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Abstract— The estimation of temperature inside a battery cell
requires accurate information about the cooling conditions even
when the battery surface temperature is measured. This paper
presents a model-based approach for estimating temperature
distribution inside a cylindrical battery under unknown convec-
tive cooling conditions. A reduced-order thermal model using
a polynomial approximation of the temperature profile inside
the battery is used. A dual Kalman filter (DKF), a combination
of a Kalman filter and an extended Kalman filter, is then
applied for the identification of the convection coefficient and
the estimation of the battery core temperature. The thermal
properties are modeled by volume averaged lumped-values under
the assumption of a homogeneous and isotropic volume. The
model is parameterized and validated using experimental data
from a 2.3 Ah 26 650 lithium-iron-phosphate battery cell with a
forced-air convective cooling during hybrid electric vehicle drive
cycles. Experimental results show that the proposed DKF-based
estimation method can provide an accurate prediction of the core
temperature under unknown cooling conditions by measuring
battery current and voltage along with surface and ambient
temperatures.

Index Terms— Dual Kalman filter (DKF), lithium ion (Li-ion)
batteries, reduced-order model, state and parameter estimation,
thermal modeling.

I. INTRODUCTION

OVER the past few decades, energy storage systems
utilizing lithium ion (Li-ion) batteries have become one

of the most critical components for realizing efficient and
clean transportation systems through electrification of vehicles,
e.g., hybrid electric vehicles (HEVs), plug-in HEVs, and EVs.
Li-ion batteries have several advantages such as minimal
memory effect, broad temperature range of operation, and
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high power discharge capability [1], [2]. However, cycle life
and capacity of the Li-ion battery are adversely affected by
sustained operation at high temperatures [3]–[6]. This presents
a problem in automotive applications where high discharge and
charge rates needed for vehicle propulsion and regenerative
braking cause internal heating of the battery. Knowledge of
the temperature distribution across cells and packs in addition
to cooling condition allows one to accurately estimate power
capability accounting for thermal limits [7]. Thus, being able
to estimate/predict is vital for formulating power management
and cooling strategies to maximize battery utilization in a
supervisory controller.

The battery temperature distribution depends on the con-
vection coefficient, which in turn is influenced by the flow
rate of the cooling system. This flow rate can be actively
controlled by variable speed motors and pumps. This flexibility
requires several experiments to parameterize the convection
coefficient. However, the performance of the cooling system
can degrade generally due to various reasons such as dust on
fan blades, partial blockage in pipes, motor/pump ageing, and
even a motor/pump failure. Even though such a degradation
or failure can be detected by a fault detection system via
pressure and temperature sensors, the battery management
system still needs to identify the convection coefficient even
in these conditions for an accurate estimation of the core
temperature.

This paper considers a novel method for estimating
the temperature distribution inside cylindrical batteries with
simultaneous estimation of the convective cooling condition.
To achieve this goal, the computationally efficient thermal
model for a cylindrical battery proposed in [8] is used. A poly-
nomial approximation (PA) to the solution of the heat transfer
problem is used as a model reduction technique unlike existing
reduced-order modeling approaches in [9]–[13]. This modeling
approach facilitates a systematic prediction of the core, the
surface and the volume-averaged temperatures along with the
volume-averaged temperature gradient. A dual Kalman filter
(DKF) is then applied for the identification of the convection
coefficient and the temperature distribution inside a cylindrical
battery based on measured signals such as the battery current
and voltage along with battery surface and ambient tempera-
tures [14]. The proposed method can be augmented with other
existing battery thermal or power management strategies in
[7] and [15] for the safe and robust operation.
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Fig. 1. (a) Schematic for a A123 26650 cylindrical battery and (b) parabolic
temperature profile under uniform heat generation.

