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Abstract— The voltage of lithium ion batteries is usually
monitored to prevent overcharge and overdischarge. For battery
packs consisting of hundreds of cells, monitoring the voltage
of every single cell adds significant cost and complexity to the
battery management system (BMS). Reducing voltage sensing
by only measuring the total voltage of multiple cells in series
connection is desirable if the state of charge (SOC) of individual
cells can be correctly estimated. Such goal cannot be achieved
by an extended Kalman filter, because the cell SOCs are not
observable in the linearized battery string model. In this paper,
an observer based on solving simultaneously multiple nonlinear
equations along the trajectory of SOC evolution is used for
the estimation problem. Existence of the solution depends on
the nonlinearity of the battery voltage-SOC relationship. The
observer is applied to a LiFePO4/graphite battery string with
2 cells, where the individual cell SOCs are observable in
low and high SOC ranges. Experimental results show good
convergence of SOC and voltage estimation, indicating that this
new methodology can be applied to, at least, halve the voltage
sensing in a battery pack.

I. INTRODUCTION

Automotive battery systems for hybrid electric vehicles

(HEV), plug-in hybrid electric vehicles (PHEV), and battery

electric vehicles (BEV) usually consist of hundreds and even

thousands of cells. The number of cells in a battery system

is a function of the desired total voltage, power and energy,

and the characteristics of the selected cell chemistry. Battery

packs in HEVs with Nickel Metal Hydride (NiMH) batteries

typically have 150-250 cells. Packs using lithium ion cells

for the same type of vehicles have about 50-100 cells due

to the higher voltage inherent to the lithium ion chemistry.

Production HEVs with NiMH batteries typically measure

total voltage of modules with 5 to 16 cells in series. Due

to the sensitivity of most lithium ion cells to overcharge and

overdischarge [1], [2], existing battery management systems

(BMS) for lithium ion battery packs need to monitor the

state of charge (SOC) and voltage of every single cell. This

single-cell monitoring strategy adds significant cost to the

lithium ion battery system including sensors, wiring and

labor. Therefore, it is highly desirable to reduce the voltage

sensing, e.g. by only measuring the total voltage of multiple

cells, under the condition that the SOC and voltage of

individual cells can still be monitored.
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In this paper, the possibility of estimating the SOCs of

batteries in series connection by only using the total voltage

measurement is investigated. First, we try to use the extended

Kalman filter (EKF), which have been widely used to esti-

mate the battery SOC. The EKF works well when the single

cell voltage is measured for feedback [3], [4], [5]. However, it

has found that when only the total voltage of a battery string

is measured, the EKF can only track the average SOC of the

string but not the individual cell SOCs. The limitation arises

from the lack of observability of the linearized battery string

model discussed in Section III. In [6], the cell balancing

circuit is used to augment the voltage measurement when

only the total voltage is measured. In this paper, instead,

it is shown that the individual cell SOCs are observable

in the sense of nonlinear observability for some lithium

ion battery chemistry. For example, a 2-cell string with

LiFePO4/graphite batteries, whose voltage-SOC relationship

is highly nonlinear, is shown to have observable individual

cell SOCs in low and high SOC ranges. Such nonlinear

observability provides the possibility of estimating individual

cell SOCs by using methods other than the EKF. The Newton

observer, which is based on solving simultaneously multiple

nonlinear equations along the system trajectory, [7], [8], has

been proposed to address the state estimation problem with

high nonlinearity. In this paper, a similar observer based on

the Levenberg-Marquardt algorithm [9], [10] is designed for

individual cell SOC and voltage estimation under reduced

voltage sensing. Experiments under a constant charging cur-

rent have been conducted to validate the proposed algorithm

with a 2-cell battery string. It is demonstrated that good

convergence of SOC and voltage estimation can be achieved

in the high SOC range, where monitoring overcharge is of

critical importance.

II. GENERALIZED BATTERY MODEL FORMULATION

Some of the most commonly used control-oriented battery

models can be generalized in a state-space representation

[11], as

ẋ = Ax+BI

V = g(x, I),
(1)

where the state matrix A depends on the transient dynamics

associated with particle diffusion [3], B on the battery

capacity, and g is the nonlinear voltage output function. The

state(s) x relates to the energy storage level, the input I is the

current and the output V is the voltage. Such models include

and are not limited to:

• Coulomb counting model (CCM) [12], [13]
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• Equivalent circuit model (ECM) [13], [14]

• Simplified electrochemical model featuring lithium ion

transport and diffusion during battery charge and dis-

charge (SECM) [3], [15].

