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Abstract— The resistance of Lithium-ion cells increases at
sub-zero temperatures reducing the cells’ power availability.
One way to improve the cells’ performance in these adverse
operation conditions is to proactively heat them. In this paper,
we consider the scenario in which a cell is heated from both
inside and outside; a current is drawn from the cell to power a
convective heater; Joule heating warms the cell from inside. A
problem formulation to derive the time-limited energy-optimal
current policy is presented, analyzed and numerically solved.
It is observed that the optimal current policy resembles a
sequence of constant voltage, constant current and phases,
mirroring conventional wisdom. Finally, the notion of productive
warm-up—a warm-up procedure that ensures that the cell
can perform work once warmed-up—is introduced; and an
approximation of the optimal solution is used to identify the
lowest state of charge at various operating conditions (portion
of the state-space) from which productive warm-up is feasible.

I. INTRODUCTION

The importance of energy storage does not need in-
troduction. Lithium-ion (Li-ion) batteries, having been in
commercial production for about 25 years, have come to
the forefront as primary energy-storage medium in non-
stationary applications owing to their energy/power density.
In practice, these batteries suffer from decreased efficiency,
higher resistance and lower power-capability when operating
in cold weather (less than zero degree Celsius). The range
of electric vehicles can be reduced by 40% in cold weather
[1].

Earlier methods to improve the low temperature perfor-
mance of electrochemical energy systems have relied on
engineering the materials that constitute the cell, to suppress
the limiting processes [2], and on the design of heating
methods that raise the operating temperature of the cell to
favorable levels [3]–[8]. The authors of [3] compute and
compare the energy requirement to warm NiMH battery
packs using both internal and external heating techniques.
Stuart et. al. in [4] present a method of battery warm-
up that uses AC currents to effect internal heating. In [8],
the notion of energy-efficient warm-up was introduced, a
receding horizon based controller was designed to shuttle
energy between the battery pack and ultracapacitor pack, and
aimed to improve the power capability of Li-ion cells until
a pre-specified power threshold was reached using internal
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heating. Muller et. al. in [5] present an optimal method to
simultaneously warm-up a fuel cell whilst meeting power
constraints. The authors in [6] compare a variety of warm-
up techniques and conclude that internal warm-up is the most
efficient. Wang et. al. in [7] present a novel battery design
that incorporates a Nickel foil of a measured resistance inside
a Li-ion cell for accelerated warm-up; before providing
power to external loads, this foil is connected across the
terminals and serves as a low resistance load.

In this paper, we consider the warm-up of Li-ion batteries
in the presence of an external heater, until the batteries’
temperature reaches a preassigned value. Particularly, we
investigate the feasibility of energy-optimal warm-up of
batteries. The external heater is powered by the battery pack
and transfers heat energy to the battery via a medium such as
air; that is, the battery is heated from inside by Joule heating
(generated by the battery’s own internal resistance) and from
outside via convection. This process is assisted by a fan
that maintains circulation inside the battery chamber; Fig. 1
presents a schematic of the system under consideration.

Since battery warm-up is inherently a process that depletes
the battery’s SOC, it is critical that any supervisory controller
that regulates SOC be cognizant of the minimum required
energy for warm-up. With this information, the supervisory
controller that controls the power out-flow from the battery
can ensure that warm-up of a cold battery is feasible. To
the best of our knowledge, a systematic effort to certify the
(in)feasibility of productive warm-up—a warm-up method-
ology that ensures that adequate energy remains post warm-
up—has not been undertaken in literature. In this paper, we
leverage our observations about the energy-optimal policy,
and use its approximation to partition the state-space into
regions based on whether warm-up is possible.
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Fig. 1. A schematic of the system under consideration with annotations
of the temperatures of the different elements under consideration
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This paper is organized as follows: Section II presents
the models used in this study, and the formulation of the
optimal control problem (OCP) considered in the remainder
of this paper. Section III presents an analysis of the optimal
control and identifies a characteristic of the optimal solution.
In addition, a methodology to numerically solve the OCP is
presented and an example is solved and the solution is in-
terpreted. Lastly, Section V summarizes observations/results
and presents directions for future extensions alongside con-
clusions.

