > 0; >0 V i€ [0,N—1]in
its main diagonal, all other entries are zero. The largest
singular value g is the Ly—norm of P. Let for simplic-
ity, Ap = [X]|0], where ¥ is a square matrix with all the
nonzero singular values of Ap in its diagonal.

We define decoupling learning algorithms by setting S =
RAsR”, and E = RAgL", where, As € R™*M is a di-
agonal matrix with the entries s, ..., sy—1, Ag € RM*Y
is a diagonal matrix with the entries egp,...,ex_1 on its
main diagonal. Using in equation (10) for analysis the lin-
ear model equation y = Pu instead of y =T (u) we get

ulk+1]=Sulk]+ E (y,; —

Pulk]). (12)

Using above equations we can write (12) in the form
Tulk+1] = (As — AgAp) RTu[k] + ApLTy,.

Defining the transformed vectors v [k] = RTu [k] and p =

LTyd, we get
vik+1] =
[ 80 — €000 T
0
Sy — ENOxN v [k]
SN
0
L Sa—1 m
_ e -

+ T (13)

with N = N — 1. The above choice of E and S obviously
yields decoupling of the learning law (12). Thus, to deter-
mine the convergence properties of the learning controller
only the scalar equations

V; [k‘ + ].] = (Sz — eiai) 123 [k‘] + e;ft; A
V; [k‘ + ].] = S;V; [k‘] A

ie0,N —1] (14)
€ [N, M — 1] (15)

have to be studied instead of a matrix equation. Equa-
tions (15) converge for |s;| < 1 to v = 0. That means
all components of the input vector that do not affect the
valve position (pointing into the null-space of the linearized
plant) are learned to be zero. Solving the recursive Eq. (14)
yields

1-— (Sl — eiai)k

k
i [k = (8; — €;03) v U] + ilbi 1
v; [k] = (s; — e;04)" v; [0] T —— €eilt (16)

Y iel0,N—1]
which converges to

€;
* t
vi =

TE— for |s; — e;oq| < 1.
1- S; — €40

Generally, the e; the s;’s of Ap and Ag, respectively,
must be chosen to ensure that the convergence condition
|s; —eioi] < 1 holds true. Examples for decoupling laws
are in [7], where they choose the transposed system ma-
trix E = LP"(= LRALL”). In other words, the e;’s are
(implicitly) chosen to be e; = Z- ( ¢ > o must hold to en-
sure convergence). Another example of decoupling learning
law can be found in [9], where a pseudo inverse approach
E = P#(= RA}%LT) yields e; = o; ! for ; #0.

We have chosen E = - RLT (the same as e; = L)
because in the EMV actuator application, this yields good
simulation results. The learning velocity is faster than in
the transposed matrix approach. Compared to the pseudo
inverse approach, high values of e; = o;" ! (in the case of
small singular values) are also avoided. The M elements
s; of Ag are chosen to be s; = 1 Vi € [0,N — 1] and
s; = 0 Vi € [N,M — 1]. This choice ensures zero output
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error. In addition, of all input vectors that cause zero error,
the ones with the smallest norm are learned.

To summarize, in this paper equations (14) and (15) are
parameterized by s; =1, ¢, = = V i € [0, N —1] and

si=0 V i€[N,M —1]. This choice results in:

; 1 1
Vi[k+1]: <1—0—> Vi[k]-F—/li—)—,ui A
o) 0o ;i

Vi[k+1]:SiVi[k]:0 V 1€ [N,M—
and therefore,
* : 271 T
v = lim v[k] = L y,. (17)
k—o0 0

Thus, the zero input directions are learned to zero. For
all other input directions the convergence speed is deter-
mined by 1 — 0;/00. On the other hand, the steady state
v;° is proportional to o; !, Therefore, output components,
that require lower input signals are learned faster than com-
ponents requiring higher input signals. This is a useful fea-
ture regarding input saturations or non-—minimum phase
systems. In the general case and returning to the original
coordinates we get
»-1

=RvV*'=R [ 0 } L'y, (18)

which involves the pseudo-inverse of the matrix P =
L[Z|0] RT.

C. EMYV input/output mapping

In the EMCV actuator problem every cycle k the ILC
will shape M — N values of the preset voltage U “[n, k] and
the N reference trajectory values Y,.[n, k] that are applied
as a reference command to the observer-based closed loop
system when it becomes active (Y[n, k] < Yy;). We employ
the lowercase notation, i.e., variables are defined as the
deviation between the signal and equilibrium point.

The input vector u of section VI-A comprises in this
paper of a sequence of the lower voltage u; and a sequence
of the reference position y,,

ul[nfb—M+N] 1

U [nf-b — 1]
Yr [1re]

L yr[nbe:rN—l] J

Thus M — N values of the lower voltage and N values of
the desired position will be learned. As far as the plant
output is concerned, the position y[n] is considered after
switching on the feedback controller, therefore
y=[ylhp+1...ylnp+N ]

defines the vector y introduced in section VI-A. The mea-
surements that the ILC will use to learn in the next it-
eration depend on (i) the response of the electromagnetic

system due to the initial condition after the application
of the preset voltage, and (ii) the output response of the
observer-based closed loop EMCV actuator. Specifically,
two effects contribute to y:

e The output y¥ of the closed loop system due to the volt-
age that has been applied to the lower electromagnet be-

€0, N — fPre switching on the observer-based feedback This voltage

causes a certain value of the lower flux cp b (state variable)
4} the moment of switching.
e The output y¥~ of the closed loop system due to its input
yq after switching.

