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ABSTRACT

Flexible fuel vehicles (FFVs) are able to operate on a
blend of ethanol and gasoline in any volumetric concen-
tration of up to 85% ethanol (93% in Brazil). The estima-
tion of ethanol content is crucial for optimized and robust
performance in such vehicles. Even if an ethanol sen-
sor is utilized, an estimation scheme independent of the
ethanol sensor measurement retains advantages in en-
hancing the reliability of ethanol estimation and allowing
on-board diagnostics. It is well-known that an exhaust
gas oxygen (EGO) sensor could be utilized to estimate
the ethanol content, which exploits the difference in stoi-
chiometric air-to-fuel ratio (SAFR) between ethanol (9.0)
and gasoline (14.6). The SAFR-based ethanol estimation
has been shown to be prone to large errors with mass air
flow sensor bias and/or fuel injector shift. In this paper,
an ethanol estimation scheme is proposed by additionally
using measurement of in-cylinder pressure, which essen-
tially exploits the difference in latent heat of vaporization
(LHV) between ethanol and gasoline, and hence detects
the charge cooling effects of ethanol. Due to the additional
and independent information introduced by the new algo-
rithm, the proposed ethanol content estimation is more
tolerant to air flow sensor drifts and injector shifts.

1 INTRODUCTION

Flexible fuel vehicles can operate on a blend of gasoline
and ethanol in any concentration of up to 85% ethanol.
This blend is denoted by the EXX nomenclature, where
XX represents the volumetric percentage of ethanol in the
gasoline-ethanol blend. E85 is a commercially available
fuel in the United States.

Ethanol and gasoline have different physical properties as
shown in Table 1 [1, 2] which affect vehicle performance
and FFVs need to adapt, and ideally, optimize the en-

gine calibration depending on the estimated fuel ethanol
content. The estimation of ethanol content in the fuel
relies on the differences in the fuel properties between
ethanol and gasoline. The drastic difference in the di-
electric constant between gasoline and ethanol (Table 1)
enables capacitance-based sensing of the ethanol con-
tent in the fuel [3]. Apart from the cost and reliability
issues associated with such sensors, on-board diagnos-
tic (OBD) requirements would necessitate an additional
method for assessing the ethanol content in order to diag-
nose any faults or degradation in sensors associated with
the ethanol estimation.

Table 1: Properties of gasoline and ethanol

Property Gasoline Ethanol

Research Octane Number (RON) 92 111

Density (kg/m3) 747 789

Heat of combustion (MJ/kg) 42.4 26.8

Stoichiometric air-to-fuel ratio 14.6 9.0

Boiling point (◦C) 20-300 78.5

Latent heat of vaporization (kJ/kg) 420 845

Dielectric constant 2.0 24.3

Independent ethanol content estimation can be based on
the other properties of Table 1. Each physical property
in the table is defined as a primitive feature in this pa-
per. If a primitive feature could be directly measured, the
fuel ethanol content can be calculated from the feature. A
high sensitivity of the feature to the ethanol content is de-
sirable, as a higher sensitivity results in higher estimation
accuracy or confidence. In this sense, apart from the di-
electric constant, the stoichiometric AFR (SAFR), the la-
tent heat of vaporization (LHV), the heat of combustion
(HC), and the RON are very good primitive features for

1



estimation of fuel ethanol content.

Among the primitive features, stoichiometric air-to-fuel ra-
tio (SAFR) is the feature which can be indirectly calcu-
lated using an EGO sensor given the amount of cylinder
air charge and injected fuel. Since an EGO sensor is in-
evitably used for closed-loop regulation of the air-to-fuel
ratio, utilizing an EGO sensor is the simplest and the most
popular way of ethanol content estimation. The main dis-
advantage of SAFR-based ethanol estimation is the high
sensitivity of ethanol content estimation to mass air flow
(MAF) sensor drift and/or fuel injector shift [4, 5]. Note
here that the current practice of estimating MAF drifts and
switching to ethanol content estimation immediately after
refueling is prone to error accumulation [6]. In [6] we pro-
posed a seamless way for estimating simultaneously MAF
sensor drifts and ethanol content changes by combining
measurements from the intake manifold pressure (mani-
fold absolute pressure, MAP) sensor.

We propose here, an even more complete sensor fusion
which enables simultaneous estimation of ethanol con-
tent, MAF sensor drifts and fuel injector shifts. The pro-
posed scheme utilizes the LHV feature of ethanol de-
tection from Table 1. Specifically, it fuses information on
charge cooling due to LHV of ethanol via cylinder pres-
sure, hence it can only be applied to direct injection en-
gines with in-cylinder pressure sensor.