This paper is organized as follows. Section II presents
the convective heat transfer problem for a cylindrical battery
and the reduced-order thermal model. Model reduction is
performed applying a PA of the solution of a partial differential
equation (PDE) system. The thermal properties of the battery
are experimentally identified and the sensitivity of temperature
prediction to changes in model parameters is numerically
analyzed in Section III. In Section IV, the adaptive temperature
estimator is developed applying a DKF for estimating the
core temperature and identifying the convection coefficient.
Section V presents and discusses the experimental results, and
conclusion is drawn in Section VI.

II. HEAT TRANSFER PROBLEM IN

CYLINDRICAL BATTERIES

This paper considers the radially distributed (1-D) thermal
behavior of a cylindrical battery cell with convective heat
transfer boundary condition, as shown in Fig. 1(a) [8], [9],
[16], [17]. A cylindrical Li-ion battery, so-called a jelly roll, is
fabricated by rolling a stack of cathode/separator/anode layers.
The individual layered sheets are thin, therefore, lumped
parameters are used so that material properties such as thermal
conductivity, density, and specific heat coefficient are assumed
to be constant in a homogeneous and isotropic body. For spiral
wound current collectors with multiple connections to the
battery tab, it is reasonable to assume uniform heat generation
along the radial direction [17], [18]. The thermal conductivity
is one or two orders of magnitude higher in the axial direction
than in the radial direction. Therefore, the temperature distri-
bution in the axial direction will be more uniform [19], [20].
Under these assumptions, the governing equation of the 1-D
temperature distribution T (r, t) and boundary conditions are
given by

ρcp
∂T (r, t)

∂ t
= kt

∂2T (r, t)

∂r2 + kt

r

∂T (r, t)

∂r
+ Q(t)

Vb
(1)

B.C.’s
∂T (r, t)

∂r

∣
∣
∣
r=0

= 0 (2)

∂T (r, t)

∂r

∣
∣
∣
r=R

= − h

kt
(T (R, t) − T∞) (3)

where ρ, cp, and kt represent the volume-averaged density,
the specific heat coefficient, and the thermal conductivity

TABLE I

PARAMETERS OF THE BATTERY [9]

of the battery, respectively, and are summarized in Table I.
The radius of the battery is R, Q is the heat genera-
tion inside the battery, and Vb is the volume of battery.
The ambient temperature and the convection coefficient are
denoted by T∞ and h, respectively. The boundary condi-
tion in (2) represents the symmetric structure of the battery
about the core. The other boundary condition shown in (3)
represents the convective heat transfer at the surface of the
battery.

A. Model Reduction

With evenly distributed heat generation, the temperature
distribution along r -direction of the battery cell is assumed
to satisfy the following PA in [8] [Fig. 1(b)]:

T (r, t) = a(t) + b(t)
( r

R

)2 + d(t)
( r

R

)4
(4)

where a(t), b(t), and d(t) are the time-varying constants.
To satisfy the symmetric boundary condition at the core of
the battery cell, (4) contains only even powers of r . Thus,
the temperatures at core and surface of the battery can be
expressed as

Tc = a(t) (5)

Ts = a(t) + b(t) + d(t) (6)

where subscripts c and s denote core and surface,
respectively.

The volume-averaged temperature T̄ and temperature gra-
dient γ̄ are introduced as follows:

T̄ = 2

R2

∫ R

0
r T dr (7)

γ̄ = 2

R2

∫ R

0
r

(
∂T

∂r

)

dr. (8)

These volume-averaged values are used as the states unlike
existing approaches in [10], [11], and [13].

By substituting (4) in (7) and (8), T̄ and γ̄ can be expressed
in terms of time-varying constants as

T̄ = a(t) + b(t)

2
+ d(t)

3
(9)

γ̄ = 4b(t)

3R
+ 8d(t)

5R
. (10)
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Fig. 2. Comparison of frequency response functions obtained by AS, PA, and FD method. (a) Magnitude. (b) Phase.