II. PRELIMINARIES

In this section, the model of the system whose schematic
is presented in Fig. 1 is detailed; subsequently, the optimal
control problem whose solution is the energy-optimal policy
for warm-up is presented.

A. System Modelling

The dynamics of the LiFePO4 (A123 26650) battery in
consideration hereafter is represented by a coupled electro-
thermal model and is described in the following.

1) Electrical dynamics: The representation of the electri-
cal sub-system of the battery whose capacity is Qb Ahrs,
is constituted by two states — one that corresponds to
the State of Charge (z) and the other corresponding to
bulk polarization voltage (v) across a virtual capacitor with
capacitance C F.

ż = − I

3600 ·Qb
v̇c = − v

τ(Tc)
+

I

C(Tc)

vt = voc(z)− vc − I ·Rs(Tc),

(1)

where I is the current in Amperes (positive when dis-
charging), temperature dependent real functions τ, C,Rs
represent the time constant of the overpotential and ohmic
drop respectively, and Tc is the battery’s temperature. A
polynomial approximation of these functions, derived from
the data presented in [8], is presented in Eqns. (2).

2) Thermal dynamics: In this work, we assume that the
battery is placed inside a chamber that has a re-circulation
system built-in (refer Fig. 1). Further, a heater is located in
the return path of circulated air; this heater is powered by
the battery through a power electronic converter. The thermal
dynamics of the cylindrical cell is modeled by a single state
representing the bulk temperature (Tc) of the cell [9].

Parameter α1 α2 α3 β1
Value 0.0214 0.0035 −0.0029 0.2331

Parameter β2 γ1 γ2 γ3
Value -0.1166 -4.6913 -7.1073 variable

TABLE I
PARAMETERS OF THE THERMAL MODEL

The coupled dynamics of all elements in the thermal loop
is given by the following

Ṫc = α1 · PJoule + α2 · Ta + α3 · Tc,
Ṫh = β1 · Pheater + β2 · (Ta − Th), (2)

Ṫa = γ1 · (Tc − Ta) + γ2 · (Th − Ta)− γ3 · (T∞ − Ta),

where T∞, Ta, Tc, Th are the temperatures of the atmosphere,
air inside the chamber, cell, and the heater respectively; the
values of the different parameters are as listed in Tab. I; and

PJoule = I2 ·Rs(Tc) + v2c
C(Tc)

τ(Tc)
, Pheater = vt · I (3a)

Observe that in the model under consideration, the ambi-
ent/atmospheric temperature, affects the dynamics of only
the air inside the chamber. The material of the encasement
affects the conductive losses between Ta and T∞, and is
a parameter whose influence on solutions will be studied
in the ensuing presentation. It should be noted that despite
assuming that a fan is present in the thermal loop—to enable
better convective transfer of heat—the power delivered to
the same is not explicitly modeled and is assumed to be
insignificant.

B. The optimal control problem
The objective of this paper is to determine an energy-

optimal warm-up (to a pre-specified temperature) strategy
for batteries from sub-zero temperatures, without violat-
ing operating constraints. In the ensuing presentation, the
mathematical formulation of the problem considered in the
remainder of this paper is presented.

(OCP ) min z(tf )− z(t0) (4)
st.Eqns. (1)− (3), (5)
I(t) ∈ [0, Imax], ∀t ∈ [0, tf ] (6)
vt(t) ∈ [vmin, vmax], ∀t ∈ [0, tf ] (7)
Tc(t) ∈ [Tmin, T

c
max], ∀t ∈ [0, tf ] (8)

Th(t), Ta(t) ∈ [Tmin, Tmax], ∀t ∈ [0, tf ] (9)
x(t0) = x0, (10)
Tc(tf ) = Tdes, (11)
tf = tmax, (12)