Physical meaning of the variables and parameters in (1) for

the above three models are summarized in Table I. More

details on the model generalization can be found in [11]. It

is noted that there are more complicated partial differential

equation (PDE) based battery models, which capture detailed

electrochemical processes during the battery operation [16],

[17]. These models may not be written in the form of (1)

with linear state equations and a nonlinear output equation.

For a battery string connected in series, the current input

is the same for each cell, and the measured output, the total

voltage, is the summation of all the single cell voltages. In

this paper, we consider the situation that the cells may only

differ in their SOCs, and all the cells have the same model

parameters. Such imbalance can be caused by factors such as

difference among cells in self-discharge rate, which is typi-

cally related to the temperature variability along the string.

Indeed, since the battery degradation is also temperature-

dependent, this variability may also result in imbalance in

capacity and resistance among cells. Such imbalance is more

likely to be developed over longer time-span and will be

addressed in the future work.

Based on the single cell model in (1), a string with r cells

in series can be modeled as,

ẋstr =F(xstr,I) = Astrxstr +BstrI

Vstr =G(xstr, I) =
r

∑
i=1

g(xi, I),
(2)

where

xstr =
[
x1 · · · xr

]T
,

Astr = diag(A, · · · ,A), Bstr =
[
BT BT · · · BT

]T
.

(3)

This general form will be used in the analysis in the subse-

quent sections. The state estimation of (1), where the single

cell voltage is measured, is referred to as the estimation under

full voltage sensing, and the state estimation of (2), where

only the total voltage is measured, is called the estimation

under reduced voltage sensing.

III. EXTENDED KALMAN FILTER AND OBSERVABILITY

OF THE LINEARIZED BATTERY STRING MODEL

The extended Kalman filter is one of the most commonly

used methods for nonlinear state estimation problems, and

has been widely adopted to estimate the battery SOC under

full voltage sensing [3], [4], [5]. However, it is shown here

that the EKF cannot be used under reduced sensing because

the linearized battery string model is not observable.

The EKF for (1) takes the form

˙̂x = Ax̂+Bu+K(V −V̂ )

V̂ = g(x̂, I),
(4)

where x̂ and V̂ are the estimated state(s), e.g. SOC, and

voltage, V is the measured voltage and K is the observer

gain. The estimated state of the EKF will converge to the

real state asymptotically, if the linearized system model is

observable along the system trajectory [18]. Furthermore,

the linear observability practically guarantees that the errors

in SOC estimation by the EKF will be bounded by some

constant value even if the model parameters are not precise

[11]. Such observability condition is satisfied if the single

cell voltage is measured, leading to the popularity of EKF

under full voltage sensing.

When only the total voltage of the string is measured, the

linearized battery string model can be obtained by linearizing

the output voltage function g of each single cell, as

g(xi, I) =Cix+DiI. (5)

As listed in Table I, C is mainly the slope of the open circuit

voltage (OCV) curve and D is the ohmic resistance. Since

g is a nonlinear function of the state, the values of C and

D can be different for cells with different SOCs. Hence, the

linearized battery string model will be

ẋstr = Astrx+BstrI

Vstr =Cstrx+DstrI

Cstr =
[
C1 C2 · · · Cr

]

Dstr =
r

∑
i=1

Di,

(6)

with Ci 6= C j and Di 6= D j if SOCi 6= SOC j. The model is

observable if and only if its observability matrix

U =







Cstr

CstrAstr

· · ·

CstrA
n−1
str






=







C1 C2 · · · Cr

C1A C2A · · · CrA

· · ·

C1An−1 C2An−1 · · · CrA
n−1







︸︷︷︸

U1

︸︷︷︸

U2

︸︷︷︸

Ur

(7)

is of full rank [18], [19], where n is the dimension of the

Astr matrix. According to Tab.I, for the coulomb counting and

the simplified electrochemical models, Cis are proportional

to each other since they only have one non-zero element,

C j = ηi, jCi, (8)

where ηi, j =
α j

αi
for CCM, and ηi, j =

α j+β j

αi+β j
for SECM. Hence

the Ui’s in (7) is linearly dependent on each other,

U j =







C j

C jA

· · ·

C jA
n−1






=







ηi, jCi

ηi, jCiA

· · ·

ηi, jCiA
n−1






= ηi, j







Ci

CiA

· · ·

CiA
n−1







= ηi, jUi.

(9)

As a result, the observability matrix will be short of full

rank, indicating the the linearized battery string model is

unobservable. The same conclusion can be drawn for the

equivalent circuit model upon similar analysis.