By rearranging (6), (9), and (10), time-varying functions
a(t), b(t), and d(t) can be written by

a(t) = 4Ts − 3T̄ − 15R

8
γ̄ (11)

b(t) = −18Ts + 18T̄ + 15R

2
γ̄ (12)

d(t) = 15Ts − 15T̄ − 45R

8
γ̄ . (13)

By substituting (11)–(13) in (4), the temperature distribution
can be expressed as a function of Ts , T̄ , and γ̄

T (r, t) = 4Ts − 3T̄ − 15R

8
γ̄

+
[

−18Ts + 18T̄ + 15R

2
γ̄

] ( r

R

)2

+
[

15Ts − 15T̄ − 45R

8
γ̄

] ( r

R

)4
. (14)

By substituting (14) to following volume-averaged gov-
erning equation and its partial derivative with respect
to r :

∫ R

0

(

ρcp
∂T (r, t)

∂ t
−kt

∂2T (r, t)

∂r2 − kt

r

∂T (r, t)

∂r
− Q(t)

Vb

)

dr = 0

∫ R

0

∂

∂r

(

ρcp
∂T (r, t)

∂ t
−kt

∂2T (r, t)

∂r2 − kt

r

∂T (r, t)

∂r
− Q(t)

Vb

)

dr= 0

the PDE (1) can be converted into ODEs as follows:

dT̄

dt
+ 48α

R2 T̄ − 48α

R2 Ts + 15α

R
γ̄ − α

kt Vb
Q = 0

d γ̄

dt
+ 320α

R3 T̄ − 320α

R3 Ts + 120α

R2 γ̄ = 0

where α = kt/ρcp is thermal diffusivity.
Finally, a two-state thermal model can be given by the

following form:
ẋ = Ax + Bu

y = Cx + Du (15)

where x = [T̄ γ̄ ]T , u = [Q T∞]T , and y = [Tc Ts ]T are
the states, inputs, and outputs, respectively. System matrices
A, B , C , and D are defined as follows:

A =

⎡

⎢
⎢
⎣

−48αh

R(24kt + Rh)

−15αh

24kt + Rh
−320αh

R2(24kt + Rh)

−120α(4kt + Rh)

R2(24kt + Rh)

⎤

⎥
⎥
⎦

B =

⎡

⎢
⎢
⎣

α

kt Vb

48αh

R(24kt + Rh)

0
320αh

R2(24kt + Rh)

⎤

⎥
⎥
⎦

C =

⎡

⎢
⎢
⎣

24kt − 3Rh

24kt + Rh
−120Rkt + 15R2h

8(24kt + Rh)
24kt

24kt + Rh

15Rkt

48kt + 2Rh

⎤

⎥
⎥
⎦

D =

⎡

⎢
⎢
⎣

0
4Rh

24kt + Rh

0
Rh

24kt + Rh

⎤

⎥
⎥
⎦

. (16)

This state-space representation is used for the parametrization
in Section III and the estimation of core temperature and
convection coefficient in Section IV.

B. Frequency Domain Analysis

The transfer function of the thermal system H (s) is calcu-
lated by

H (s) = D + C(s I − A)−1 B

where s is Laplace variable and I is the identity matrix.
The frequency response functions of the reduced-order

model are compared with those of the analytical solution (AS)
in [9] and finite difference (FD) method with 30 discretization.
Parameters used to generate the plots in Fig. 2(a) and (b)
are summarized in Table I. The heat transfer coefficient of
h = 5 W/m2K is chosen since this value is typical of natural
convection condition [21].
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Fig. 3. OCV approximately obtained by averaging terminal voltages during
charging and discharging a battery with C/20 current rate.

Fig. 2(a) and (b) show that the effects of heat generation
on core and surface temperature, denoted by H11(s) and
H21(s), respectively, can be accurately predicted over the
whole range of frequency. On the other hand, the responses
of core and surface temperature excited by the ambient
temperature, H12(s) and H22(s), are nearly identical to the AS
for frequencies below 10−2 Hz. In general, the temperature
of cooling media does not change rapidly. Therefore, the
prediction of temperature distribution using the reduced-order
model can be considered reasonably accurate.