Rs(Tc) = − 6.833× 10−7T 3
c + 5.477× 10−5T 2

c − 1.468× 10−3Tc + 0.02421

τ(Tc) = 1.088× 10−5T 4
c − 6.002× 10−4T 3

c − 1.961× 10−3T 2
c − 0.116Tc + 47.57

C(Tc) = − 1.186× 10−3T 3
c − 0.144T 2

c + 45.63Tc + 1360

voc(z) = 1.528z3 − 2.264z2 + 1.193 + 3.091

vmin = 2 V, Q = 2.3 Ah, T cmax = 35 ◦C, Tmin = −20 ◦C, Tmax = 150 ◦C, Imax = 25 A, vmax = 3.6 V;

(2)
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where x = [z, v1, Tc, Th, Ta]′; Tdes is the desired cell tem-
perature set-point; Imax is the maximum discharge current;
and vmin and vmax are the minimum and maximum terminal
voltages of the battery.

In this paper, energy is measured in terms of SOC, and
hence the objective function in Eqn. (4) represents the
energy expended over the period [0, tf ], where tf is the
maximum time for warm-up (or the longest that the user
would like to wait) as defined by the constraint in Eqn. (12).
Equations (6) & (7) enforce constraints on the current and
voltage as specified by the battery manufacturer. Observe
that in this case, the current is stipulated to be discharging
in nature due to the lack of an external energy source.
Additionally, the temperatures of the battery, heater and
the air inside the chamber are restricted in the interest of
safety as depicted in Eqns. (9). Finally, the constraint in
Eqn. (11) enforces, as required, a terminal state constraint
on the battery temperature.

III. ANALYSIS AND NUMERICAL SOLUTION

In this section, the optimal control problem (OCP ) is
analyzed to identify characteristics of the optimal policy.
Subsequently, the problem is numerically solved for an
example and the results are interpreted.

A. Analysis

To analyze the problem (OCP ), we consider the Hamilto-
nian of (OCP ) and arrive at the following result that asserts
the control policy will at worst look like sequence of pulses.

Proposition 1. The optimal current trajectory takes an
extreme value of the admissible set at every instant.

Proof (Sketch). The proof is laid-out as follows: it is argued
that the Hamiltonian of this problem is concave in the
decision variable – I . Recall that the optimal control at every
instant minimizes the Hamiltonian with respect to I . Since
the Hamiltonian will be shown to be concave in I , it follows
that the optimal solution at each instant attains only extreme
values of the admissible set.

Let the Hamiltonian of (OCP ) be defined as follows:

HT =

5∑
i=1

ψifi(x) +

5∑
i=1

ψigi(x)I +

5∑
i=1

ψihi(x)I2 (13)

where ψi are co-states and functions fi, hi are represen-
tations of the coefficients of the different monomials in I
derived by simplifying the dynamics of the system whose

dynamics is described by Eqns. (1)–(2); their values are
presented in Tab. II.

Functions f, h and ψ are indexed to match the definition
of x; that is, ψ1 is the co-state corresponding to z and ψ3

corresponds to Tc. Since HT is quadratic in I , if
∑
i ψihi is

strictly negative, it would imply that HT concave in I .
Using the entries in Tab. II, the coefficient of I2 evaluates

to

κ :=
∑
i

ψihi = ψ3α1Rs(Tc)− ψ4β1Rs(Tc). (14)

We know that, if V ∗ is the value function of (OCP ), then
[10, §3.5]

ψ3(t) =
∂V ∗(t)

∂Tc(t)
. (15)

The objective of the OCP is to increase the temperature until
Tc = Tdes; if Tc increases, all other states remaining the
same, the cost to go decreases as the Tc is closer to the
target temperature. That is, ψ3 is negative definite.