Ethanol detection residue which is derived from the prim-
itive feature of LHV by using in-cylinder pressure mea-
surements during the compression stroke in a direct in-
jection (DI) engine was proposed and analyzed in [7] as a
candidate feature to estimate fuel ethanol content from.
The LHV-based detection residue was shown to be a
good feature due to the observed monotonic behavior of
the residue with respect to change of ethanol content at
several commonly visited operating conditions. Since in-
cylinder pressure measurements are considered in many
advanced engines for closed loop control of combustion,
ethanol estimation and fuel diagnostics could be an addi-
tional advantage in engines with such in-cylinder pressure
measurements.

Note here that heat of combustion (HC) is another good
primitive feature from Table 1 but shows very similar sensi-
tivity to that of SAFR: HC shows -37% change from gaso-
line to ethanol and 58% change from ethanol to gasoline,
and SAFR shows -38% change from gasoline to ethanol
and 59% change from ethanol to gasoline. Therefore,
we expect, to some extent, that HC-based ethanol esti-
mation might overlap with the SAFR-based method pro-
viding redundant but not independent information regard-
ing ethanol content. More comprehensive discussion of
redundancy is provided in the appendix. Accordingly, a
question arises whether the LHV-based detection residue
could be independently utilized in ethanol estimation of
the SAFR-based approach or it also overlaps with the
SAFR-based scheme reducing the value of using an in-

dependent feature with respect to λ1. In this paper, it will
be demonstrated that the LHV-based ethanol detection
residue could actually serve as an independent feature
of λ in ethanol estimation.

Specifically, a data-driven LHV-based ethanol detection
model is presented in this paper to demonstrate ethanol
content estimation. Using this LHV-based estimation,
together with the SAFR-based approach, a composite
ethanol content estimation scheme will be proposed and
its validity will be demonstrated by a realistic simulation.
Apart from developing an ethanol estimation scheme that
is tolerant to air flow sensor drifts and injector shifts, the
algorithm explicitly calculates the sensor drift and injec-
tor shift, hence can be used for fuel injection diagnostics
purposes in addition to ethanol detection.

2 LHV-BASED ETHANOL DETECTION RESIDUE

A detection feature calculated by in-cylinder pressure
measurements and motivated by the different latent heat
of vaporization between gasoline and ethanol is proposed
in [7, 8]. After fuel is injected into the cylinder during
closed valves, the injected fuel takes heat from the cylin-
der charge while it is vaporizing, hence causing a charge
cooling. The charge cooling effect may be observable in
cylinder pressure measurement, where more charge cool-
ing or less cylinder pressure is expected for higher LHV or
higher ethanol content. To differentiate the charge cool-
ing effect from the other thermo-physical phenomena and
their effects on cylinder pressure evolution, we compare
the cylinder pressures from two different injection modes
while keeping all other inputs fixed.

• Single injection (Si) mode: all the fuel is injected dur-
ing the intake stroke, hence the charge cooling ob-
served by cylinder pressure should be minimal.

• Split injection (Sp) mode: a fraction of the fuel is
injected during the intake stroke, and the rest is in-
jected during compression stroke after intake valve is
closed. The second portion of the fuel that is injected
during the compression stroke is responsible for in-
cylinder charge cooling, and an associated pressure
drop could be observed. The observed pressure drop
(as shown in the first subplot of Fig. 1) is associated
with the heat of vaporization, and consequently the
ethanol content.

The ethanol detection residue at an instance is calculated
as:

Rsd(k) = ln(pSi
0 (k)/pSp

0 (k)), (1)

where pSi
0 , pSp

0 are corrected cylinder pressures [7] under
Si and Sp injection modes, and k denotes a step in time
or crank angle. Even though the cylinder pressures under
different modes are obtained in different cycles, we regard

1The relative air-to-fuel ratio (AFR), λ, is defined as the ratio of actual
AFR (AFR) to stoichiometric AFR (AFRs), i.e., λ , AFR/AFRs.
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Figure 1: Cylinder pressure and residue evolutions during
the compression stroke

them as synchronized quantities in time. Fig. 1 demon-
strates the general evolution of the residue (1) during the
compression stroke. To utilize the detection residue as a
detection feature, the mean residue is calculated by aver-
aging Rsd over the interval of several steps near the end
of compression where the instantaneous residue is usu-
ally maximized:

rLHV =

∑k2
k=k1

Rsd(k)
k2 − k1 + 1

. (2)

3 STOICHIOMETRIC BI-AFFINE RESIDUE MODEL

We model the mean residue (2) as a simple polyno-
mial map parameterized by several operating condition
variables and identify the coefficients in the polynomial
from experimental residue data. When we model, iden-
tify and validate a detection feature function, we are actu-
ally interested in the detection feature function restricted
at stoichiometry because stoichiometry is a normal oper-
ating condition enforced by closed-loop control. For the
same reason, we usually collect experimental measure-
ment data only at stoichiometry to validate a detection fea-
ture model. Therefore, we frequently know rs rather than
r, where rs denotes restriction of detection feature r at
stoichiometry, i.e., rs = r