C. Heat Generation Calculation

Since heat generation rate Q is the input to the battery
thermal system, the input needs to be accurately calculated
from measurement data, such as current and voltage during
operation. Bernardi et al. [22] proposed the simplified form
of heat generation rate with assumptions that heat generation
due to enthalpy-of-mixing, phase-change, and heat capacity
are assumed to be negligible as expressed by

Q = i(U − V ) − i

(

T
∂U

∂T

)

(17)

where i , U , and V represent the current, the open-circuit
voltage (OCV), and the terminal voltage, respectively. As
shown in Fig. 3, the OCV is a function of the battery state-
of-charge (SOC). This function is experimentally obtained by
averaging the measured terminal voltages during charging and
discharging a battery with C/20 current rate under a constant
current constant voltage charging protocol. The OCV is then
calculated at the estimated SOC value by integrating measured
current with respect to time as

dSOC

dt
= − I

3600Cb

where Cb is the battery capacity in Ah. The sign convention
is such that positive current denotes battery discharging.

The last term in (17) is the heat generation from entropy
change. In this paper, heat generation due to entropy change is
neglected for simplicity. This simplification is warranted since
the typical SOC range of HEV operation is narrow in which
∂U/∂T of the battery cell is insignificant, as shown in [11] for
this chemistry. In addition, the reversible entropic heat genera-
tion would have zero mean value when the battery is operating
in charge-sustaining mode, typical of HEV operation.

III. PARAMETER IDENTIFICATION

In this section, the values of lumped parameters for a
2.3 Ah 26 650 lithium-iron-phosphate (LiFePO4 or LFP)

Fig. 4. Data set used for parameter ID: current (top), voltage (middle), and
ambient temperature (bottom) during UAC.

battery cell by A123 are identified through experimentation
using the reduced-order model. Fig. 4 shows current, volt-
age, and ambient temperature profiles over the urban-assault
cycle (UAC) in [23] that is used for the parametrization.
This cycle used for simulating military ground vehicles has
significantly high power demands. The parameterized model
is then validated using measurement data over a different HEV
driving cycle. The numerical analysis on parameter sensitivity
on temperature prediction is performed to investigate the use of
constant parameters for thermal conductivity and heat capacity
and the importance of identifying the convection coefficient
on-line.

A. Identifying Thermal Properties

The parameter identification is important for accurately
predicting the temperature distribution inside a battery cell
as the parameters kt , cp , ρ, and h determine the dynamics
of thermal model. As the density is a measurable constant,
only three parameters such as kt , cp , and h are considered for
the parameter identification. The experimental setup for the
parameter identification is described in [25]. Measured cell
current, voltage, surface and core temperature of the battery
cell, and ambient temperature are used for the parameter
identification.

Specifically, convection coefficient h is controlled by the
fan speed based on pulsewidth modulation (PWM) control and
temperature inside the thermal chamber.

Let the error between the measured temperatures and model
outputs at each time step k in vector form be

e(k, θ) = [Tc,e(k, θ) Ts,e(k, θ)]T − [Tc,m(k) Ts,m(k)]T

where θ = [kt cp h]T , Tc,e, and Ts,e represent the model
parameters, core and surface temperatures, respectively. The
battery is allowed to rest at ambient temperature to equilibrate,
i.e., x(0) = [T∞ 0]T .

Parameters are identified by minimizing the Euclidean
norm of the difference between the measured and simulated
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TABLE II

IDENTIFIED THERMAL PROPERTIES

temperatures as given by

θ∗ = arg min
θ

N f
∑

k=1

||e(k, θ)||2

where N f is the number of measurement points. The min-
imization problem is solved using the fmincon function in
MATLAB. The parameters in Table I are used as initial guess
for the identification.

