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ABSTRACT
Throughout the history of the automobile there have been

periods of intense interest in using ethanol as an alternative fuel
to petroleum-based gasoline and diesel derivatives. Currently
available flexible fuel vehicles (FFVs) can operate on a blend of
gasoline and ethanol in any concentration of up to 85% ethanol.
In all these FFVs, the engine management system relies on the
estimation of the ethanol content in the fuel blend, which typi-
cally depends on the estimated changes in stoichiometry through
an Exhaust Gas Oxygen (EGO) sensor. Since the output of the
EGO sensor is used for the air-to-fuel ratio (AFR) regulation
and the ethanol content estimation, several tuning and sensitivity
problems arise. In this paper, we develop a simple phenomeno-
logical model of the AFR control process and a simple ethanol
estimation law which can be representative of the currently prac-
ticed system in FFVs. Tuning difficulties and interactions of
the two learning loops are then elucidated using classical control
techniques. The sensitivity of the ethanol content estimation with
respect to sensor and modeling errors is also demonstrated via
simulations. The results point to an urgent need for model-based
analysis and design of the AFR controller, the ethanol adaptation
law and the fault detection issues in FFVs. Tuning and sensitivity
issues are demonstrated via simulations and limitations are also
discussed.

NOMENCLATURE
AFRs Stoichiometric air-to-fuel ratio
ÂFRs Estimated stoichiometric air-to-fuel ratio
e Volume fraction of ethanol in gasoline-ethanol blend
ê Estimated volume fraction of ethanol in gasoline-ethanol

blend
∗Address all correspondence to annastef@umich.edu.

em Mass fraction of ethanol in gasoline-ethanol blend
MAF Mass air flow measured by a MAF sensor
Tm Manifold temperature measured by a manifold temperature

sensor
Wcyl Air flow rate into the cylinder
Ŵcyl Estimated air flow rate into the cylinder
Wf Fuel flow rate into the cylinder
Wf b Feedback fuel command
Wf f Feedforward fuel command
Wf f 1 Feedforward fuel command not compensated by the fuel

puddle dynamics
X Aquino parameter denoting the wall-impacting portion of

the injected fuel
αtr Triggering signal for switching on ethanol adaptation
εAFRs Estimation error in stoichiometric air-to-fuel ratio
θ Throttle angle
λ Ratio of actual AFR to stoichiometric AFR, λ is measured

by an EGO sensor
ρeth Density of ethanol
ρgsl Density of gasoline
τ Aquino parameter denoting the vaporization time constant of

the fuel puddle
τd Transport and induction-to-power delay from the cylinder

input AFR to the exhaust AFR
τs Time constant of the exhaust oxygen sensor lag

INTRODUCTION
Petroleum-based fossil fuels are the dominant energy source

for transportation. Recently, however, ethanol is being increas-
ingly used as a fuel additive and is emerging as an alternative to
carbon-neutral transportation. The advantage of ethanol, among
others, is that it is a renewable fuel produced from biomass such



as barley, corn, wheat, sugar cane, trees and grasses. Therefore,
to lessen dependence on fossil-based fuels, federal mandates,
such as the Energy Policy Act of 2005 (EPACT 2005), require
that 7.5 billion gallons of bio-fuel be produced in 2012. Ethanol
can be blended with conventional gasolines in varying percent-
ages. The blend is denoted by the EXX nomenclature, where XX
represents the volumetric percentage of ethanol in the blend. The
United States commonly uses E85 as an alternative to the normal
E0 or gasoline fuel. In Brazil, however, the fuel blend also con-
tains water and E100 refers to a blend of 93% ethanol and 7% of
water [1]. Such fuel blends mixed with additional water are not
considered in this paper. Vehicles that can operate on any blend
of ethanol are called Flex Fuel Vehicles. These vehicles are de-
signed to run on gasoline or a blend up to E85 in the U.S. and are
currently being offered by many manufacturers.

The characteristics of ethanol differ from those of gaso-

Table 1. PROPERTIES OF ETHANOL COMPARED WITH GASOLINE.