Now, since the numerical value of ψ4 is not known, it is
not possible to determine the sign of κ directly. We adopt an
alternate approach: we define a virtual source sink for power,
S, and a virtual power source P. Suppose the battery did not
power the heater but sank power into S; and that the heater
is powered by P with a trajectory ζ. For the OCP with this
new system, let the Hamiltonian be H̄T and the costates be
ψ̄i. The coefficient of I2 in H̄T is ψ̄3α1Rs(Tc). That is, H̄T

is concave in I since ψ̄3 is negative definite, as established
earlier.

Notice that the above argument is true regardless of the
trajectory ζ that powers the heater. Suppose this ζ was
identical to the power that was sank into S. The new
system becomes identical to the original system wherein the
battery powered the heater. Thus the optimal solutions to the
problems with Hamiltonians HT and H̄T are the same. Since
H̄T is concave in I , and the control set is convex, it follows
that the optimal control policy to (OCP ) will, at each time
instance, attain an extreme admissible value.

As a consequence of the above result,
a possible optimal policy is the function
Î 7→ min

{
Imax,

voc(z(t))−v1(t)−vmin

Rs(Tc(t)))

}
. When Î(t) = Imax,

the battery is said to be operating in constant current mode;
when Î takes the other extreme value, the battery is said to
be operating in the constant voltage mode (vt = vmin).

TABLE II
LIST OF PLACEHOLDERS IN EQN. (13) AND THE VALUES/EXPRESSIONS THEY REPRESENT.

Variable Expression/Value Variable Expression/Value Variable Expression/Value

f1 0 g1
−1

Q·3600 h1 0

f2
−v1
τ(Tc)

g2
1

C1(Tc)
h2 0

f3 α1v21
C1(Tc)
τ(Tc)

+ α2Ta + α3Tc g3 0 h3 α1Rs(Tc)

f4 β2(Ta − Th) g4 η(voc(z) − v1) h4 −ηRs(Tc)
f5 γ1(Tc − Ta) + γ2(Th − Ta) − γ3(T∞ − Ta) g5 0 h5 0
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Fig. 2. Trajectories of states and output of the electrical subsystem as
a consequence of applying the optimal policy; insulated (γ3 = 0), lossy
(γ3 = 30). Observe that the optimal policy has three distinct phases –
constant voltage, constant current and rest.

B. Numerical solution

In this section, the optimal control problem (OCP) pre-
sented in Sec. II-B is numerically solved for some feasible
initial system configuration. The OCP under consideration
is nonlinear in dynamics (parameters are non-linear func-
tions of temperature) and constraints (terminal voltage is a
nonlinear function of SOC) and are not amenable to solve
analytically. Additionally, since the dynamics has five states
and one control, the use of Dynamic Programming approach
is not computationally tractable.

In Sec. III-A it was shown that the optimal solution to the
optimal control attains only extreme values at any instant.
That is, the at any instance, the optimal warm-up policy
forces the battery to operate either in one of the constant
voltage (CV), constant current (CC) and rest phases. To
leverage this information when solving the OCP, it is possible
to hybridize the dynamics of the system based on the mode
of operation and solve for the optimal switching sequence.
Methods to solve hybrid nonlinear optimal control problem
have been explored in literature; they are hard to implement
and may not be suitable for problems of large dimensions
due to their computational complexity [11], [12].

In this section, we use pseudo-spectral collocation to
solve the OCPs (non-hybridized) using an off-the-shelf solver
(IPOPT) using GPOPS2 as the problem parser [13].

Example 2. Determine the optimal trajectory of current
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Fig. 3. Trajectories of states and output of the thermal subsystem as
a consequence of applying the optimal policy; insulated (γ3 = 0), lossy
(γ3 = 30)

that consumes the least energy (in SOC) and is capable of
increasing the battery’s temperature (in thermal equilibrium
with the air/heater/atmosphere and initial SOC, 0.6) from
−20 ◦C to 20 ◦C within 150 s such that the SOC after warm-
up is greater than 0.35.