Table II shows the identified thermal properties for the
26650 battery. These parameters are close to the values
reported in the literature. The identified specific heat coef-
ficient cp is 5% larger than the mean value determined
in [11], where cp was determined by measuring transient
responses of the battery under different pulses. Forgez et al.
suggested that the deviation in identified value of cp might
be caused by measurement uncertainty in temperature and the
temperature dependency of the heat capacity. The identified
thermal conductivity kt is within the range of values presented
in [9] and [24].

Despite using similar experimental data and setup, the iden-
tified convection coefficient is 11% smaller than the coefficient
calculated by using thermal resistance and battery surface area
in [25]. This difference between our identified value and the
one in [25] may be due to the two different model structures.
Lin et al. [25] considered two different materials, namely one
for the core and one for the surface, whereas we assume the
battery is a homogeneous and isotropic body. To accurately
determine the convection coefficient, the temperature measure-
ments of a pure metal during thermal relaxation can be used.
For instance, the specific heat capacity of copper at 25 °C is
known as 385 J/kgK. For more detailed description about the
experiment, the interested reader is referred to [26].

Fig. 5 shows the measured and simulated temperatures
at the core and surface of the battery. The error between
the measurements and simulated temperature is less than
the sensor accuracy of 0.5 °C. Thermocouples used for
temperature measurements are T-type whose accuracy is the
maximum of 0.5 °C or 0.4% according to technical infor-
mation from the manufacturer, OMEGA. The parameterized
thermal model accurately predicts the temperature inside the
battery, which is difficult to measure in practical applications.
Using (14), the temperature distribution inside the battery
can be predicted, as shown in Fig. 6(a). Fig. 6(b) shows the
volume-averaged temperature and its gradient of the battery,
respectively. There is no significant difference between the
volume-averaged temperature and the linear average of core
and surface temperatures, i.e., (Ts + Tc)/2. It should be noted

Fig. 5. Comparison between measured and simulated temperatures (top) and
errors (bottom).

that existing approaches in [10], [11], and [13] have the
capability of predicting the core temperature and have shown
the efficacy of their proposed methods on the prediction of
temperature inside the cell under consideration in this paper.
However, the phenomena may differ in the case of a cell
with larger radius [27]. The volume-averaged temperature
gradient is different from the linear temperature gradient, i.e.,
(Ts − Tc)/R. In particular, the volume-averaged temperature
gradient is 1.36 times greater than linear temperature gradient
under the UAC test. Since nonuniform temperature distribution
can lead to accelerated capacity losses of inner core [27], the
volume-averaged temperature gradient is an important metric
to describe severity of temperature inhomogeneity inside the
battery.

B. Model Validation

To validate the performance of the reduced-order model
with identified parameters, the battery was tested under a
different HEV drive cycle, the escort convoy cycle (ECC)
in [25]. The current and voltage profiles for this cycle are
shown in Fig. 7(a). Fig. 7(b) shows that there are slight
differences between the measured and simulated temperatures.
In particular, the root-mean-square errors (RMSE) of core and
surface temperatures are 0.4 °C and 0.3 °C, respectively. These
differences may be explained with the assumption of radially
uniform heat generation and high conductivity in the axial
direction. Additionally, the entropy change of the LFP battery
is not considered in heat generation formulation (17), which
might introduce error in the calculation of heat generation
rate. Furthermore, heat generation due to contact resistances
between tabs and connecting wires can be another source of
prediction error. At a high current rate, ohmic heating due to
contact resistance could be substantially high. Nevertheless,
since the comparison of temperatures shows a good agreement
and reasonably small RMSEs, it can be concluded that the
reduced-order model with identified thermal properties is rea-
sonably accurate for thermal management during HEV drive
cycles.
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Fig. 6. (a) Expected temperature distribution along the normalized radius (r/R) using PA. (b) Cell temperature (top) and temperature gradient (bottom).

Fig. 7. (a) Current (top) and voltage (bottom) profiles during ECC. (b) Validation data set: comparison between measured and simulated temperatures (top)
and errors (bottom).