Property Gasoline Ethanol

Research Octane Number (RON) 92 111

Density (kg/m3) 747 789

Heat of combustion (MJ/kg) 42.4 26.8

Stoichiometric air-to-fuel ratio 14.6 9.0

Boiling point (◦C) – 78.5

Latent heat of evaporation (kJ/kg) 420 845

line, as shown in Table. 1. Various effects of ethanol fuel on
a spark ignition engine are well reported in [2]. Often ethanol
fuel is associated with driveability and startability problems in
cold and hot weather [3, 4] and at high altitude [5]. Existing
FFVs achieve lower range (miles driven per tank) when oper-
ating on high ethanol content fuel due to its lower combustion
heating value as compared to gasoline. However, as shown in
Table. 1, ethanol has a higher octane ratio and therefore, a higher
compression ratio and higher combustion efficiency can be ob-
tained without knocking problems. Another advantage is that,
the high vaporization heat can be used for charge cooling [6],
thus improving further the knock resistance and potentially fuel
economy. Given the effect of fuel variation, FFVs should em-
bed engine calibration maps in their controllers and management
systems to account for this variation. To accomplish this, the first
task in a flex-fuel strategy is to estimate reliably the ethanol per-
centage. Although, this estimation is possible with the addition
of a di-electric or electrochemical sensor in the fueling system,
the reliability of these sensors has not yet been proven. Further,
apart from the cost and reliability issues associated with such

sensors, on-board diagnostic (OBD) requirements would require
a redundant method for assessing the ethanol percent in order to
diagnose the ethanol content sensor faults or degradation. Cur-
rently the ethanol content estimation depends on the AFR mea-
surement through an exhaust gas oxygen (EGO) sensor imme-
diately after refueling is detected. This trigger is used to avoid
misclassifying ethanol content variations with actuator drifts or
component aging. The ethanol detection period also needs to be
as short as possible to reduce the probability of another (EGO or
mass air flow (MAF) sensor, and/or injector) fault. Finally it is
necessary to thoroughly understand and develop models for how
uncertainty, sensor and actuator drifts propagate through the de-
tection process and affect the ethanol content estimation. Basic
discussion regarding the robustness of the estimation using the
exhaust oxygen sensor feedback is provided in [7].

In this paper, a simple stoichiometric AFR estimation law
using the exhaust oxygen sensor is proposed, analyzed and dis-
cussed in light of AFR control, which yields the estimated
ethanol percentage in the fuel. Characteristics of the algorithm
including sensitivity are quantified via simulations.

ETHANOL CONTENT ESTIMATION
Air-to-fuel ratio control around the stoichiometric ratio of a

fuel blend is important to meet stringent emission requirements
for spark ignition (SI) engines. For a given air charge, the stoi-
chiometric fuel is typically achieved by a combination of feed-
forward and feedback control on the fuel injection. The feedback
controller is based on the measured ratio (λ) of the actual air-to-
fuel ratio (AFR) to the stoichiometric ratio (AFRs) through an
exhaust gas oxygen sensor. The λ ratio is compared to λdes = 1
and the error is used by a PI to adjust the feedback fuel com-
mand. Due to the long delays in the feedback loop, most engine
controllers employ a feedforward fuel command which is pri-
marily derived from the estimated cylinder air charge divided by
the assumed stoichiometric ratio of the assumed fuel blend. Fur-
thermore, the feedforward is usually designed to eliminate the
transient effects of fuel puddle dynamics in port fuel injected
(PFI) engines. Since the puddle dynamics is dependent on the
ethanol content, estimation of ethanol content may also be used
for the transient fuel compensation (TFC). A model of fuel pud-
dle dynamics with alternative fuels is discussed in [8] where a
fuel blend is modeled as a certain combination of organic com-
pounds that mimic the distillation behavior of an actual fuel.
When the assumed stoichiometric ratio is correct, and there are
no errors in the air charge and fuel puddle dynamics estimation,
and no drifts or faults in the injector, the feedforward fuel com-
mand is then perfect and the feedback fuel compensation should
be zero. An estimation algorithm can utilize a nonzero feedback
fuel command to adapt and improve the feedforward fuel com-
pensator so that the feedback converges back to its nominal zero
value. Ideally, the adaptation will address the core problem in the
feedforward path. In the case of an FFV, the adaptation of the as-
sumed stoichiometric ratio or the adaptation for a miscalibrated
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Figure 1. BLOCK DIAGRAM OF AFR CONTROL.