∣∣
ma/mf=AFRs(e)

, where ma and
mf denotes fresh air mass trapped in the cylinder and fuel
mass injected into the cylinder per cycle, respectively, and
AFRs(e) denotes the stoichiometric air-to-fuel ratio eval-
uated at the volumetric fraction of ethanol in the fuel blend
e. Fig. 2 illustrates a detection feature at fixed ethanol con-
tent and any other operating condition variables, q, other
than mf and ma. Among the candidate data on detection
feature surface, we usually collect data along the stoichio-
metric detection feature curve in the figure. Therefore,
the stoichiometric residue model rs will be parameterized
by injected fuel mass mf , but not by air charge ma. For
brevity, we will call the mean residue simply residue and
drop operating condition notation q which denotes any
other operating condition variables than e and mf such
as engine speed N , valve timing and so on, which are
held at fixed conditions. Some of those conditions will be
specified if clarification is necessary. In a fixed operating
condition q, we use a stoichiometric residue model which

( , )| er q

( , )|s er q

( , , )|
fe mr q

r

fm
fm

am

plane of stoichiometry

Figure 2: A detection feature and its restriction at stoi-
chiometry demonstrated at fixed (e, q)

is expressed by a bi-affine function in e and mf :

rs = a1 + a2mf + a3e + a4mfe. (3)

In order to identify the coefficients in the model (3),
we have used experimental data collected at near-
stoichiometry on a 2.0L Turbocharged spark ignition di-
rect injection (SIDI) variable valve timing (VVT) engine
equipped with Kistler 6125B in-cylinder pressure sensors.
Table 2 summarizes the nominal conditions for the exper-
iments.

Table 2: Nominal experiment conditions
Description Value

Relative AFR (λ) 1

Split injection ratio (Sp mode) 50/50 (%)

Start of 1st injection 105 CAdeg bBDC

End of 2nd injection (Sp mode) 40 CAdeg aBDC

Spark timing MBT map for E0

Fig. 3 shows an example of the computed residue at two
engine speeds 2000 and 2500 RPM and several air flows.
The data were collected at several air flows and speeds
utilizing the VVT and spark timing settings associated with
the E0 calibration of the given speeds and loads. As the
data indicates there was a small variability between the
nominal and the actual mass air flow since not all the data
are lined-up vertically. There is also considerable cycle-
to-cycle variability observed in the data. Each data point
corresponds to a couple of cycles, since the residue is
extracted by comparing one cycle for Si injection mode
and the other for Sp injection mode. The total number
of data points for each nominally set MAF value is over
390. The circles correspond to the regression model (3)
derived by considering all the data using standard least
squares method. In the plots shown by error bars, the
middle point of an error bar corresponds to the average

3



50 100 150 200
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

MAF (kg/hr)

R
es

id
ue

 

 
E0, data
E22, data
E40, data
E55, data
E70, data
E85, data
E0, regr
E22, regr
E40, regr
E55, regr
E70, regr
E85, regr

80 90 100 110 120 130 140 150 160 170 180
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

MAF (kg/hr)

R
es

id
ue

(a) Engine speed of 2000 RPM

50 100 150 200
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

MAF (kg/hr)

R
es

id
ue

 

 
E0, data
E22, data
E40, data
E55, data
E70, data
E85, data
E0, regr
E22, regr
E40, regr
E55, regr
E70, regr
E85, regr

60 80 100 120 140 160 180
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

MAF (kg/hr)

R
es

id
ue

(b) Engine speed of 2500 RPM

Figure 3: Stoichiometric residue regression

residue for one fuel blend at a nominal MAF, and the er-
ror bar indicates the standard deviation. Due to the high
cycle-to-cycle variability of combustion and pressure evo-
lution, hence residue, the root mean square error is actu-
ally high: normalized root mean square errors (NRMSE)
are 0.101 and 0.108 for 2000 RPM and 2500 RPM, re-
spectively. Therefore, a filter with low cut-off frequency or
a low gain observer or a large averaging window is neces-
sary in on-line estimation to cope with the residue cycle-
to-cycle variability, hence expecting slow ethanol estima-
tion to some extent.