C. Parameter Sensitivity Analysis

Three parameters, the thermal conductivity kt , the specific
heat coefficient cp and the convection coefficient h, are
chosen for the sensitivity analysis. To investigate the impact
of variations in parameters on the performance of temperature
prediction, each parameter is varied between −20% and 20%
around the identified value while holding the other parameters
constant. Fig. 8 shows that the thermal conductivity and the
specific heat coefficient have more influence on the prediction
of the core temperature than the surface temperature. This
result corresponds to the fact that the heat generated inside
the battery is transferred through conduction. On the other
hand, the prediction of the surface temperature is the most
sensitive to the variation of the convection coefficient, which
can be explained by the fact that the convection coefficient is
directly related to the convective boundary condition (3). The
convection coefficient has the most significant influence on the
overall prediction of the core and the surface temperatures.

The specific heat coefficient and the thermal conductivity
are weakly dependent on temperature [11], [28], [29], so

Fig. 8. Effect of parameter variation about the nominal values listed in
Table II to temperature prediction: core (top) and surface (bottom).

the assumption of constant parameters can be justified. On
the other hand, the convection coefficient depends strongly
on fan speed or fluid velocity as expressed by empirical
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correlations provided in [30]. Therefore, the accurate
identification of the convection coefficient is important for
better prediction of temperature inside the battery. This impor-
tance justifies the on-line identification of the convection
coefficient for better estimation of temperature, as detailed in
Section IV.

IV. ESTIMATION OF TEMPERATURE AND

CONVECTION COEFFICIENT

As discussed in Section III-C, the estimation of temper-
ature inside the battery requires accurate knowledge of the
convection coefficient, which depends on the cooling con-
dition. To identify the convection coefficient and the core
temperature inside the battery on-line, a DKF in [31] is
applied. The other thermal parameters such as the thermal
conductivity and the specific heat coefficient are constant
values identified in Section III since these parameters have less
influence on temperature and do not change significantly over
time.

Assuming the input u(t) is constant over each sampling
interval �t , a parameter varying discrete-time model at time
step k can be obtained as

xk+1 = Ā(θk)xk + B̄(θk)uk + wk

yk = C(θk)xk + D(θk)uk + vk

θk+1 = θk + rk (18)

where x = [T̄ γ̄ ]T , y = Ts , θ = h, and u = [Q T∞]T .
System matrices Ā ≈ I + A�t and B̄ = B�t are obtained
from matrices in (16). Noise signals wk , vk , and rk , are
independent, zero-mean, Gaussian processes of covariance
matrices �w , �v , and �r , respectively.

The design of the DKF estimator is given as following
update processes.

Time update for the parameter filter

θ̂−
k = θ̂+

k−1

S−
k = S+

k−1 + �r .

Time update for the state filter

x̂−
k = Āk−1 x̂+

k−1 + B̄k−1uk−1

P−
k = Āk−1 P+

k−1 ĀT
k−1 + �w.

Measurement update for the state filter

Kk = P−
k Cx

k
T [

Cx
k P−

k Cx
k

T + �v

]−1

x̂+
k = x̂−

k + Kk
[

yk − C(θ̂−
k )x̂−

k − D(θ̂−
k )uk

]

P+
k = [

I − KkCx
k

]

P−
k .

Measurement update for the parameter filter

Lk = S−
k Cθ

k
T [

Cθ
k P−

k Cθ
k

T + �e
]−1

θ̂+
k = θ̂−

k + Lk
[

yk − C(θ̂−
k )x̂−

k − D(θ̂−
k )uk

]

S+
k = [

I − LkCθ
k

]

S−
k

where superscripts − and + denote the a priori and
a posteriori values, respectively. The matrices Āk−1, Cx

k ,

Fig. 9. Fan schedule for forced-air convective cooling.

and Cθ
k are calculated according to

Āk−1 = Ā(θk)|θk=θ̂−
k

Cx
k = C(θk)

∣
∣
∣
θk=θ̂−

k

Cθ
k = dyk

dθk

∣
∣
∣
xk=x̂−

k ,θk=θ̂−
k

.