Figures 2 and 3 provide the results of solving and sim-
ulating the model for this example when the values of
γ3 ∈ {0, 30}. Recall that when γ3 increases, the losses to the
atmosphere increases; i.e. when γ3 = 0, the battery enclosure
is insulated from the atmosphere and when γ3 = 30, the
enclosure is a medium through which heat is lost to the
atmosphere. Other constraints are set as provided in Eqn. (2).
From Fig. 2, it is noted that the optimal current attains,
at each instant, one of either the maximum or minimum
admissible current. This results in the solution resembling
a sequence of constant voltage (CV), constant current (CC)
and rest phases.

The observed rest phase can be justified as follows.
Working backwards from the terminal time, the rest phase
that is observed is thought to be in place to exploit the built-
up polarization inside the battery. Recall that the expression
for heat generation includes the term v2c/R1; when the value
of heat generated in the R-C pair exceeds that of the heat
lost to air, the optimal decision is to set I = 0.

The switching pattern observed in the optimal current can
be explained in three ways – (1) the high frequency switching
serves as a PWM sequence that essentially regulates the
root-mean-square current to a certain value that is not an
extreme point of the set of admissible control values without
taking that value explicitly; (2) the size of mesh intervals
and/or the tolerance of the solver is not adequately tight;
(3) some state constraint is being violated. Based on the
analysis presented earlier in this section, it is suggested that
possibility (1) can be ruled-out. In Fig. 2, when the γ3 = 0,
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the heater’s temperature Th reaches a maximum of ∼ 150◦ C,
the boundary of the state constraint; by comparing Figs. 2
and 3 around the time when the heater temperature hits its
constraint, it is indeed noted that the switching behavior is
pronounced. Thus, it is suggested that the switching observed
in the trajectory of current corresponding to the case when
γ3 = 30 (lossy) is not because of any state constraint being
violated, and could be an artifice of the numerical method
employed.

Figures 2 and 3 also highlight the influence of losses to
the atmosphere through conduction losses. If the air-path
is perfectly insulated (γ3 = 0), then the optimal solution
includes a rest phase following what appears to be CV-CC
phases until the polarization voltage reduces to zero and the
heater, air and cell are at thermal equilibrium at the desired
temperature. On the other hand, if the air return path is made
of a relatively highly conductive material such as aluminium,
then the heat generated in the heater and transferred to air is
wicked by the cold-air outside and the heating mechanism
becomes ineffective. This particular case devolves into the
standalone warm-up case discussed in [8].

In Fig. 2, the duration of warm-up, tγ3warm—defined as
the time duration between the first instance when current
is drawn and 150 s—when the loss coefficient is γ3, is
shown for the two values of γ3. Comparing the resultant
trajectories for the two values of γ3, observe that t30warm is
shorter than t0warm, and that the rest phases following the
CC phase is shorter when γ3 = 30. The observation about
the rest phase can be explained by recalling the previous
discussion on the net heat generation in the cell being zero
at t = 150 s; this can also be used to explain the rest before
the CV phase. Secondly, observe that as a consequence of
an increase in the value of γ3, the SOC lost during warm-
up increases by 11% (true), and the terminal SOC now is
39%; i.e. increased conduction losses increases the energy
consumed during warm-up, as is to be expected.

To highlight the influence of conductive losses, Fig. 4
collates key metrics that can be used to study their influence
on loss in SOC during warm-up and warm-up time tγ3warm.
Note that as γ3 increases, the total loss in SOC (read as
energy) during warm-up increases to reach an asymptote.
Associated with this increasing value of γ3, the duration
of warm-up decreases; this observation is in line with our
expectation as elucidated in the preceding discussion on the
rest phase.