air charge estimation cannot coexist. Namely, the engine man-
agement system will have to assume that the error arises from
changes in the fuel blend or from component (sensor, actuator)
aging.

Fig. 1 shows the block diagram of AFR control with flex
fuel. Let e denote the volume fraction of ethanol in gasoline-
ethanol blend. And let em denote the mass fraction of ethanol.
Then, em is expressed as:

em =
eρeth

eρeth +(1− e)ρgsl

=
e

e+(1− e)ρgsl/ρeth

=
e

e+(1− e)/1.056
, (1)

where ρeth and ρgsl denote the density of ethanol and the density
of gasoline respectively. Now, the stoichiometric air fuel ratio
for flex fuel is expressed as:

AFRs = 9× em +14.6× (1− em). (2)

Hence, if we want to calculate the volume fraction of ethanol,
e, from an estimated stoichiometric AFR, ÂFRs, the following
equations are utilized:

êm =
14.6− ÂFRs

5.6
, (3)

ê =
êm

1.056−0.056× êm
. (4)

A simple adaptation law of ethanol content estimation can be
expressed by the following update law of the estimated stoi-
chiometric AFR, ÂFRs, using the feedback fuel correction sig-
nal, Wf b. The adaptation law is triggered after a tank refill event
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Figure 2. PATH FROM INJECTOR COMMAND TO EGO SENSOR OUT-
PUT.

is detected (αtr = 1), otherwise (αtr = 0) another adaptation loop
is typically activated that corrects the engine maps, such as vol-
umetric efficiency used for the air charge estimation, or drifts in
sensors and actuators:

˙̂AFRs = γe(0−Wf b)αtr. (5)

Then, the feedforward fuel command is determined:

Wf f 1 = Ŵcyl/ÂFRs, (6)

where Ŵcyl is the estimated air charge.

CLOSED-LOOP DYNAMICS
Let us consider the linearized dynamics of the system with

the simple AFR estimation law about a fixed stoichiometry and a
fixed cylinder air flow associated with a specific load (manifold
pressure) and engine speed. Fig. 2 shows the process considered
once the fuel command is issued to the injectors all the way until
λ is measured by the EGO sensor (engine block of Fig. 1). We
assume that the fuel puddle dynamic behavior is expressed as a
LTI transfer function in the neighborhood of the chosen equilib-
rium point given by:

G f d(s) =
(1−X)τs+1

τs+1
, (7)

where X and τ are Aquino parameters which denote the wall-
impacting portion of the injected fuel and the vaporization time
constant of the fuel puddle, respectively. Let the Padé approxi-
mation of the transport and induction-to-power (IP) delay from
the cylinder input AFR to the exhaust AFR be:

Gd(s) =
1− τd

2 s
1+ τd

2 s
, (8)

where τd is the delay time. And let us express the λ sensor lag
as:

Gsl(s) =
1

1+ τss
, (9)



where τs is the time constant of the sensor lag. Then, the λ output
is expressed as:

λ = Gsl(s)
{(

Gd(s)
(

Wcyl

Wf

))
/AFRs

}
, (10)

where Wcyl denotes the air flow rate into the cylinder, Wf the fuel
flow rate into the cylinder and AFRs the stoichiometric air fuel
ratio. Wf is the fuel that effectively enters the cylinder related
with the fuel injection rate, Win j, by the fuel dynamics such that

Wf = G f d(s)Win j. (11)

Let us define G(s) as:

G(s) , G f d(s)Gd(s)Gsl(s). (12)

The control law without the feedforward compensation of the
fuel dynamics can be summarized as:

Win j = Wf f +Wf b, (13)

Wf f = Ŵcyl/ÂFRs, (14)
Wf b = −C f b(s)(1−λ), (15)
˙̂AFRs = −γeWf b, (16)

where the feedback controller, C f b(s), is assumed to be a PI con-
troller:

C f b(s) = kPI
τPIs+1

s
. (17)

Note that here the air flow rate into the cylinder is assumed to be
exactly estimated, Ŵcyl = Wcyl , for the PI gain tuning analysis.
The closed-loop system is expressed by the set of equations of
(10), (11) and (13)-(16). We use the superscript 0 to express a
nominal value at equilibrium and use δ to express the deviation
from the equilibrium. Equation (10) is then linearized into:

δλ = Gsl(s)

{
Gd(s)

(
1

W 0
cyl

δWcyl − 1
W 0

f
δWf

)
− 1

AFR0
s

δAFRs

}

=
1

W 0
cyl

Gd(s)Gsl(s)δWcyl − 1
W 0

f
G(s)δWin j

− 1
AFR0

s
Gsl(s)δAFRs. (18)

From Eq. (13)-(16), we obtain:

δWin j = δWf f +δWf b, (19)

δWf f =
1

AFR0
s

δWcyl −
W 0

f

AFR0
s

δÂFRs, (20)

δWf b = C f b(s)δλ, (21)

δÂFRs = −γe

s
δWf b. (22)

Using Eq. (21) and Eq. (22), δWf f in Eq. (20) is expressed as:

δWf f =
1

AFR0
s

δWcyl + γe
W 0

f

AFR0
s
· 1

s
·C f b(s)δλ. (23)

The total injection signal is then expressed as:

δWin j =
1

AFR0
s

δWcyl +

(
γe

W 0
f

AFR0
s
· 1

s
+1

)
C f b(s)δλ. (24)

Equation (24) is substituted into the equation (18) to obtain the
closed loop transfer functions.

R(s)δλ =
1

W 0
cyl

(Gd(s)Gsl(s)−G(s))δWcyl− 1
AFR0

s
Gsl(s)δAFRs,

where R(s) is defined as:

R(s) , 1+
1

W 0
f

(
γe

W 0
f

AFR0
s
· 1

s
+1

)
G(s)C f b(s). (25)

The linearized disturbance input-output relation is expressed as
the following closed-loop system:

δλ = T1(s)δWcyl +T2(s)δAFRs, (26)

where the closed-loop transfer functions, T1(s) and T2(s), are de-
fined as:

T1(s) , 1
W 0

cyl
· Gd(s)Gsl(s)−G(s)

R(s)
, (27)

T2(s) , − 1
AFR0

s

Gsl(s)
R(s)

. (28)

The closed-loop transfer functions are expressed as:

T1(s) =
1

W 0
cyl
· Xτs3(1− τd

2 s)
D(s)

, (29)

T2(s) = − 1
AFR0

s
· s2(τs+1)(1+ τd

2 s)
D(s)

, (30)



where D(s) , s2(1+ τd
2 s)(1+ τss)(τs+1)R(s).

D(s) = s2
(

1+
τd

2
s
)

(1+ τss)(τs+1)+ kPI ·
(

γe

AFR0
s

+
1

W 0
f
· s

)
((1−X)τs+1)

(
1− τd

2
s
)

(τPIs+1). (31)

Since we want the estimated stoichiometric AFR, ÂFRs, to track
the real stoichiometric AFR, AFRs, we consider the closed-loop
linearized error dynamics also. First, we define the estimation
error variable, εAFRs , AFRs− ÂFRs. We then can find the lin-
earized disturbance input-estimation error relation:

δεAFRs = δAFRs−δÂFRs

= δAFRs +
γe

s
δWf b

= δAFRs +
γe

s
C f b(s)δλ

= δAFRs +
γe

s
C f b(s)

(
T1(s)δWcyl +T2(s)δAFRs

)