Fig. 4 shows the residue in a more interesting perspective.
Given constant air flow, or equivalently, fuel flow the plot
of the residue versus ethanol content shows a clear trend
where residue increases when ethanol content increases.
The dash-dot lines in Fig. 4 show the modeled stoichio-
metric residue using regression (3) versus fuel ethanol
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Figure 4: Stoichiometric bi-affine residue model

content at several MAF conditions of stoichiometry and at
two different injected fuel mass conditions of stoichiome-
try. The solid lines correspond to the interpolated residue
obtained by averaging data at the same nominal con-
ditions and interpolating the averaged residues as dis-
cussed in Fig. 3. The solid lines in Fig. 4 could be realized
in a micro-controller with a stored look-up table, whereas
the dash-dot lines could be realized by programming (3)
in the on-board micro-controller. We distinguish between
these two implementations due to their differences around
the 30-50% ethanol concentration and their implications
to the estimation feasibility and accuracy. The data and
hence the interpolation method exhibit a non-monotonic,
strong non-linear behavior at 30-50% ethanol concentra-
tion due to the underlying physics regarding the nonlinear
characteristics of vapor pressure of the gasoline-ethanol
blend. Mixing a small amount of a gasoline-ethanol blend
with a large amount of gasoline can produce a mixture
with a higher vapor pressure than either the gasoline or
the blend alone [9, 10, 11]. Nonlinear vapor pressure to
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ethanol concentration, hence the non-ideal solution be-
havior of gasoline-ethanol blend may result in nonlinear
behavior of the residue.

4 STEADY STATE ANALYSIS OF ETHANOL ESTIMA-
TION UNDER FUEL INJECTOR SHIFT

In this section, the steady state analysis of LHV-based
estimation under fuel injector shift will be provided. To
compare the analysis with the SAFR-based estimation,
the steady state analysis of SAFR-based estimation us-
ing the λ model, λ = ma

mf
· 1

AFRs(e) , is first reviewed.

4.1 SAFR-BASED ESTIMATION

Assuming no fault in EGO sensor, let us introduce
MAF sensor error so that m̂a = (1 + fea)ma, where m̂a

denotes the estimated cylinder air charge mass, ma the
actual air charge and fea the air mass error fraction.
Together with the fuel injector shift, where fef denotes
the fuel injector shift such that mf = (1 + fef )minj , where
minj is commanded or issued amount of fuel and mf

is the actual fuel amount injected into the cylinder, the
actual AFR is the same as the stoichiometric AFR at
stoichiometry, ma/mf = AFRs, hence resulting in:

AFRs =
1

(1 + fea)(1 + fef )
m̂a

minj
. (4)

In steady state, the fuel injection command is solely
determined by the feedforward command based on the
assumed or estimated stoichiometric AFR by minj =
m̂a/ÂFRs. Equation (4) is then expressed by:

ÂFRs

AFRs
= (1 + fea)(1 + fef ). (5)

Equation (5) describes how the MAF sensor error and fuel
injection error propagate to error in estimation of stoichio-
metric AFR. The stoichiometric AFR for ethanol-gasoline
mixture is expressed by AFRs = 9×em+14.6×(1−em) =
14.6−5.6×em, where em denotes mass fraction of ethanol
in the fuel blend. From (5), the following steady state mass
ethanol fraction estimation result using SAFR-based esti-
mation is then obtained:

êm,ss,SAFR(em, fef , fea) = em−fe(fef , fea)(2.6−em), (6)

where fe(fef , fea) = fef + fea + feffea.

4.2 LHV-BASED ESTIMATION

In the steady state analysis of LHV-based estimation
under stoichiometric conditions, we distinguish regressed
residue, rregr

s (mf , e) = a1 + a2mf + a3e + a4mfe, from
interpolated residue rintrp

s (mf , e) corresponding to the
interpolated data curves in Fig. 4. The actual residues
assuming fuel injector shift fef are then expressed
by rregr

s,act(minj , e, fef ) = rregr
s ((1 + fef )minj , e) and

rintrp
s,act (minj , e, fef ) = rintrp

s ((1 + fef )minj , e). By inverting
the residue function (3) with respect to e at mf = minj ,
the steady state volumetric ethanol fraction estimations
are obtained:

êregr
ss,LHV =

rregr
s ((1 + fef )minj , e)− a1 − a2minj

a3 + a4minj
, (7)

êintrp
ss,LHV =

rintrp
s ((1 + fef )minj , e)− a1 − a2minj

a3 + a4minj
. (8)

The steady state estimation using the regressed actual
residue is finally expressed as:

êregr
ss,LHV (e, fef ,minj) = e + fef ·minj · a2 + a4e

a3 + a4minj
. (9)

Fig. 5 shows steady state ethanol estimation using the
stoichiometric bi-affine residue model from (3) at engine
rotation speed of 2000 RPM and 100 kg/hr MAF, and en-
gine rotation speed of 2500 RPM and 130 kg/hr MAF, com-
pared with the SAFR-based estimation with no MAF sen-
sor error. Overall, the LHV-based estimation is less sen-
sitive to fuel injection shift when compared with SAFR-
based estimation. Especially low sensitivity is observed
around 30% ethanol content at 2500 RPM. Although the
estimation result with regressed actual residue (êregr

ss,LHV )
is very good at every condition, the ethanol content esti-
mation with interpolated actual residue (êintrp

ss,LHV ) is very
poor for 2000 RPM around 40% to 80% ethanol contents
where the interpolated residue had highly non-linear and
non-monotonic behavior.

