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ABSTRACT

Error propagation and accumulation is a common problem
for system level engine modeling at which individually modeled
components are connected to form a complete engine model. En-
gines with exhaust gas recirculation (EGR) and turbocharging
have components connected in a feedback configuration (the ex-
haust conditions affect the intake and the intake, consequently,
affects the exhaust), thus they have a challenging model tuning
process. This paper presents a systematic procedure for effective
tuning of an engine air-charge path model to improve accuracy at
the system level as well as reducing the computational complex-
ity of tuning a large set of components. Based on using sensitivity
analysis, the presented procedure is used to inspect which com-
ponent influences more a set of selected outputs in a model with
high degree of freedom caused by many parameters of different
components. After selecting the influential component, which is
the turbocharger in this study, further tuning is applied to pa-
rameters in the component to increase the overall accuracy of
the complete engine model. The corrections applied to the air-
charge path model of a 6 cylinder 13L heavy duty diesel engine
with EGR and twin-scroll turbocharger was shown to effectively
improve the model accuracy.

∗Address all correspondence to this author.

NOMENCLATURE
VARIABLES
A Area (m2) Cp Heat capacity (J/kg/K)
F Burned gas fraction (-) I Inertia (kg.m2)
ṁ Mass flow rate (kg/sec) M Torque (N.m)
P Pressure (Pa) PR Pressure ratio (-)
PW Power (W) T Temperature (K)
R Gas constant (J/kg/K) r Comp. wheel radius (m)
η Efficiency (-) ρ Density (kg/m3)
ω Speed (RPM) γ Ratio of Cp/Cv (-)

SUBSCRIPTS
c Compressor corr Corrected
dst Downstream turbine e Engine
eff Effective EGR Exh. gas recirculation
eml Large scroll exh. man. ems Small scroll exh. man.
im Intake manifold tc Turbocharger
t Turbine upc Upstream compressor
upt Upstream turbine WG Wastegate

INTRODUCTION
Control and monitoring strategies in modern engine control

unites (ECUs) require use of many physical engine variables.
The measurement cost or/and the sensibility of measuring a vari-
able at harsh operating conditions of an internal combustion en-
gine limits utilizing sensors on a production engine. Therefore
implementation of engine models inside the ECU, instead of ad-
dition of sensors, has been a common interest for engine man-
ufacturers. The modeling work can be as simple as simulating
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pressure drop over the air filter [1] or as complicated as simulat-
ing engine’s pollution gas and the emission system [2, 3]. What-
ever the model is, a general approach in many developed engine
models is physics-based modeling. The development of physical
engine models usually follows two steps. The first step, called
component level modeling in this paper, comprises modeling in-
dividual components based on their inputs and outputs measured
at steady state operating conditions. The second step is a system
level modeling at which all individual steady-state component
models are connected to form a complete engine model. When a
complete engine model (i.e. a system level model) is formed by
connecting models of individual components, the final accuracy
reduces due to reasons such as error accumulation/propagation
or mismatch between conditions of data collection for compo-
nent level modeling and system level model verification (e.g. gas
bench conditions used to provide a turbocharger map and condi-
tions on an engine [4]). Therefore an overall parameter tuning at
the system level is required to improve the final performance of
the complete engine model.

There are many candidates of parameters and components in
a complete engine model to be considered in the final tuning pro-
cess. To reduce the number of the candidates, this paper presents
a systematic methodology based on sensitivity analysis (SA) to
determine the major component influencing the complete engine
model. Sensitivity analysis determines how selected model out-
puts are affected by a small deviation in an individual compo-
nent’s output. Then a metric is used to quantify the importance of
components based on applying the principle component analysis
to the sensitivity matrix. When the major influencing component
is detected, a fine tuning process is applied to that component
which improves performance of the engine model in predicting
measured outputs.

DIESEL ENGINE MODEL

A control-oriented model of the air path of a 13 liters 6-
cylinder heavy duty diesel engine, represented by the schematic
in Fig. 1, is presented. The considered engine is equipped with
an asymmetric twin-scroll turbine which has benefit in increas-
ing exhaust gas recirculation (EGR) while keeping low the back
pressure and smoke by mitigating long delays from the EGR
path. The engine is also equipped with a wastegate valve, which
bypasses the large scroll avoiding over-boosting and reducing the
pumping loss.

Model development for this engine has two steps. The first
step is the component level where parameters to individually
model each component is estimated. At the system level, which
is the second step, all components are connected and final struc-
ture of the complete engine model is formed. The following sub-
sections describe each step respectively.