=
γe

s
C f b(s)T1(s)δWcyl +

(
1+

γe

s
C f b(s)T2(s)

)
δAFRs

, T3(s)δWcyl +T4(s)δAFRs, (32)

where the closed-loop transfer functions, T3(s) and T4(s), are ex-
pressed as:

T3(s) =
1

W 0
cyl
· γekPIXτs(τPIs+1)(1− τd

2 s)
D(s)

, (33)

T4(s) = 1− 1
AFR0

s
· γekPI(τPIs+1)(τs+1)(1+ τd

2 s)
D(s)

. (34)

In summary, the augmented closed-loop system is expressed as:

[
δλ

δεAFRs

]
=

[
T1(s) T2(s)
T3(s) T4(s)

][
δWcyl

δAFRs

]
. (35)

It is easy to check that the DC gains of the closed-loop transfer
functions, T1(s), T2(s), T3(s) and T4(s) are all zero with positive
gains, which implies the disturbance rejection characteristic for
the output and for the estimation error. Therefore, the λ output
asymptotically tracks one, the stoichiometry, and the estimation
of stoichiometric AFR asymptotically converges to the real stoi-
chiometric AFR if positive gains can be found that guarantee sta-
bility and good performance for all the four transfer functions in
Eq. (35).
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Figure 3. ROOT LOCUS WITH THE VARIATION OF kPI .

CONTROLLER TUNING

PI Gain Tuning of the λ Feedback Controller
For the gain tuning of the feedback PI controller, consider

the system of a fixed stoichiometry without the stoichiometric
AFR estimation. This is equivalent to setting γe = 0 and δAFRs =
0 in the closed-loop dynamics equation (26). The closed-loop
dynamic behavior is then expressed as:

δλ =
1

W 0
cyl
· Gd(s)Gsl(s)−G(s)

1+ 1
W 0

f
G(s)C f b(s)

δWcyl . (36)

The variable τPI in the PI feedback controller can be determined
by placing the controller zero to cancel the slowest stable pole
of G(s). If the slowest pole is associated with the fuel dynamics,
we can set τPI = τ. The root locus with variation of kPI can then
be utilized to tune the gain, kPI . Fig. 3 shows the root locus of
the closed-loop transfer function with the variation of kPI for a
fixed τPI . To obtain the locus in Fig. 3, the engine parameters
were chosen as:

X = 0.3, τ = 0.3 sec, τd = 0.2 sec, τs = 0.07 sec .

And the PI control gains were tuned to:

τPI = 0.3, kPI = 0.0015 .

Ethanol Estimator Gain Tuning
In order to tune the estimator gain, γe, the root locus is ap-

plied for the D(s) in Eq.(31) for a set of fixed feedback gains, τPI
and kPI , determined by the method of the previous subsection.
Fig. 4 shows the root locus of the original closed-loop transfer
functions with the variation of γe for a set of fixed feedback gains
previously tuned. The estimator gain was chosen as:
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Figure 5. SIMULATION INPUT.

γe = 5000

We can also determine the range of γe for stability from the lo-
cus. The estimator gain where the roots cross the imaginary axis
in the locus (Fig. 4) is γe = 1.7×105. Note that the chosen esti-
mation gain is very small because a large value for γe affects the
numerator of both transfer functions, T3(s) and T4(s), and hence
poor transient response.

SIMULATION RESULTS
Simulations were performed to see the disturbance rejection

characteristic under perturbations in the cylinder air flow induced
by tip-ins and tip-outs and a perturbation in the stoichiometric
AFR emulating a tank refill with unknown ethanol content fuel.
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Figure 7. SIMULATED FEEDBACK FUEL SIGNAL AND FEEDFOR-
WARD FUEL SIGNAL.