5 FEASIBILITY OF COMPOSITE ESTIMATION

Here we show that LHV-based estimation is a truly inde-
pendent ethanol estimation scheme of SAFR-based es-
timation, which actually means it can provide indepen-
dent and valuable information for the ethanol estimation.
If LHV-based estimation is an independent scheme of
SAFR-based estimation, the injector shift fef , or equiva-
lently, the actual fuel amount mf , and the ethanol content
e, should be able to be simultaneously solved by impos-
ing the stoichiometric condition ma/mf = AFRs(e) to the
following measurement equations associated with λ and
LHV-based residue rLHV :

λ =
ma

mf
· 1
AFRs(e)

, (10)

rLHV = rLHV (ma, mf , e). (11)

By the stoichiometry constraint, (10) trivially reduces to
λ = 1 and (11) to the stoichiometric residue equation,
rLHV = rs(mf , e) whose bi-affine parameterized model
is (3), or,

rLHV = rs(ma/AFRs(e), e). (12)

Let ra
s (ma, e) denote the stoichiometric residue func-

tion parameterized by ma and e, i.e., ra
s (ma, e) =

rs(ma/AFRs(e), e). The residue measurement equation
(12) is then expressed as:

rLHV = ra
s (ma, e). (13)
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Figure 5: Steady state ethanol estimation using LHV-
based estimation compared with SAFR-based estimation

To solve unknown e from (13), ra
s should be invertible at

known air mass ma. The curves in the first plots of each
subplot in Fig. 4 correspond to the function ra

s at several
known air masses. Based on the regression curves, ra

s is
invertible at known air mass ma, hence e can be solved.
As several interpolated curves are not monotonic, the in-
dependence argument is only based on the regression
models in more strict sense. The invertibility of ra

s at
fixed air mass, or equivalently independence of two dif-
ferent estimation schemes, relies on the monotonicity of
the residue, and high sensitivity of the residue to ethanol
content at fixed air mass is desirable. The fuel amount is
then solved by mf = ma/AFRs(e).

The independence of two different schemes is also clear
from the steady state ethanol content estimations (6) and
(9) under different estimation schemes. Independence of
the two schemes would result in different mappings of the
steady state estimations from e and fef . In Fig. 5, both
ethanol content estimations show the sensitivities to the
actual ethanol content always around 1, i.e., the slopes of
curves are almost unity, while the SAFR-based estimation
is more sensitive to the fuel injection shift than the LHV-
based estimation.

6 COMPOSITE ETHANOL ESTIMATION

Even though the detection residue model has large er-
rors in some operating conditions, as at 2000 RPM, the
residue model could be utilized for composite estimation
together with EGO sensor measurements in some lim-
ited operating conditions to simultaneously estimate the
ethanol content and the fuel injector shift. The ethanol es-
timation performance might be enhanced compared with
the SAFR-based scheme under fuel injector shift by aug-
menting the LHV-based scheme with the SAFR-based
method.

Fig. 6 shows a block diagram of AFR control and compos-
ite ethanol estimation in a flex fuel vehicle equipped with
a direct injection engine. In the engine block, air flow is
generally measured at a block located before the intake
manifold, denoted by W a. We assume that the air flow
measurement has bias so that W a = (1+fea)Wa in steady
state, where fea denotes the error fraction in mass air flow
measurement and Wa denotes the actual air flow at the
measurement location. Accordingly, MAF measurement
is expressed as W a = (1+fea)Wcyl in steady state, where
Wcyl denotes the actual air flow inducted into the cylinder.
Cylinder flow estimator estimates Wcyl while updating the
bias estimation f̂ea inside the block using various mea-
surements such as engine rotation speed, intake manifold
pressure and temperature, exhaust manifold pressure and
temperature, if any are required for robust estimation of
Wcyl. This estimation block could be generally realized
by adapting the algorithm in [6] to different pumping maps
whose inputs are different for different engine configura-
tions.

In the cylinder block, we assume that the actual fuel flow
into the cylinder is expressed by Wf = (1 + fef )Winj by
the fuel injector shift, where Winj denotes the fuel flow
commanded to the fuel injector and fef denotes the error
fraction in the injection amount by the fuel injector shift.

The AFR controller is expressed as:

Winj = Wff + Wfb, (14)

Wff =
Ŵcyl

ÂFRs

· 1

1 + f̂ef

, (15)

Wfb = −Cfb(s)(1− λ), Cfb(s) = kPI
τPIs + 1

s
, (16)

where Wff and Wfb denote the feedforward injection
command and the feedback injection command, respec-
tively, Ŵcyl denotes the estimation of Wcyl, where the MAF
sensor bias is corrected, ÂFRs denotes the estimated
stoichiometric AFR calculated by the estimated ethanol
content ê, f̂ef denotes the estimation of fef , and kPI and
τPI are the proportional-integral (PI) feedback AFR con-
trol gains.