The identified states x̂ and parameter θ̂ , computed from
the above DKF algorithm, are used to estimate the core
temperature in the battery from (15). It is noted that since
the thermal system is linear, the DKF becomes a Kalman
filter (KF) when the parameter of the convection coefficient
is known or given. In other words, update processes for
the parameter filter are unnecessary with the knowledge of
convection coefficient.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed temperature
estimator using the DKF is compared with that of the baseline
KF estimator without parameter identification. Following the
experimental setup in [25], we draw a current and measure
voltage and temperatures at the core and the surface of
the battery while controlling the ambient temperature in the
thermal chamber. The surface temperature is used for the
estimator and the core temperature is measured to verify
the estimation accuracy. The experiment is performed using
the ECC to verify the state and parameter estimation. Three
different forced convective cooling conditions (stages I–III) are
demonstrated using different PWM signals driving the fan, as
shown in Fig. 9. To investigate the influence of change in the
initial parameter on the temperature estimation, the parameter
is provided to each estimator as following:

1) in stage I, the off-line predetermined convection coeffi-
cient is provided to the KF and is used for the DKF as
an initial value: θ̃ = θ∗ and θ̂ (0) = θ∗;

2) in stage II, the off-line predetermined convection coef-
ficient is provided to the KF only: θ̃ = θ∗;

3) in stage III, two times larger convection coefficient
compared with the known value is provided to the KF:
θ̃ = 2θ∗

where θ̃ and θ̂ denote fixed and identified parameters for
the KF and the DKF, respectively, whereas θ∗ presents the
predetermined parameter value. Other thermal properties such
as the thermal conductivity and the specific heat coefficient
are assumed constant with values shown in Table I.

It is assumed that the initial temperature distribution inside
the battery is uniform at 30 °C and convection coefficient
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Fig. 10. Comparison of performance between KF estimator, DKF estimator
during stage I: convection coefficient (top), core temperature (middle), and
error (bottom).

Fig. 11. Comparison of performance between KF estimator, DKF estimator
during stage II: convection coefficient (top), core temperature (middle), and
error (bottom).

is 56.2 W/m2K, i.e., x̂(0) = [30 0]T and θ̂ (0) = 56.2,
respectively. The covariance matrix for the state �w =
β1

2diag(1, 1) describes the process noise, where β1 > 0 is a
parameter for tuning based on the model inaccuracy. The noise
covariance �v = σ 2 is determined from the standard deviation
of temperature signal σ = 0.05 °C. The covariance matrix for
the parameter �r = β2

2 influences the performance of noise
filtering and the rate of parameter convergence. Ultimately, the
initial condition of the error covariance matrix and the tuning
parameter are chosen as P(0) = diag(1, 1), β1 = 0.0005,
S(0) = 0.05, and β2 = 0.007 through repeated simulations,
respectively. It is noted that the initial conditions and tuning
parameters for the DKF are the same as those of the KF.

The results for the parameter and state estimation are shown
in Figs. 10–12 and summarized in Table III. Fig. 10 shows that
all closed-loop estimators can accurately predict temperature
inside the battery as evidenced by the small RMSE for

Fig. 12. Comparison of performance between KF estimator, DKF estimator
during stage III: convection coefficient (top), core temperature (middle), and
error (bottom).

TABLE III

PERFORMANCE OF CORE TEMPERATURE ESTIMATION: RMSEs

temperature estimation, 0.18. On-line identified parameters are
close to the off-line determined without large deviations during
initial time periods, which is caused by two factors: 1) a
correct initial guess for parameter and 2) a relatively small
initial parameter covariance. Therefore, performances of the
DKF estimator are comparable with that of KF estimator.
As discussed in Section III-C, thermal properties can vary
with respect to operating temperature. Therefore, it is expected
that better performance can be achieved using temperature-
dependent parameters for thermal conductivity and specific
heat coefficient.

