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Abstract— This paper presents an approach for systematic
reduced-parameter-set adaption applicable to internal com-
bustion engine models. The presented idea is to detect the
most influential parameters in an engine air-charge path model
and then use them as a reduced-parameter-set for further
calibration to improve the model accuracy. Since only most
influential parameters (in comparison with a complete set of
parameters) are tuned at the final calibration process, this
approach helps reducing over-parameterization associated with
tuning highly nonlinear engine models. Detection of the influ-
ential parameters is done using the sensitivity analysis followed
by the principle component analysis. Accuracy of the reduced-
parameter-set tuned model is compared to a model with a tuned
full-parameter-set developed following commercially available
OnRAMP Design Suite [1] methodology. Results from experi-
ments on a heavy duty diesel (HDD) engine show that although
tuning the full-parameter-set (with over 70 parameters) creates
higher accuracy, an average of 50% improvement of the model
accuracy is attained using the proposed reduced-parameter-set
approach (which tunes only 2 parameters).

I. INTRODUCTION

Models for simulation of the gas exchange process in an
internal combustion engine have found many applications
for monitoring and control in modern engine control units
(ECUs)[2], [3]. Having a simple structure and low computa-
tional burden, the Mean Value Modeling (MVM) is the main
concept used in commercialized ECUs which, on the other
hand, requires extensive calibration efforts to ensure accurate
tracking of variables.

Physics-based modeling and automatic calibration using
software tools such as OnRAMP used in this work, are
solutions to reduce calibration work on an engine model.
In this paper a new approach is proposed and elaborated in
which, while doing physics-based modeling, only the main
affecting parameters of a complete engine model is detected
and tuned. To detect the most influential parameters, the sen-
sitivity analysis followed by the principle component analysis
is utilized. Since only the main influencing parameters go to
the final tuning process, it is computationally much easier
and is realized here using a Kalman filter. The implemented
discrete Kalman filter identifies the influential parameters,
which are mapped as functions of speed and load, at different
engine operating points over drive cycles. Finally, a similar
engine model is developed in OnRAMP design suite where
the model is with a full set of tunable parameters. The
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“fully parameterized” highly accurate model developed in
OnRAMP is used by industry for offline development and
calibration of controllers and is utilized in this work as
the reference showing the expected level of accuracy for
an engine model. Both reduced-parameter (approach of this
paper) and full-parameter (approach of OnRAMP) tuned
models are compared to experimental data from a heavy-
duty diesel (HDD) engine. The reduced-parameter-set tuning
technique is shown to halve the estimation error of the
engine model and approach the accuracy of the highly
accurate reference model developed in OnRAMP. In addition
to [12], this paper presents complete parameterization of the
component models, results of a realized discrete Kalman
filter for online parameters tuning and a comparison to the
reference OnRAMP model.

In section II, the engine model is described both at
component and engine levels. In section III, an assessment
of the parameter’s importance is presented using sensitivity
and principle component analysis. Then, results of reduced-
parameter-set and full-parameter-set tuning are compared in
section IV. Finally, the conclusion comes in section V.

II. HDD DIESEL ENGINE MODEL

A 13 liters 6-cylinder heavy duty diesel (HDD) engine
with high pressure cooled exhaust gas recirculation (EGR)
and a wastegate controlled asymmetric twin-scroll turbine is
studied in this paper. The asymmetric twin-scroll turbine has
benefit in increasing EGR while keeping low back pressure
and smoke [4]. The engine is also equipped with a wastegate
valve, which bypasses the large scroll avoiding over-boosting
and reducing the pumping loss.

The model development presented for this engine has
two steps. The first step is a component-level modeling
where parameters for individual models of components are
estimated. At the engine level, which is the second step,
all components are connected and the final complete engine
model is formed. The following subsections describe each
step respectively.