The composite ethanol content estimator which is able to
simultaneously estimate the ethanol content, e, and the
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fuel injector shift, fef , is designed to be:
[

˙̂e
˙̂
fef

]
= L

[
Wfb

rLHV − r̂s

]
, (17)

where L ∈ <2×2 is an observer (or filter) gain, rLHV is the
detection residue calculated by using the cylinder pres-
sure measurements via (1)-(2), and r̂s is the estimated
stoichiometric residue calculated by r̂s = rregr

s (m̂f , ê) =
a1 + a2m̂f + a3ê + a4m̂f ê, where m̂f is the estimated fuel
injection mass per cycle calculated by m̂f = (1+f̂ef )minj .
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Figure 7: Steady state ethanol estimation error at engine
speed of 2500 RPM under different estimation schemes

Fig. 7 shows steady state ethanol estimation errors at
130 kg/hr MAF and 2500 RPM engine speed assuming
perfect air charge estimation, no MAF sensor error and
5% fuel injector shift. In the calculation, the real exper-
imental residue data were used. The estimation errors
under composite estimation scheme are compared with
those under single-sensor-based schemes that use EGO
sensor measurements and residue (in-cylinder pressure)
measurements, respectively. The steady state estimation
values were calculated by (6) for SAFR-based estimation
and by (8) for LHV-based estimation, respectively. Like-
wise, steady state estimation under composite estima-
tion is obtained by imposing equilibrium condition in the
closed-loop system, i.e., solving ÂFRs

AFRs
= (1 + fea) 1+fef

1+f̂ef

and rLHV = r̂s simultaneously. Note that the LHV-based
estimation does not benefit in a significant way, when it
is integrated with the SAFR-based estimation, forming
the composite estimation. Indeed, the LHV-based esti-
mation is insensitive and hence tolerant to fuel drift as
originally indicated in section 4 Fig. 5. One can see that
the composite scheme can hurt the LHV-based estimation
when the SAFR-based estimation is very wrong as in 40%
ethanol content in Fig. 7.

7 SIMULATION

So far we show the various estimation schemes of steady-
state, but on-board implementation requires special at-
tention to the non-steady conditions and noisy measure-
ments. This section basically explores the transient is-
sues of the composite estimation. Moreover, this sec-
tion shows that using the dynamic inversion from (17)
filters effectively the cycle-to-cycle variability associated
with the residue calculations in (1)-(2) through the cylin-
der pressure measurements. In order to validate the com-

posite ethanol estimation together with stoichiometry con-
trol, simulations were performed under ethanol content
change in fuel blend and a throttle step change using
the turbocharged SIDI VVT engine model in [12] for the
engine block in Fig. 6. Engine rotation speed was fixed
at 2500 RPM. Due to the lack of model for the detection
residue r which covers off-stoichiometry condition, we ap-
proximated the simulated actual residue rLHV as the stoi-
chiometric residue rs and the interpolated residue rintrp

s

corresponding to the interpolated data curves in Fig. 4
was used for realistic simulation. In addition, the cycle-
to-cycle variability of the stoichiometric residue was con-
sidered by adding residue variation of white noise pro-
cess with the standard deviation shown in the error bars
in Fig. 3 to rintrp

s .

We compare the three schemes, SAFR, LHV and com-
posite. For the cylinder flow estimator in Fig. 6, the esti-
mator in [6] was used with the pumping map in the engine
model [12] to estimate and correct MAF sensor biases.

The actual ethanol content change from 0 to 0.5 was sim-
ulated as shown in Fig. 10, and a throttle step was sim-
ulated from 34% to 38% at 140 sec as shown in Fig. 8.
A 5% of MAF sensor bias and 5% of fuel injector shift
were introduced to test the three methods. Fig. 9 shows
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Figure 8: Simulated throttle input
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Figure 9: Simulated load for composite ethanol estimation

load conditions in composite ethanol estimation simula-
tion. This plot indicates how successful is the cylinder air
flow estimation when the MAF sensor bias estimation in
[6] is applied.