Fig. 11 shows the performance of temperature estimation by
the closed estimator in stage II when there is a sudden change
in the cooling condition. The KF can accurately estimate the
core temperature with information about the change in the
convection coefficient. Since the DKF is capable of identifying
the convection coefficient online, the DKF provides reasonably
accurate estimates for the core temperature by comparing the
core temperature predicted by the KF estimator. The RMSE
for core temperature estimation by the DKF is very close to
the RMSE by the KF and this error is still reasonably small
with considerations of the sensor accuracy.

As observed from Fig. 12, the KF estimator overestimates
the core temperature when the incorrect parameter value is
used as a convection coefficient. In other words, the reliable
estimation of core temperature is only possible when the
accurate parameter is available. Thus, it can be concluded
that the DKF estimator outperforms the KF estimator due to
the capability of parameter identification. The RMSE for core
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temperature estimation in stage III can be substantially reduced
from 1.58 to 0.45 by the DKF.

It is worth noting that the DKF can be augmented with
other existing battery management strategies to improve the
system robustness without cost increase. For instance, to detect
partial blockage in a cooling system, typically, a mass flow or
pressure sensor is required. The DKF enables the identification
of the convection coefficient using sensors, which are already
instrumented at the battery. The identified parameter can be
also used for monitoring the malfunction or degradation of
the cooling system. Under the assumption that the relationship
between the convection coefficient and fan speed or PWM
signal is known, the malfunction of the cooling system can
be detected by comparing the identified parameter with the
known value. When the difference between the identified and
predetermined values |θ̂ − θ∗| is bounded and small, it can be
considered that there is no fault in the cooling system. On the
other hand, |θ̂ − θ∗| � ε, where ε is a pretuned threshold, a
cooling fault can be detected. In particular, |(θ̂ − θ∗)/θ∗| can
be interpreted as the severity of degradation of the cooling
system.

VI. CONCLUSION

In this paper, a method to estimate the temperature distribu-
tion in cylindrical batteries under unknown cooling condition
is proposed. First, a radially distributed 1-D thermal modeling
approach for a cylindrical battery cell is considered. A PA is
applied to obtain a reduced-order model enabling the devel-
opment of real-time applications. Frequency domain analysis
shows that the reduced-order model provides reasonably accu-
rate prediction of the core and surface temperatures with an
assumption that the temperature of cooling media does not
change rapidly.

The reduced-order model is used to identify thermal proper-
ties such as the thermal conductivity and specific heat capacity
of a 2.3 Ah 26650 LFP battery cell and the convection
coefficient using a set of measured data: current, voltage,
temperatures at the core and surface and ambient temperature.
Identified parameters are close to the values reported in
the literature. Particularly, the volume-averaged temperature
gradient of a cylindrical cell captures the imbalance of tem-
perature distribution, which is useful for battery management
systems to minimize accelerated capacity losses of inner core.
The numerical analysis on parameter sensitivity supports the
use of constant parameters for thermal conductivity and heat
capacity and the importance of identifying the convection
coefficient on-line.

A DKF is applied to estimate the temperature inside the
battery and convection coefficient by the cooling fan. The
proposed method requires no knowledge of the convective
cooling conditions. The results shows that the proposed DKF
estimator can provide reasonably accurate estimates of core
temperature and convection coefficient using surface tem-
perature, which is relatively easy to measure in practice.
In addition, a faulty operation in the cooling system can be
detected by monitoring the difference between the identified
and off-line predetermined values. Since forced air is used as

a cooling media to reject heat from the cell in this paper, the
range of the convection coefficient of which we are interested
is less than 100 W/m2K. Therefore, the reader is urged to
investigate whether the PA is valid for their applications.

In the future, the proposed method can be used to develop
various battery management strategies, e.g., the determination
of maximum current with consideration of thermal constraints
or optimal fan scheduling for energy efficiency, leading to the
safe and efficient operation of the battery system.
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