Simulation has been conducted to show the inadequacy of

the EKF for the estimation problem under reduced voltage

sensing. A coulomb counting model of the LiFePO4/graphite
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TABLE I

MODEL GENERALIZATION

Coulomb counting model (CCM) Equivalent circuit model (ECM) Simplified electrochemical model (SECM)

State x SOC SOC, spatially distributed lithium concentrations
RC voltages: Vc,1 · · ·Vc,m cs,1 · · ·cs,q

Input u current I current I current I

Output y voltage V voltage V voltage V

A 0







0 0 · · ·

0 −1
Rc,1Cc,1

· · ·

· · ·

0 · · · −1
Rc,mCc,m







Ds

∆2
r









−2 2 0 · · ·
1
2

−2 3
2

· · ·

0 0
. . . 0

0 · · ·
q−1

q
−

q−1
q









Rc,i: equivalent resistance Ds: diffusion coefficient
Cc,i: equivalent capacitance ∆r: spatial discretization parameter

B Q−1 Q−1 (AeδFas∆r)
−1[0, · · · ,0, q+1

q
]T

Q: battery capacity C−1
c,i Ae:electrode area, δ : electrode thickness,

F : Faraday constant, as: active particle surface

g OCV (SOC)+ IR, OCV (cs,q)+OP(cs,q, I)+ IR f

OCV : open circuit voltage OCV (SOC)−Σm
i Vc,i + IR OP: over potential

R: internal resistance R f : ohmic resistance

C α
[
α −1 −1 · · · −1

] [
0 · · · 0 α +β

]

α: local slope of OCV w.r.t. SOC β : local slope of OP w.r.t. SOC

D R R R f + γ
γ: local slope of OP w.r.t. I

battery is used to emulate a battery string with 2 cells.

The output voltage function of the LiFePO4/graphite battery

under a constant current is shown in Fig. 1. In simulation,
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Fig. 1. Voltage-SOC relationship of LiFePO4 batteries under a constant
charging current

one cell is initialized to 50% SOC, and the other to 40%. The

two cells are charged with the constant current until the cell

with higher SOC reaches 100% SOC mark. The total voltage

of the two cells is fed back to the extended Kalman filter.

Simulation results are shown in Fig. 2. It can be seen that as

the two batteries are charged up, their SOCs increase linearly

with time and the difference between them stays at 10%. The

two estimated SOCs, however, instead of tracing SOC1 and

SOC2 respectively, both converge to the intermediate values

that would make the estimated voltage match the average

voltage of the string.

IV. OBSERVABILITY ANALYSIS OF THE NONLINEAR

BATTERY STRING MODEL

Although the unobservable linearized battery string model

prevents the EKF from estimating the individual cell SOCs

under reduced voltage sensing, it does not rule out the
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Fig. 2. Estimation of single cell SOC and string voltage by the EKF

possibility of solving the estimation problem with a nonlinear

estimation technique. The existence of the solution depends

on the observability of the nonlinear battery model, which is

to be investigated in this section.

A nonlinear system is observable at a certain state if the

gradient (matrix) of the Lie derivative vector of the output

function is of full rank [20]. For the string model in (2), the

ith order Lie derivative of the output function G is

Li
F(G) =V

(i)
str =

∂G

∂xstr

F(xstr, I), (10)

where the current I is fixed at a constant value [20]. The Lie

derivative vector is defined as

l(xstr) =





L0
F(G)
· · ·

Ln−1
F (G)




, (11)
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and the gradient of l(xstr) takes the form

dl(xstr) =
∂ l

∂xstr

=






∂L0
F (G)

∂xstr

· · ·
∂Ln−1

F (G)
∂xstr




 . (12)

Consider the coulomb counting model as an example to

analyze the model observability, whose dl(xstr) matrix is

dl(xstr) =









∂g
∂x

∣
∣
x1

· · · ∂g
∂x

∣
∣
xr

∂ 2g

∂x2

∣
∣
x1

I
Q

· · · ∂ 2g

∂x2

∣
∣
xr

I
Q

· · ·
∂ rg
∂xr

∣
∣
x1
( I

Q
)n−1 · · · ∂ rg

∂xr

∣
∣
xr
( I

Q
)n−1









, (13)

with xi being the SOC of the ith cell in the string. It can

be seen that the rank of (13) depends on the gradients of

g with respect to the SOC. Clearly, if g is linear, all its

gradients higher than 2nd order will be zero, and the rank

of (13) will be 1. The system will thus be unobservable

under reduced voltage sensing. Nevertheless, it is possible

to have a full-rank matrix in (13) if the voltage-SOC rela-

tionship g is nonlinear. For example, the g(x) function of the

LiFePO4/graphite battery, is shown in Fig. 1 and its gradients

in Fig. 3. In the SOC range between 10% and 90%, g(x) is
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Fig. 3. Gradients of g(x) for LiFePO4/graphite batteries under a constant
charging current

close to linear, making the battery string model unobservable.