Fig. 10 shows the fuel ethanol content estimation result.
The SAFR-based estimation shows large steady state es-
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Figure 10: Simulated ethanol estimation

timation error due to the uncompensated fuel injector shift.
The composite estimation shows improved steady state
estimation performance by the virtue of simultaneous es-
timation hence compensation of the fuel injector shift. The
LHV-based estimation shows small steady state estima-
tion error as well, even though the response is noisy due
to the cycle-to-cycle variability of detection residue. The
steady state estimation performance for the LHV-based
estimation is good because the steady state estimation
is actually very insensitive to fuel injector shift at engine
speed of 2500 RPM as shown in Fig. 5. On the other
hand, convergence of the estimated ethanol content for
LHV-based estimation is slower than that for composite

estimation due to relatively low observer gain needed for
filtering the residue cycle-to-cycle variability. The large
cycle-to-cycle variability of detection residue is the main
problem in realizing LHV-based estimation independent of
the EGO sensor measurements. Fig. 11 shows the simu-
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Figure 11: Simulated residue for composite ethanol esti-
mation

lated residue for composite ethanol estimation. While the
measured residue is very noisy due to the cycle-to-cycle
variability of residue, the estimated stoichiometric residue,
r̂s, is clean because estimated ethanol content, ê, is suf-
ficiently clean and the modeled stoichiometric residue is
relatively insensitive to the estimated fuel injection mass.
The composite estimation exhibits good steady-state and
fast convergence to the ethanol content. Fast conver-
gence rate is important for overall vehicle performance
enhancement as many other control and management al-
gorithms in flex-fuel vehicles rely on the estimated ethanol
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Figure 12: Simulated MAF sensor bias estimation
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Figure 13: Simulated fuel injector shift estimation

content.

Fig. 12 and Fig. 13 show the MAF sensor bias estima-
tion and the fuel injector shift estimation results, respec-
tively. In the composite estimation, the fuel injector shift
is estimated even though steady state error could not
be completely removed due to the residue model un-
certainty. In Fig. 12, the MAF sensor bias estimation is
pretty good from the composite estimation, whereas the
other schemes show more errors. This large error can
be explained because the MAF sensor bias estimation
scheme is actually coupled with the estimated fuel injec-
tion amount and the ethanol content. In Fig. 6, the dotted
arrow lines into the cylinder flow estimator block indicate
this dependency.

0 50 100 150 200 250

1

1.1

λ

Composite estimation

0 50 100 150 200 250

1

1.1

λ

SAFR−based estimation

0 50 100 150 200 250

1

1.1

Time (sec)

λ

LHV−based estimation

Figure 14: Simulated relative air-to-fuel ratio, λ

Fig. 14 shows simulated response of the relative AFR, λ.
In all three estimation cases, λ is regulated near unity,
while the response for the LHV-based estimation shows
a little bit more fluctuations than those for others due to
the noisier feedforward fuel command caused by noisier
ethanol estimation originated from the cycle-to-cycle vari-
ability of detection residue. The spike at 140 sec corre-

sponds to the throttle step change.
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Figure 15: Simulated fuel injection command

Fig. 15 shows the issued fuel flow Winj in the three esti-
mation simulations. From 60 sec to 80 sec, fuel injection
amount increases as fuel type is estimated to change from
E0 to E50 since more ethanol content requires more fuel
for stoichiometric combustion, and steep increase of fuel
injection after 140 sec is observed due to the change of
load.

8 CONCLUSION

In this paper, estimation of the ethanol content in flex fuel
direct injection engines using the charge cooling or LHV-
based detection residue calculated by in-cylinder pres-
sure measurements together with EGO sensor measure-
ments is proposed. Due to the high sensitivity of ethanol
estimation error to MAF sensor bias and fuel injector shift
in conventional SAFR-based estimation using the EGO
sensor measurements, an estimation scheme that uses
other sensor measurements to correct MAF sensor bias
and fuel injector shift is required. Assuming MAF sen-
sor bias could be estimated by using intake manifold
pressure measurements,the simultaneous estimation of
ethanol content and fuel injector shift using EGO and in-
cylinder pressure measurements is shown.

High cycle-to-cycle variability of the LHV-based detection
residue is observed. Due to this high cycle-to-cycle vari-
ability level in the cylinder pressure measurements, the
estimator gain is chosen to realize sufficiently fast conver-
gence to steady state in order to avoid noise amplification
in estimated states. The ethanol detection residue retains
high accuracy in limited operating conditions. In addition,
stoichiometric residue shows a good property that it is rel-
atively insensitive to fuel amount change. The validity and
performance of the proposed composite ethanol estimator
is verified by simulation with a flex-fuel SIDI engine model
under MAF sensor bias and fuel injector shift.