A. Component Models

For the HDD engine, all components (namely: engine
block, turbocharger, intercooler, EGR and wastegate) are
modeled individually. Inputs and outputs of each component
are measured explicitly (except for the wastegate which
its output flow is estimated). The modeling approach for
components is similar to the work presented in [4] with re-
estimation of parameters given that the engine considered
here is a different model year and has a smaller level of
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asymmetry in the turbine scroll. Since the turbocharger,
EGR and wastegate are discussed in later sections of the
paper, their detailed equations are described here. The reason
for selecting these three components is higher uncertainty
associated with their modeling equations compared to other
engine sub-models. The EGR and turbine uncertainties come
from flow pulsations, the compressor is effected by the heat
transfer from the turbine and the WG flow model is uncertain
since it is not measured but estimated [5].

Turbocharger speed, Ntc, comes from its rotational dy-
namics written by:

ItcNtcṄtc = η̃tηmṁtTemCp,t(1− Pex

Pem

(1−1/γt)
)−

˜̇mcTinCp,c(
Pim

Pin

(1−1/γc) − 1)/ηc
(1a)

η̃t = θT ∗ ηt (1b)
˜̇mc = θC ∗ ṁc (1c)

in which ηm and ηc are mechanical and compressor ef-
ficiency, ṁt is the turbine flow, Tem and Pem are the
temperature and pressure in the exhaust manifold, Pex is
pressure in the exhaust pipe, Cp is specific heat, Tin and
Pin are the compressor inlet temperature and pressure, Pim
is the intake manifold pressure, γ is the ratio of specific
heats of the gas and rc is the impeller radius. θT and θC are
mathematical parameters included in the turbocharger model
to scale the turbine efficiency, ηt, and the compressor flow,
ṁc, and are used for the sensitivity analysis described in
Section 3.

The scaled EGR flow, ˙̄mEGR, is modeled using the
standard isentropic orifice flow model as:

˙̄mEGR = θEGR ∗AEGR
Pems√
RTems

F (
Pim
Pems

) (2)

in which the parameter θEGR again is defined for implement-
ing the sensitivity analysis within the simulation and Pems
is the exhaust manifold pressure at the turbine’s small scroll.
The effective area in (2), AEGR = gEGR(uEGR, Ne, PR),
is a function of ECU command (uEGR), the pressure ratio
(PR = Pim/Pems) and the engine speed (Ne) which are
included to account for the pulsation effects. The EGR flow
measured on the engine test bench is used to tune parameters
in (2). The same isentropic orifice model is used to simulate
the WG flow and scale it as:

˙̄mWG = θWG ∗AWG(xWG)
Peml√
RTeml

F (
Pim
Peml

) (3)

where θWG is the scaling parameter for sensitivity analysis
and Peml is the exhaust manifold pressure at the turbine’s
large scroll. xWG = gWG(uWG, Peml, Pex) is the wastegate
displacement taken from the wastegate mechanism force
balance which also depends on the ECU command to the
WG valve, uWG[5].

B. Complete Engine Model

The complete engine model (shown schematically in
Fig. 1) is formed by connecting individual steady state
components models (three of them were reviewed in the

Fig. 1: Overview of the complete engine model, its inputs
and selected outputs.

former subsection) along with dynamical models for pres-
sures (Ṗim, Ṗems, Ṗeml, Ṗex), air fractions (Ḟim, Ḟem) and
the turbocharger speed (Ṅtc) with details presented in [4].
The final performance of the complete HDD engine model
is presented in Fig. 2 over three different drive cycles
(DCs) in which different trajectories for the engine speed,
torque, EGR and WG were used. As plotted the general
trend of the engine model follows that of the measurements
however, steady state errors clearly exist. The averaged root
mean square (RMSEavg) used in Fig. 2 is defined as the
conventional RMSE divided by the average of measured data
over the entire time window at each test. A final tuning of
the engine model parameters is a typical step to reduce the
estimation error but, computationally, it is difficult to tune
all parameters in the complete engine model. In the next
section, the sensitivity analysis is used to detect parameters
in the complete HDD engine model whose tuning has the
most improvement in a set of selected outputs.