IV. FEASIBILITY OF PRODUCTIVE WARM-UP

Serving as a power source, a battery is an energy storage
device; and battery warm-up consumes energy (measured in
SOC in this paper). If the battery is able to perform work
after warm-up; i.e. if there is adequate energy remaining, the
warm-up is deemed as having been productive. Suppose the
minimum energy required at the end of warm-up is zlimit
and that I∗ : [0, tf ] → [0, Imax] is an optimal solution to
(OCP ), and z∗ : [0, tf ] → [0, 1] is the resulting optimal
SOC trajectory; then determining the feasibility of productive
warm-up is equivalent to checking the condition z∗(tf ) ≥
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Fig. 4. Impact of changes to the value of γ3 on the total SOC lost and the
time for warm-up, Twarm. As the value of the loss coefficient increases,
observe that the energy expended increases and the warm-up time decreases.

zlimit. In this section, we exploit the observation that the
optimal policy resembles a sequence of constant voltage,
constant current and rest phases, to approximate the optimal
solution and use this solution to ascertain when productive
warm-up is feasible.

To estimate the feasible region of the state-space, we make
two assumptions – (a) the battery is in thermal equilibrium
with the atmosphere at the initial time; (b) the heat transfer
coefficient is arbitrarily large. The first assumption is a
physically realizable constraint that is satisfied, for example
in resting electrified vehicles. As a consequence of this
assumption, the initial value of v1 is implicitly zero. The
second assumption enforces that the air temperature inside
the chamber is approximately equal to the atmosphere’s
temperature. With this assumption, as indicated in Sec. III-
B, the heater does not contribute to battery warm-up; the
states associated with chamber-air and heater temperatures
can thus be ignored. It is easy to see that these assumptions
help derive under-approximations of the feasible space.

To compute the under-approximation of the feasible space,
the space [−20, 20]× [0.2, 0.7]—corresponding to the space
of initial battery temperature and SOC—is discretized into
a 10 × 10 mesh and the dynamics is forward simulated
by drawing the maximum admissible current at every in-
stance, until the battery temperature reaches Tdes. Figure 5
depicts the partition of the space given the specification
that Tdes = 20 ◦C and zlimit = 0.35. Observe that as the
equilibrium temperature decreases, T̄ , the energy required to
warm-up generally increases. However, as the values of T̄
falls below ∼ −15 ◦C, the required initial SOC decreases.
This can be attributed to two factors – (1) increased internal
resistance and lower temperatures that grows approximately
exponentially; (2) the more significant role played by the
heat generated by the polarization R-C pair.

As indicated, the feasible region identified in Fig. 5 is an
under-approximation that is derived based on assumptions on
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Fig. 5. Identification of the region of the space from which productive
warm-up is feasible zlimit = 0.35. The gray region is the feasible space
when the battery is initially in thermal equilibrium with the atmosphere at
a temperature T̄ . In generating the above figure, the conduction coefficient
γ3 is assumed to be arbitrarily large.

the cooling condition and the shape of the control policy. To
assess the conservativeness of the above map, an approxima-
tion of the feasible set will be computed using the method
described in [14] and presented in a future work. Solving
for the productive warm-up feasible space and storing it in
memory, can be used for realtime adaptation of on-board
supervisory controllers to steer the SOC of the battery such
as to ensure that warm-up is possible.

V. CONCLUSIONS

In this paper, the problem of time-limited energy-optimal
productive warm-up of Li-ion batteries from sub-zero tem-
peratures when using a battery powered heater and con-
vective heating is solved. A warm-up policy is deemed
productive if it is capable of increasing the battery’s tem-
perature whilst ensuring that there is adequate energy stored
to perform work after warm-up.

First, the temperature-driven energy-optimal control prob-
lem is analyzed and it is identified that the optimal solution,
at every instant, attains only extreme values. Subsequently,
the optimal control is solved and it is observed that the
solution resembles a sequence of CV-CC-rest phases. The
influence of losses to the atmosphere is investigated paramet-
rically and it is noted that the system has to be reasonably
well-insulated for the heater to be of any assistance in warm-
up. Lastly, by approximating the optimal policy by a CV-
CC sequence, the problem of ascertaining the feasibility of
productive warm-up is addressed.

A future work will extend this work to account for un-
certainties in model parameters (because of modeling errors
and or because of aging) using the techniques presented
in [15], and also consider terminating the warm-up using
power capability based constraints, building upon the ideas
presented in [8], [16].
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