APPENDIX: DETECTION SENSITIVITY

The applicability of a certain feature for fuel ethanol con-
tent estimation purpose depends on the high sensitivity of
the feature to change of ethanol content. Therefore, sev-
eral sensitivities need to be defined and investigated for
the quantitative analysis of each feature we present in this
paper. Let fp denote a primitive feature. We assume that
a primitive feature is primarily sensitive to ethanol content
and insensitive to any other operating condition so that fp

is expressed by a function of e only, i.e., fp(e), where e
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denotes the volumetric fraction of ethanol in the gasoline-
ethanol fuel blend. Here, an ethanol detection feature is
defined as a feature which is calculated by measurements
from a specific sensor and also denoted by r. It is usually
desirable that a detection feature is mainly affected by a
specific primitive feature. A detection feature, r, might be
then expressed as a function of a target primitive feature
and engine operating conditions, i.e., r(fp(e), q), where q
denotes a vector of engine operating condition variables.
For example, λ is a detection feature which is calculated
by the EGO sensor measurements that is associated with
the primitive feature of stoichiometric AFR:

λ(AFRs(e), ma,mf ) =
ma

mf
· 1
AFRs(e)

, (18)

where ma and mf denote the fresh air charge mass and
injected fuel mass per cycle. Here, the following two sen-
sitivities are defined:

• primitive feature sensitivity : Sfp , 1
fp
· ∂fp

∂e ,

• detection feature sensitivity : Sr , 1
r · ∂r

∂e = fp

r · ∂r
∂fp

Sfp
.

High absolute value of detection feature sensitivity is de-
sirable for ethanol estimation purpose, where detection
feature sensitivity is very closely related to primitive fea-
ture sensitivity. For example, detection feature sensi-
tivity for λ evaluated at stoichiometry is expressed by
Sλ

∣∣
s

= −SAFRs . If a detection feature can be expressed
as a linear function of the associated primitive feature, i.e.,
r = a(q)fp(e), the detection feature sensitivity is the same
as the primitive feature sensitivity, Sr = Sfp . If this is the
case for heat of combustion (HC), i.e., if a detection fea-
ture associated with HC is a linear function of HC as well,
the same level of detection feature sensitivity as that of
λ at stoichiometry is expected, i.e.,

∣∣SrHC

∣∣ ≈ Sλ

∣∣
s

since
both primitive sensitivities are very similar, SHC ≈ SAFRs .

We still cannot conclude that two different ethanol esti-
mation schemes based on different detection features are
actually mutually independent even if the detection fea-
ture sensitivities are of the same magnitude. To quantify
independency of different estimation schemes based on
different detection features or independency of the detec-
tion features, one more sensitivity is defined: relative de-
tection sensitivity of detection feature r with respect to an
operating condition variable q is defined as

Sr|q , Sr

∂r/∂q
r/q

=
1
q
·

∂r
∂e
∂r
∂q

, (19)

where q is an element of operating condition vector q.
High absolute value of relative detection sensitivity is de-
sirable for ethanol content estimation since frequently ac-
tual operating condition q is unavailable and estimation of
q retains error and it is very common that limited knowl-
edge about the functional structure of r in q is available.
For example, relative detection sensitivity of λ with respect

to injected fuel mass per cycle evaluated at stoichiometry
is expressed by Sλ|mf

∣∣
s

= SAFRs . If a detection feature is
expressed by a linear function in the associated primitive
feature, i.e., r = a(q)fp(e), the relative detection sensitiv-
ity of r with respect to q is expressed by Sr|q = a/q

∂a/∂q Sfp
.

Further, suppose that a detection feature associated with
HC is expressed by multiple of total heat of combustion
per cycle such that rHC = a(q′) · mf · HC(e). The rel-
ative detection sensitivity of rHC with respect to mf is
then SrHC |mf

= SHC . In this case, we expect similar rela-
tive detection sensitivities for rHC and λ at stoichiometry,
SrHC |mf

≈ Sλ|mf

∣∣
s
, due to the similar primitive feature

sensitivities, SHC ≈ SAFRs . If this is the case, we can
conclude that SAFR-based estimation and HC-based es-
timation are not actually independent ethanol estimation
schemes with respect to injected fuel mass. Both estima-
tion schemes would then be prone to large ethanol esti-
mation errors under fuel injector shift, or alternatively, the
injector shift amount could not be estimated using both
detection features.

We consider next the stoichiometric combustion with the
indicated mean effective pressure (IMEP) calculated by
the in-cylinder pressure measurements as the stoichio-
metric detection feature associated with HC. The mutual
dependence of SAFR-based estimation and HC-based
estimation becomes more clear after we consider the
IMEP-based realization of the HC-based estimation. Sto-
ichiometric IMEP at fixed other operating conditions than
e and mf or ma is expressed by imeps = a ·mf · HC(e)
with a constant a calibrated for the fixed operating condi-
tions. Since HC(e) ≈ c · AFRs(e) where c = 2.9 MJ/kg,
imposing the stoichiometry constraint ma/mf = AFRs(e)
results in:

imeps ≈ ac ·ma. (20)

Therefore calculating IMEP under closed loop stoichiom-
etry control allows estimations of neither ethanol content e
nor the fuel injector shift fef . The stoichiometric IMEP cal-
culation is merely another version of mass air flow mea-
surement.
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