Linearizing the mapping between u and y yields the ma-
trix P of section VI-B. Let this matrix be composed of two

matrices P € RV*M N and P¥ ¢ RV*Y defined by

v by = PoPr | ] 19

In order to derive P¥, the value nplf b of the lower flux at
the moment of switching must be determined. This is done
using a simplification of the linearized model in Figure 2,
precisely by neglecting the influence of the position Y on
the lower flux. Neglecting the variability of the reluctance
on the armature gap allows us estimate easily gal The as-
sumed constant value of the reluctance is chosen to be the
averaged reluctance value observed during the valve trav-
eling before Yy,. Assuming a constant reluctance yields a
simple resistance—reluctance circuit with the transfer func-

208 = g with T, = OG22y [n] s the

impulse response of the discrete version of this transfer-
function using a zero order hold. Thus, the lower flux at
the switching instant is given by

tion

of" = [h,[M -N],...,
= hgul

he [1] - w
(20)

A linear model describing the influence of the state ga{ ® on
the plant output is

b

Yo =p? ¢ (21)

where p?¥ € RV
(19) — (21) yield

is determined by simulation. Equations

P? =p*-hl. (22)

The matrix PY" is a typical convolution matrix of the
input-output observer-based closed loop EMCV actuator
behavior. Its entries are the elements of the impulse re-
sponse sequence of the linearized, discretized closed loop
system.

VII. SIMULATION RESULTS

Simulation results for the case of zero gas flow force are
presented first in Figure 9. These results are similar to
the one showed in our previous work [5] where the preset
voltage was not modified by the ILC. In Figure 9 bottom
plot one can observe a small drop in the preset voltage
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Fig. 10. Travel interval and contact velocity during learning in the
case without Fyqs. The desired trajectory has V. = —0.023 % and
0te = 3.25 ms.

just before the activation of the feedback loop. Figure 10
demonstrates the achieved contact velocity and the associ-
ated travel interval for each cycle.

Figure 11 shows that the impact velocity and the travel
interval in the case where there is an unknown varying
valve force applied in the valve. This force is the result
of the difference between the upstream and downstream
pressure on the poppet valve. Experimental data in [15]
show that a realistic valve force during valve opening will
have its absolute maximum value F? at the beginning of
the valve motion ¥ = Y,, — h and it decreases to zero as
the valve reaches its minimum value Y = Y; + h. In the
simulations shown in Figure 11 we increase the absolute
maximum value F? by 2 N every 10 cycles to allow gradual
learning. We consider conditions where the gas force op-
poses the valve opening motion (positive F,) and vice versa
(negative F),). The positive gas force corresponds to condi-
tions observed during exhaust valve opening against high
cylinder pressure. Negative gas force corresponds to con-
ditions during a late intake valve opening (for zero valve

otcin [mg]

0 20 40 60 80 100

Cycle number k

Fig. 11. Desired (dashed) and achieved (solid) impact velocity and
travel time for positive F, and negative Fj.

overlap). The achieved impact velocities are well bellow
the desired value 0.1 m/s. Note here that the impact ve-
locity for the positive F, is gradually reduced despite the
increasing positive peak gas forces. This is accompanied
with an associated increase in the travel interval shown in
the bottom plot. Due to the increasing peak gas force the
feedback switches on later (¢ increases) and the switching
velocity value Vy;, decreases. Both these effects result in a
varying valve desired trajectory Yy[n]. The impact veloc-
ity and travel interval of the desired valve trajectory are
shown in Figure 11 together with the achieved one. Note
here that a long travel interval is allowable during the valve
opening phase because the flow is insensitive to the valve
lift during large lift values (Y ~ Y, + h).

Figures 12 and 13 show the detailed valve trajectory,
coil voltage and gas force during several selected cycles.
The gas force applied in the valve is shown in the bot-
tom plot in both figures. In particular, Figure 12 emulates
conditions where the gas force opposes the valve opening
motion, whereas, Figure 13 demonstrates the negative gas
force case.

In the case of negative F,, the values of U/ [n] are
learned to lower values than in the case of F,, = 0, see Fig-
ure 9 bottom. This results in a lower magnetic force Fj (t),
which compensates the effect of F, (t), see Eq. (1). In the
case of a large opposing gas force, the preset voltage value
needs to be adjusted to higher values to ensure that the
valve fully opens and the lower coil catches the armature.
Tterative adjustment of the preset voltage values using the
above explained learning algorithm provides the efficiency
and robustness needed.