However, in the low (0−10%) and high (90−100%) SOC

ranges, as shown in Fig. 1 and Fig. 3, g(x) is highly nonlinear

with non-zero 1st and 2nd (and even higher) order gradients.

It can be checked numerically that for battery strings with

two cells, the dl matrix is of full rank for any combination

of individual cell SOCs along the SOC evolution trajectory.

Therefore, it is possible to distinguish the individual cell

SOCs when they are in those ranges. In general cases, for

strings with r cells, up to (r−1)th order derivatives need to

be calculated to determine the rank of (13) and hence the

observability. Based on the above conclusion, a nonlinear

observer will be designed to estimate individual cell SOCs

in a 2-cell battery string, while the methodology is applicable

to strings with more cells.

V. NONLINEAR OBSERVER BASED ON THE

LEVENBERG-MARQUARDT ALGORITHM

Apart from extending the linear estimation theory, e.g.

EKF, nonlinear observers can also be constructed based on

solving multiple nonlinear equations along the system evo-

lution trajectory, such as the newton observer [7], [8]. Such

algorithms, instead of handling the output data one point

at a time, process the output trajectory over a certain time

span simultaneously. As a result, compared with methods

extended from the linear estimation theory based on model

linearization, they retain the nonlinearity of the system and

have a wider range of application.

Since the nonlinear observer is intended for onboard BMS,

it will be designed in discrete-time domain to accommodate

sampled measurements. In discrete-time domain, the model

in (2) can be written as

xstr,k+1 = Fd(xstr,k, Ik)

Vstr,k = G(xstr,k, Ik),
(14)

where k is the time step. The function Fd is the state

equations in discrete-time domain, as

Fd(xstr,k, Ik) = Astr,dxstr,k +Bstr,dIk

Astr,d = eAstrT
, Bstr,d =

∫ T

0
eAstrτ Bstrdτ,

(15)

where T is the sampling period.

At each estimation step, a set of N consecutive measure-

ments and inputs,

Vstr,[k−N+1,k] =





Vstr,k−N+1

· · ·

Vstr,k




, I[k−N+1,k] =





Ik−N+1

· · ·

Ik




, (16)

are used for estimation. Let us define

F
Ik+1

d ◦F
Ik
d (xstr,k) := Fd

(
Fd(xstr,k, Ik), Ik+1

)
, (17)

as ◦ stands for function composition. It can be derived from

(14) that

Vstr,[k−N+1,k] =







GIk−N+1(xstr,k−N+1)

GIk−N+2 ◦F
Ik−N+1

d (xstr,k−N+1)
· · ·

GIk ◦F
Ik−1

d ◦ · · · ◦F
Ik−N+1

d (xstr,k−N+1)







= H(xstr,k−N+1, I[k−N+1,k]).

(18)

The problem is then reduced to solving (18) for xstr,k−N+1

given Vstr,[k−N+1,k] and Istr,[k−N+1,k]. Evolution of the state

can then be determined based on (14).

The Newton observer has been proposed in [7] and [8] to

solve (18). At each estimation step, xstr,k−N+1 is calculated

through multiple iterations based on the Newton Raphson

algorithm,

x̃
j+1
str,k−N+1 =x̃

j
str,k−N+1 +

[
∂H

∂xstr,k−N+1

(x̃ j
str,k−N+1, I[k−N+1,k])

]−1

(
Vstr,[k−N+1,k]−G(x̃ j

str,k−N+1, I[k−N+1,k])
)
.

(19)
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The resulting x̃d
str,k−N+1 at the final iteration step d, is taken

as the estimation for xstr,k−N+1, as

x̂str,k−N+1 = x̃d
str,k−N+1. (20)

Estimates of the subsequent states, x̂str,k−N+2, ..., x̂str,k, can

then be determined by

x̂str,k−i = F
Ik−i

d ◦ ...◦F
Ik−N+1

d (x̂str,k−N+1). (21)

At the next estimation step, Vstr,[k−N+1,k] and I[k−N+1,k] will

be updated by the newly acquired measurements, and the

initial guess of the state estimation is determined based on

the previous estimation.