III. PARAMETER IMPORTANCE DETECTION

Importance of the defined scaling parameters θT ,
θC , θEGR and θWG is calculated by detecting their influence
on a set of the engine model outputs which is selected here as
Y = [Ntc, Pim, Pems, Peml]. The influence is detected using
parameter sensitivity analysis which uses the normalized
output-to-parameter sensitivity matrix ,S̃, defined to contain
information about the effect of a system parameters on
its outputs. The elements of the sensitivity matrix, S̃ij are
defined as:

S̃ij =
θ̃j
ỹi
.
∂ỹi

∂θ̃j
(4)

In (4) ỹi is the nominal value for ith output calculated
by using the nominal value for the jth parameter, θ̃j , at a
specific operating point. The normalization introduced in (4)
eliminates the effects of magnitude and unit of outputs and
parameters. Different approaches can be used to compute
the partial derivative ∂ỹi/∂θ̃j from the model equations [6].
For highly nonlinear dynamic models (as in our case) an
efficient technique is to use the finite difference formulation
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Fig. 2: Simulated outputs of the complete HDD engine model compared to measured data for three drive cycles (DC).

as: ∂ỹi/∂θ̃j ≈ ∆ỹi/∆θ̃j with proper selection of the step
size ∆θ̃j . Although, small values for ∆θ̃j make the finite dif-
ference assumption more accurate, but computational noise
would affect the final results [7]. Moreover, the locality in
the sensitivity analysis (small value for ∆θ̃j) is acceptable
in this work since the case is that at the fine-tuning stage of
a modeling work, the range of all parameters is known and
small changes in the parameters are desired.

The sensitivity of the selected output vector to the scaling
parameters vector Θ = [θT , θC , θEGR, θWG] is calculated
and results are shown in Fig. 3 for all variables in the selected
output vector. As observed, θT has the most influence in all
outputs. But for other three parameters, based on the selected
output, each parameter has different level of influence. For
example, θC is the main parameter influencing the turbo
speed (Fig. 3-a) while θEGR effects Pems more than the
other two parameters (Fig. 3-c). This output-based influence
requires a metric which utilizes all sensitivities and makes
a decision on the importance of a parameter on an output
vector. As an example, in [8] the average of all outputs
sensitivities to each parameter in the sensitivity matrix is
used as a measure of importance. Another technique to
calculate a quantitative measure for importance is to look
at the direction (in the parameter space) at which data from
the sensitivity matrix is distributed and selecting a parameter
which has affected the distribution more than others. This can
be done by applying Principle Component Analysis (PCA) to
the sensitivity matrix S̃ which calculates eigenvalues (main
directions of data distribution) and eigenvectors (variations at
each main direction) of the covariance matrix X = Cov(S̃).
For a n ×m matrix S̃ (n outputs and m parameters in our
SA case study) PCA calculates (maximum) n orthonormal
eigenvectors in a m-dimensional space. The first eigen-
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Fig. 3: Sensitivity of air-charge path variables to different
parameters

vector is the main direction (in the m-dimensional space)
at which data of S̃ are distributed. Therefore the weight
of each element in an eigenvector shows how much the
corresponding parameter has contributed to data alignment in
that direction[9]. The eigenvectors, [C1i, ..., Cji, ..., Cmi]

T ,
and eigenvalues, λi, from PCA of S̃ are used to calculate the
following importance measure for the j th parameter[10]:

µj =

n∑
i=1

|λiCji|
n∑
i=1

|λi|
(5)
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Fig. 4: Importance measure for different parameters from the
off-line analysis

with 0 ≤ µj ≤ 1. As the numerator in (5) suggests, the
importance of each parameter in a principle direction, Cji, is
multiplied by the direction’s importance, λi. Since elements
of S̃ represent deviation of outputs due to perturbation in pa-
rameters, thus the measure, µj , shows how much perturbing
the jth parameter has contributed to deviation in the vector
of outputs, Y [11].