VIII. EXPERIMENTAL RESULTS

The Iterative Learning Controller is implemented on the
EMV actuator using the experimental configuration shown
in Figure 14. The experiment consists of the following
components: an electromechanical valve actuator, an eddy
current sensor, two pulsewidth-modulated (PWM) drivers,
one 200 Volt power supply and a Dspace 1103 processing
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Fig. 12. Position Y, Yy, lower voltage U; and disturbance F, during
learning. Each subplot shows the cycles k = 92,94, 96, 98, 100.

3.6

tin [ms]

Fig. 13. Position Y, Yy, lower voltage U; and disturbance F, during
learning. Each subplot shows the cycles k = 92,94, 96, 98, 100.

board. The Eddy current sensor is on the rear of the actu-
ator and measures the displacement of a target disc that is
mounted as an extension of the armature. Thus, the Eddy
current sensor measurement is sampled by the Dspace pro-
cessor at 20 kHz. Based on the displacement measurement
and the control algorithm described above (observer-based
feedback+ILC), the Dspace processing board regulates the
PWM frequency to each of the PWM drivers to achieve
the desired performance. The mean noise amplitude in the
measured displacement is 0.09 mm while in the fully open
position (when the target disk is the farthest away from
the Eddy current sensor) and 0.06 mm in the fully closed
position. The measurement noise varies almost linearly be-
tween these two values as the target disk moves between
the two extreme positions.

Due to the limited memory and processing capability
of the Dspace 1103 processing board, the ILC algorithm

Eddy current
Sensor
Target
=zrza Disk
HZH
H .
H4H
I Y, "
Driver [ ™\ ~N : N
Power \C |ANNNNNY|
Supply, / ﬂ/ :&7
PWM [
Driver 7
an
HYH
H .
o
<~ 9
dSPACE
—]Controller|
/' S N
Computer

Fig. 14. Experimental Set-up.

needs to be carefully encoded to enable it to run in real
time. Thus, the matrix/vector multiplication required in
the ILC algorithm is divided up over several time steps.
At each time step the algorithm carries out a single term
by term operation. We implemented the ILC algorithm
to update the feedforward commands through the opening
transition of the valve only. The cyclic valve motion is
initiated every 0.8 sec.

The tracking performance is demonstrated in Figure 15
that shows the desired position Y; and measured position Y’
for cycles k = 1, 18, 36. Note that the comparison between
the measured and desired position starts just 0.3 mm away
from the contact point as indicated by the beginning of the
desired position trajectory Yy.

The voltage command for the three cycles is shown in
Figure 16. Note that the first part of the voltage com-
mand U/ “[n, k] is modified by the ILC algorithm designed
in Section VI-B, whereas, the last part is defined by the
observer-based feedback controller designed in Section V.
The transition to the closed loop voltage command is no-
ticeable at approximately 3.6 ms, or more precisely, when
the position is 0.3 mm away from the contact point. During
the last part of the motion, the ILC algorithm updates the
reference trajectory Y,.[n, k] that is fed to the closed loop
controller reducing the tracking error between the desired
Y, and measured Y position.

The average travel interval achieved through out the ex-
periments is §t; = 3.9 ms with maximum 6t; = 4.1 ms,
minimum d6t, = 3.7 ms and standard deviation 0.09 ms.
The achieved travel interval is slightly longer than the de-
sired valve travel interval and the one shown in the simula-
tions of Figure 11 for zero gas force. Further experiments
and discussions with Ford and Volvo engineers indicated
that the actuator friction coefficient and the actuator mass
is higher than the desired one due to the addition of the tar-
get disk for the Eddy current sensor. This modification de-
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Fig. 16. Voltage command for cycles &k = 1, 18, 36

creased the damped frequency of the spring-mass-damper
system and contributed to the longer travel interval.

Small contact velocities (V. < 0.1 m/s) are achieved af-
ter 35 iterations as shown in Figure 17. The contact ve-
locity decreases monotonically after 15 iterations despite
the initial transients in the ILC controller that cause large
contact velocities. Although we cannot store, and conse-
quently plot, the system performance for long run periods,
we report here that low contact velocity of 0.04 m/s can
be maintained.

IX. CONCLUSIONS

In this paper we introduce and formulate the control
problem and the requirements for small contact velocity
(soft landing) and travel interval of an EMV actuator used
in camless engines. We, then design a feedback and a
feedforward iterative learning controller and demonstrate
through simulation good performance during nominal con-
ditions and uncertain “engine firing” conditions. The algo-
rithm is implemented on a benchtop experimental set-up.
Experimental results show consistent contact velocity of

Impact Velocity, V¢ (m/s)

0 I I I I I I I

5 10 15 20 25 30 35

Iteration (Cycle number k)

Fig. 17. Impact velocity during learning.

0.04 m/s and travel interval of 3.9 ms.

Next step is to validate the control design on an experi-
mental engine. Few difficulties will arise during implemen-
tation. In particular, the valve/armature separation, also
known as, “valve lash” will require modifications both in the
desired trajectory and the feedback controller design. Nev-
ertheless, the ILC control methodology designed here has
substantial potential as a practical solution to the soft land-
ing problem in camless engine valvetrains with far-reaching
consequences in future internal combustion engine design.
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