Errors in air-charge estimation, mass air flow (MAF) sensor and
manifold temperature sensor were also introduced with an error
factor of 5% at a time to check the sensitivity of the ethanol esti-
mation. The engine model introduced by Crossley and Cook [9]
was utilized while maintaining the engine speed at 2000 RPM
for throttle-to-cylinder air charge dynamics. The PI control gains
and the estimator gain were determined as previously discussed:
τPI = 0.3, kPI = 0.0015 and γe = 5000. The roots correspond-
ing to the selected gains are marked as points on the root loci of
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Fig. 3 and Fig. 4. Fig. 5 shows the simulation input. Throttle an-
gles were modulated with a sequence of step changes and also a
step change of real ethanol content was applied. Initially the fuel
used is gasoline and then it is changed to E35. Because of this
fuel change, different fuel dynamics parameters were used dur-
ing the time span of E35 to account for the dynamics dependency
on the fuel composition:

XE35 = 0.361
τE35 = 0.4287

Fig. 6 shows the change in the manifold absolute pressure and
the air flow rate into the cylinder induced by the throttle modula-
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Figure 10. SIMULATED ETHANOL CONTENT ESTIMATION.

tion. Fig. 7-10 show the simulation results. λ and the estimated
ethanol content asymptotically track their desired values. The λ
error is very sensitive to an air-charge error. It is also moderately
sensitive to manifold temperature sensor error; it is insensitive to
MAF sensor error. The estimated stoichiometric AFR or the es-
timated ethanol content converges to the real value except for the
case of MAF sensor error where the steady-state ethanol percent
estimation shows a 30% sensitivity. Hence, errors in the conven-
tional sensors used in AFR control should be taken into account
and ideally corrected through other redundancies. In some sense
the “sensorless estimation of ethanol content” is a misnomer and
rigorous model-based engineering analysis should be pursued to
minimize sensitivities using a combination of many sensors.

STEADY-STATE ERROR ANALYSIS
It is rather straightforward to analytically calculate how var-

ious modeling errors or sensor/actuator drifts propagate to cause
steady-state errors in the ethanol estimation. Since the simula-
tions in the previous sections indicate a high error sensitivity to
MAF sensor drift, an analytical steady-state error calculation is
provided below. Let fe be the MAF sensor error fraction so that
the estimated air flow rate into the cylinder in the steady state be
expressed as

Ŵcyl = (1+ fe)Wcyl . (37)

The fuel injection or fuel flow rate into the cylinder is expressed
as:

Wf =
Ŵcyl

ÂFRs
. (38)



Due to the λ PI-based feedback loop, λ is regulated at unity, and
consequently, the actual steady-state AFR is regulated at the stoi-
chiometric value independently of the fuel.

AFRs = AFR =
Wcyl

Wf
=

Wcyl

Ŵcyl
· ÂFRs =

1
1+ fe

ÂFRs. (39)

If the stoichiometric air-to-fuel ratio is expressed by the mass
fraction of ethanol, the following equation is obtained:

9× em +14.6× (1− em)
9× êm +14.6× (1− êm)

=
1

1+ fe
, (40)

where em and êm are the actual mass fraction of ethanol and the
estimated mass fraction of ethanol, respectively. The estimated
mass fraction of ethanol, êm, is then expressed as a function of fe
and em:

êm = em− fe

(
14.6
5.6

− em

)
. (41)

The estimated volume fraction of ethanol, ê can be then calcu-
lated by Eq. (4). Fig. 11 shows the volumetric ethanol content
estimation with 5% MAF sensor error.
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CONCLUSION
In this paper, estimation of the ethanol content in flex-fuel

vehicles using a λ-based approach is demonstrated with a model.
Tuning and sensitivity are also studied. The linearized closed-
loop dynamics are derived to present the disturbance rejection
characteristic for λ and the ethanol estimation error. PI gain tun-
ing for the fuel feedback control and the ethanol estimation gain
tuning are shown with root loci. Simulations show high sen-
sitivity of the ethanol estimation, thus motivating the need for

redundant algorithms with fusion of many sensors. Future work
will include minimization of sensitivity, feedforward compensa-
tion of fuel puddle dynamics with an invertible puddle dynamics
model for flex-fuel and the analysis of switching between the
two adaptation loops, i.e., the ethanol content estimation and the
correction of engine maps used for the air charge estimation.
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