The importance measure introduced in (5) for parameter
analysis is applied here to detect effectiveness of each
parameter on the engine model outputs with details described
in [12]. Two different test procedures were selected, one
with major changes in the engine torque and engine speed
and the other with major changes in the wastegate and EGR
positions (DC1 and DC3 in Fig. 2 respectively). To calculate
the importance measures, the sensitivity matrices calculated
from (4) at each step time are stacked over a test procedure
and then PCA is applied to the final matrix. Fig. 4 shows the
results for the two drive cycles. As observed, at both DC1 and
DC3, θT (as is expected) has the main effect on the outputs
(though µθT is lower in DC3 which has trajectories with
high variations in engine EGR and WG). The parameter θC
comes as the second influential parameter of the air-charge
path model, θEGR as the third and the wastegate shows the
least influence on the model. One reason for higher EGR
influence (compared to WG) is that changing the EGR effects
both the turbine flow and the engine air-fuel-ratio while the
WG only effects the turbine flow. Another interesting result
from Fig 4 is that when the wastegate and EGR are swept
(i.e. in DC3) their effect is relatively higher compared to the
test (DC1) at which there is no specific pattern for actuating
(exciting) these two components. Thus, depending on the test
cycle, each parameter may have different importance for the
model designer.

IV. PARAMETER TUNING AND RESULTS
A. Reduced-Parameter-set Tuning

Having θT and θC selected as the most influential param-
eters, a discrete Kalman filter is realized for identification
of the parameters over drive cycles DC1 and DC2 with
measured Ntc and Pim as feedback variables. The identified
parameters (mapped as functions of speed and load) are
shown in Fig. 5. As shown, θT (ranges in [1.01− 1.12]) has
lower variation than θC (ranges in [0.77−0.96]) which agrees
with µθT > µθC . This is explained using (1) as, a θT > 1
increases Ntc and (from the compressor map and the intake

(a) Parameter θT

(b) Parameter θC

Fig. 5: Contour plots of estimated θT and θC estimated over
DC1 and DC2.

manifold filling dynamics) ṁc and Pim consequently. This
monotonic effect helps to decrease estimation errors in the
Kalman filter quickly since the original model underestimates
both Ntc and Pim (Fig. 2). But θC does not effect Ntc and
Pim monotonically since a θC > 1 increases the compressor
flow which in turn could be balanced by slowing down Ntc.
Fig. 5 also shows smooth change of parameters over the
engine speed and load range. This is required for linear
interpolation inside the maps to calculate θT and θC for
operating points not visited during the identification step.

B. Full-Parameter-Set Tuning in OnRAMP

The OnRAMP Design Suite [13], [1], [14], [15] provides
a systematic approach to control design process starting
from system modeling. It makes the modeling process more
efficient and less dependent on the skill level of the engineer.
The tool provides environments for building engine scheme
out of engine elements library, design of experiment, data
management, data analysis and fully automated model cali-
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bration based on experimental data and component data such
as turbocharger maps. Further, the tool has model validation
features and both the local performance of the individual
components and the global input-output behavior of overall
connected model can be evaluated.

The followings are three main steps carried out to develop
and calibrate a reference model in OnRAMP:

1- Setting up the model structure by using the elements
library. Also the same data sets as those used for
component modeling (Section II-A) are included for
model identification.

2- Steady state identification of the model in two steps.
At first, a component-level identification is performed
that provides reasonable starting points for a global
identification. Then, the global identification is done that
reconciles the tuning of components in order to achieve
very high accuracy of the overall input-output model
with interconnected components.

3- Transient identification of the engine model. Parameters
such as time constants of actuators and rotational inertia
of the turbocharger are identified in this step.