Although the Newton’s method usually converges fast, it

might not be robust under some circumstances. For example,

when the gradient of g(x) is small, ∂H
∂x

in (19) becomes ill-

conditioned, making it difficult to calculate its inverse. One

convenient remedy is to replace the Newton iteration in (19)

with the Levenberg-Marquardt iteration [9], [10], as

x̃
j+1
str,k−N+1 =x̃

j
str,k−N+1 +

[
∂H

∂xstr,k−N+1

(x̃ j
str,k−N+1, I[k−N+1,k])+

λ I]−1
(
Vstr,[k−N+1,k]−G(x̃ j

str,k−N+1, I[k−N+1,k])
)
,

(22)

where λ is a scalar used to lower the condition number of

the inverted matrix when
∂g
∂x

is small, and I is the identity

matrix.

VI. EXPERIMENTAL VALIDATION

Experiments have been conducted to validate the designed

nonlinear observer. Two A123 26650 LiFePO4/graphite bat-

teries are used for testing. Before the experiment, the two

cells were first initialized with different SOCs, around 5%

and 0% respectively. The two cells were then connected in

series and charged up by a single current source with a

constant current of 2 A. The voltage of each single cell was

monitored to prevent overcharge. The actual cell SOCs were

calculated based on current integration for validation. The

current was cut off when the voltage of the cell with higher

SOC hit 3.6 V . The actual SOCs and voltages are shown in

Fig. 4.

The nonlinear observer in (22) is used to estimate the

individual cell SOCs and voltages by only using the total

voltage measurement. The coulomb counting model is used

for the battery string model, which is adequate under the

constant current charging scenario. Estimation starts at the

2000th second, and the initial guess of the SOC is taken as

the same for both cells by inverting the average measured

voltage. At each estimation step, 150 seconds length of data

are used, corresponding to an SOC span of 4.15%. The time

interval between data points is 10 s and a total of 15 sampled

data are processed at each step. The estimation results are

plotted in Fig. 5 and Fig. 6. The plotted value corresponds

to the last point at each estimation step. The final values are

shown in Tab.(II).

It can be seen from Fig. 5 that the individual cell SOCs

are not distinguishable before the 12th estimation step, when
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Fig. 4. Actual SOCs and voltages of individual cells
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TABLE II

FINAL ESTIMATION RESULTS

Estimation Measurement error (%)

SOC1 95.99% 94.36% 1.73

SOC2 99.81% 100% 0.19

V1 3.46 V 3.44 V 0.58

V2 3.59 V 3.60 V 0.28

both of them are below 85%. This has been predicted by

the nonlinear observability analysis, since the model is not

observable in that SOC range due to almost linear voltage-

SOC relationship, as shown in Fig. 1. When the cell SOCs

get above 90%, the estimates start to converge gradually to

respective actual values as the model becomes observable.

It can be observed that the SOC and voltage estimation

of cell 1, which is the cell with the higher SOC, is more

accurate than that of cell 2. The reason can be attributed

to the gradients of g(x) at the SOCs of the two cells. The

change in total voltage can be linearized locally as

δ (V1 +V2) =
∂g

∂x

∣
∣
∣
∣
SOC1

δSOC1 +
∂g

∂x

∣
∣
∣
∣
SOC2

δSOC2. (23)

Since cell 1 has higher SOC,
∂g
∂x

∣
∣
SOC1

is larger than
∂g
∂x

∣
∣
SOC2

according to Fig. 3. Consequently, the change in total voltage

will be more sensitive to the change in SOC1. This will lead

to more accurate estimation of SOC1, which is important

when the cell is nearly fully charged.

VII. CONCLUSIONS

This paper investigates the estimation of the individual

cell SOCs with only the total voltage measurement for cells

in series connection. It is pointed out that the existence

of the solution relies on the observability of the nonlin-

ear battery string model. For battery chemistry with linear

voltage-SOC relationship, the individual cell SOCs are not

observable under reduced voltage sensing. Nevertheless, for

some battery chemistry, such as LiFePO4, the nonlinearity

of the voltage-SOC relationship renders model observability

in certain SOC ranges. A nonlinear observer based on the

Levenberg-Marquardt algorithm is then designed to estimate

the individual cell SOCs and voltages. The algorithm has

been implemented to a LiFePO4/graphite battery string with

2 cells. As indicated by the observability analysis, the

estimated SOCs converge faster and are much more accurate

at the observable high SOC ends (than in the unobservable

middle range), where the SOC estimation is more critical.

In principle, the methodology can be extended to cell strings

with more cells and of other chemistry given proper voltage-

SOC relationship.
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