FIGURE 1: Schematic of the twin-scroll heavy duty diesel en-
gine.

Component Level Modeling
For the engine schematically shown in Fig. 1, all compo-

nents (namely: engine block, turbocharger, intercooler, EGR and
wastegate) are modeled individually. Inputs and outputs of each
component are measured explicitly (except for the wastegate and
EGR where their output flows are estimated). The components’
models are mainly from the work presented in [5] with few re-
estimation of parameters given that the engine considered here
is a different model year and has a smaller level of asymmetry
in the turbine scroll. Since the turbocharger, EGR and waste-
gate will be discussed further in later sections of the paper, their
models are presented briefly here.

The compressor map provided by the turbo supplier is the
main data source for modeling its flow and efficiency at steady
state points. Two non-dimensional parameters are defined, the
head parameter (Ψ) and the flow parameter (Φ) [6] which are
used to create a Φ−Ψ relation at each compressor speed using a
polynomial regression. Then the compressor flow and efficiency
can be calculated as:

ṁc,map = θc ∗πr3
ρωtc f1(Ψ) (1)

ηc = f2(Ψ) (2)

where r, ρ, ωtc are the compressor wheel radius, the inlet air
density, the turbo speed and f1 and f2 come from regressions
correlating Ψ−Φ and Ψ−η , respectively. The regression co-
efficients are calculated by interpolating polynomial coefficients
individually found at each compressor rotational speed [7]. The
parameter θc is introduced here to mathematically apply pertur-
bations to the compressor flow as required by the sensitivity anal-
ysis. The twin-scroll turbine flow is simulated as a function of the
scrolls pressure ratio ( Pdst

Peml
, Pdst

Pems
) and the turbo shaft speed (ωtc).

The parametric model for the turbine flow can be found with
good accuracy using test with closed wastegate at the engine test
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bench, unlike the compressor for which the high interaction be-
tween the compressor variables (pressure ratio, speed and flow)
implies using its characteristic map. The turbine efficiency is
calculated by creating a balance between the compressor and the
turbine powers:

ηt =
PWc

ṁtTuptCp(1− Pdst
Pupt

γ/γ−1
)

(3)

The turbine efficiency calculated from Eq. 3 takes values in the
range of [.7− .8] and it can effectively be approximated as a con-
stant [5]. The EGR flow is modeled using the standard isentropic
orifice flow model as:

ṁEGR = θEGR ∗Ae f f ,EGR
Pems√
RTems

F(PR), PR =
Pim

Pems
(4)

in which the parameter θEGR again is a mathematical param-
eter defined to facilitate implementing the sensitivity analysis
within the simulation. The effective area in Eq. 4, Ae f f ,EGR =
gEGR(uEGR,ωe,PR), is a function of ECU command, uEGR, and
also pressure ratio and engine speed which are included to ac-
count for the pulsation effects. The same isentropic orifice model
is used to simulate the WG flow rate:

ṁWG = θWG ∗Ae f f ,WG(xWG)
Peml√
RTeml

F(PR), PR =
Pim

Peml
(5)

where θWG is the parameter for the sensitivity analysis and
xWG = gWG(uWG,Peml ,Pdst) is the wastegate displacement taken
from the wastegate mechanism force balance [5].

The performance of the components’ models are presented
in Fig. 2. Figure 2-a,b compares the regression models to the data
from the compressor map and in Fig. 2-c,d the modeled waste-
gate and EGR mass flow rates are compared to their correspond-
ing estimated values collected from tests at a highly instrumented
engine test bench [5]. As the plot shows, for most of the operat-
ing points, there is good agreement (within a 10% error bound)
between the modeled and measured data.

System Level Modeling
The complete engine model (shown schematically in Fig. 3)

is formed by connecting individual components described in the
former subsection along with dynamical models for pressure
(Ṗim, Ṗems, Ṗeml , Ṗdst ), air fractions (Ḟim, Ḟem) and the turbocharger
speed (ω̇tc) as presented in [5]. Moreover, a temperature dynami-
cal model has been augmented to the airflow dynamics to account
for heat accumulation in the engine body [8] which improves the
engine model capability to follow very slow dynamics observed
in the measured data. The final performance of the complete

FIGURE 2: A summery of modeling results at the component
level

FIGURE 3: Overview of the complete engine model, its inputs
and selected outputs

model is presented in Fig. 4. As plotted the general trend of the
engine model follows that of the measurements. However, steady
state offset at different points is clearly observed. The averaged
root mean square (RMSEavg) in Fig. 4 is defined as the conven-
tional RMSE divided by the average of measured data over the
entire time window at each test. To remove the offset, a param-
eter fine-tuning is required. The question is which components
have the most influence and should be tuned. This is decided
using the sensitivity analysis as described in the next section.
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FIGURE 4: Overall performance of the engine model after con-
nection of all components