It is recommended to collected data based on a design of
experiment (DoE) which is implemented in OnRAMP if
a user desires it. However even data collected without a
DoE (as done in this work), can be used for modeling
in OnRAMP. The 3-step identification scheme has shown
successful results for optimally solving complex model iden-
tification problems. In the case of the HDD engine model
developed in OnRAMP, 79 parameters were taken to the
final (global) identification stage which include pressure,
temperature, speed and emission models. Out of this 79
parameters, 47 of them are associated with turbocharger and
other sub-models with pressure outputs. The optimization
problem for the identification is to reduce a quadratic cost
function from estimation errors subjected to both dynamic
and static constraints which OnRAMP solves it by employing
an optimization algorithm based on nonlinear least squares
for model identification [13]. OnRAMP can be used on
engines of displacements from 1.2L to 15L and consequently
it is important to get component local parameters in a feasible
initial range so that good performance of the identification
procedure is achieved and unnecessary user intervention
avoided [13]. This initial range is calculated at the component
level identification stage.

C. Comparing Reduced and Full-Parameter-Set Tuning

The final tuned models are tested in the three DCs used
to test the original HDD engine model (shown in Fig. 2). It
is worth noticing that DC3 is not used during the parameter
identification process. Results are shown in Fig. 6 in which
experimental measurements and OnRAMP simulated data
are also included. Compared to Fig. 2, the averaged RMSE
is reduced in all drive cycles for the model with tuned
reduced-parameter-set (indicated as “Reduced” in Fig. 6).
Moreover, as shown, the full-parameter-set model identified
by OnRAMP has better accuracy for all variables except the
small exhaust manifold pressure (Pems). A reason for this

Fig. 7: Comparison of models accuracy in three different
drive cycles (DCs).

problem is that EGR valve position was not swept enough in
the dataset used for setting up the engine model in OnRAMP.

Fig. 7 shows a summary of accuracy of the three models
discussed in this paper. As shown, by reduced-parameter-
set tuning, accuracy of estimation for all variables has
improved noticeably, with Ntc attaining the highest im-
provement. Predictive ability of the “Reduced” model is
also good as for DC3 (which has not been used during
parameter tuning) accuracy has improved, even with lower
final values compared to DC1 and DC2. However, as shown
in Fig. 7, the OnRAMP model has the highest accuracy for
all variables (except Pems) which is attained through full-
parameter-set tuning. Therefore, the reduced-parameter-set
tuning approach is recommended in applications requiring
on-line model tuning where moderate accuracy along with
simplicity is mandatory and where the high accuracy needs
to be sacrificed due to heavy computational load.

V. CONCLUSIONS

Reduced-parameter-set tuning was addressed in this paper
for the gas exchange path model of a HDD engine. To make
the reduced-parameter-set adaption possible, the main idea
was to tune only parameters with the highest influence on the
model. The influential parameters were detected using four
parameters added to the engine model such that the sensi-
tivity of selected outputs was analyzed to flow of the EGR,
wastegate and compressor as well as the turbine efficiency.
Since the outputs were not showing a unique sensitivity to
all parameters, a metric to quantify the overall sensitivity
of all outputs to a parameter was used based on principle
component analysis. After the turbine efficiency and the
compressor flow were detected to be the most influential,
their scaling parameters were tuned in a final identification
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Fig. 6: Measured outputs compared to those simulated by the tuned model and by the model developed in OnRAMP

step. A discrete Kalman filter was implemented and the
parameters (mapped as functions of speed and load) were
identified over two drive cycles. The reduced-parameter-set
tuned model was tested against experimental measurements
on a HDD engine as well as a model developed in OnRAMP
Design Suite which tunes a full set of parameters in an engine
model. Results from different test drive cycles showed tuning
reduced number of parameters (only 2 parameters in the
turbocharger model) improves the model accuracy more than
50% in average. This made the tuned model to successfully
approach to the highly accurate model tuned by OnRAMP.
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