SENSITIVITY ANALYSIS (SA)
When analyzing components in a complete system model,

one may investigate how much specific outputs are affected by
individual components or, equivalently, how much the complete
model is sensitive to a sub-model. This description suggests
the use of sensitivity analysis to assess the importance of each
component in a system of interconnected elements. Since the
sensitivity analysis has well developed notation in terms of pa-
rameter sensitivity, here we describe the mathematical formula-
tions for a parameter sensitivity analysis problem that investi-
gates how much each parameter is influencing a model. Then
a similar procedure is applied by using the defined parameters
θc, θEGR and θWG which enable us to treat each respective com-
ponent as a parameter and thus finding the components’ influ-
ences on a set of the engine model outputs which is selected here
as Y = [Pim,Ntc,Pems,Peml ].

The normalized output-to-parameter sensitivity matrix ,S̃, is
defined to contain information about the effect of a system pa-
rameters on its outputs. The elements of the sensitivity matrix,
S̃i j are defined as:

S̃i j =
θ̃ j

ỹi
.

∂ ỹi

∂ θ̃ j
(6)

In Eqn. (6) ỹi is the nominal value for ith output calculated by us-
ing the nominal value for the jth parameter, θ̃ j, at a specific oper-
ating point. The normalization introduced in Eqn. (6) eliminates
the effects of magnitude and unit of outputs and parameters. Dif-
ferent approaches can be used to compute the partial derivative
∂ ỹi/∂ θ̃ j from the model equations [9]. For highly nonlinear dy-
namic models (as in the engine model here) an efficient technique
is to use the finite difference formulation as: ∂ ỹi/∂ θ̃ j ≈ ∆ỹi/∆θ̃ j
with proper selection of the step size ∆θ̃ j [10]. The locality in
the sensitivity analysis (small value for ∆θ̃ j) is acceptable in this
work since at the fine-tuning stage of a modeling work, the range
of all parameters is known and small changes in the parameters
are desired.

Based on the defined sensitivity matrix, different techniques
can be used for measuring importance of parameters. For exam-
ple in [11] the average of all outputs sensitivities to each param-
eter in the sensitivity matrix is used as a measure of importance.
Another technique to calculate a quantitative measure for impor-
tance is to look at the direction (in the parameter space) at which
data from the sensitivity matrix are distributed and selecting a
parameter (component in this paper) which has affected the dis-
tribution more than others. This can be done by applying Princi-
ple Component Analysis (PCA) to the sensitivity matrix S̃ which
calculates eigenvalues (main directions of data distribution) and
eigenvectors (variations at each main direction) of the covariance
matrix X = Cov(S̃). For a n×m matrix S̃ (n outputs and m pa-
rameters) PCA calculates (maximum) n orthonormal eigenvec-
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tors in a m-dimensional space. The first eigenvector is the main
direction (in the m-dimensional space) at which data of S̃ are dis-
tributed. Therefor the weight of each element in an eigenvector
shows how much the corresponding parameter has contributed to
data alignment in that direction [12].

The eigenvectors, [C1i, ...,C ji, ...,Cmi]
T , and eigenvalues, λi,

from PCA of S̃ are used to calculate the following importance
measure for the j th parameter [13]:

µ j =

n
∑

i=1
|λiC ji|

n
∑

i=1
|λi|

(7)

with 0≤ µ j ≤ 1. As the numerator in Eqn. 7 suggests, the impor-
tance of each parameter in a principle direction, C ji, is multiplied
by the direction’s importance, λi. Since elements of S̃ represent
deviation of outputs due to perturbation in parameters, thus the
measure, µ j, shows how much perturbing the jth parameter has
contributed to deviation in the vector of outputs Y .

The importance measure introduced in Eqn. 7 for parameter
analysis is extended here to detect effectiveness of each com-
ponent (instead of parameters) on the model outputs within the
following implementation procedure.

Implementation Procedure for SA

1- Select the outputs, components and design an operating pro-
cedure. This procedure should allow all components (and
their outputs) to be practiced in their effective range. Then,
simulate the model without perturbing outputs of any com-
ponent. This provides the base line (nominal) data.

2- Select a step size for perturbation in components outputs.
The step size should be selected properly to estimate the par-
tial derivative term in Eqn. 6 with finite differences. Perturb
the output of one component by the step size and run the
model. Use Eqn. 6 to calculate the first column of the sensi-
tivity matrix. Repeat this step for all desired components.

3- Run PCA for the sensitivity matrix derived at the last step
and then use Eqn. 7 to calculate the importance measure for
each component.

Using SA For The Engine Model
The 3-step proposed implementation procedure for SA is ap-

plied to the heavy duty diesel engine model described in section
2. The first 2 steps calculate the sensitivity matrix and at step 3,
the sensitivity of the engine model to each component is calcu-
lated. The following describes details of applying the SA to the
engine model.

Step1 The selected output vector is Y =
[Pim, Ntc, Pems, Peml ]. Flow models for the compressor,

the EGR and wastegate are selected to be analyzed for their
effect on the output vector Y . To do this, the parameter vector
Θ = [θc,θEGR,θWG] with the initial value of Θ0 = [1,1,1] is used
to apply perturbations to the components’ flows. Two different
test procedures were selected, one with major changes in the
engine torque and engine speed and the other by major changes
in the wastegate and EGR positions (Test 1 and Test 2 in Fig. 4
respectively).

Step2 To estimate the derivative term in Eqn. 6 with a
finite difference, ∆ỹi/∆θ̃ j, the step size for ∆θ̃ j should be prop-
erly selected to ensure the required linearity condition ( which
needs small ∆θ̃ j) and to avoid treating noise and computation er-
rors as sensitivities (which needs big ∆θ̃ j) [10]. To select ∆θ̃ j,
the following criteria is calculated over a drive cycle time (T ) to
evaluate the linearity:

L =

T
∑

t=0
(

θ̃ j∆ỹi
ỹi∆θ̃ j

(t))−

T
∑

t=0
(

θ̃ j∆ỹi
ỹi∆θ̃ j

)(t)+

(8)

where ((θ̃ j∆ỹi)/(ỹi∆θ̃ j))− is deviation in output yi due to a nega-
tive perturbation (e.g. Θ= [1, .95,1] for 5% negative perturbation
in EGR flow model) in the parameter θ j and ((θ̃ j∆ỹi)/(ỹi∆θ̃ j))+
is due to a positive perturbation. Figure 5 shows L for Pim and
ωtc at different perturbation levels (defined as |θ j−1| ∗100) for
perturbed EGR and compressor flows. As observed, a 5% pertur-
bation has relatively linear influence while giving enough excita-
tion to the outputs. Using the 5% perturbation for each element in
the parameter vector Θ, the sensitivity matrix is calculated from
Eqn. 6

Step3 The importance measure µ j is calculated both with
on-line and off-line calculations. At on-line approach, at each
single simulation step time the sensitivity matrix is calculated
from Eqn. 6 and, by using PCA, the corresponding µ j

′s are cal-
culated. Figure 6 shows the results for both Test-1 and Test-2.
As observed, the turbocharger has the main effect on the out-
puts (though µθc is close to µθEGR in Test-1 which has trajecto-
ries with high variations in engine speed and torque). The EGR
comes as the second influential component of the air-charge path
model and the wastegate shows the least influence on the model.
One reason for higher EGR influence (compared to WG) is that
changing the EGR affects both the turbine and engine flows di-
rectly while the WG only has a direct effect on the turbine flow.

For off-line calculation of the importance measures, the sen-
sitivity matrices calculated form Eqn. 6 at each step time are av-
eraged over the whole range of a test procedure. In addition, the
operating points at which a component does not have any flow
(such as when the wastegate is closed) were removed from the

5 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/08/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Disturbance level, |θ
EGR

-1|*100 (%)
0 5 10 15 20

L
 (

-)

1

1.2

1.4

1.6
(a)

ω
tc

P
ems

Disturbance level, |θ
C

-1|*100 (%)
0 5 10 15 20

L
 (

-)

0.7

0.8

0.9

1
(b)

FIGURE 5: Linearity analysis with disturbance applied to the
EGR and compressor flows

averaging procedure. Figure 7 shows the results for the off-line
analysis. An interesting result from Fig 7 is that when the waste-
gate and EGR are swept (i.e. Test-2) their effect is relatively
closer compared to the test (Test-1) at which there is no specific
pattern for actuating (exciting) these two components. Thus, de-
pending on the test cycle, each component may be found with
different importance for the model designer.

TUNING THE ORIGINAL MODEL
From the sensitivity analysis it was found that the compres-

sor flow used in the turbocharger dynamical model is the key
flow influencing the complete engine model. The compressor
flow is a function of its pressure ratio and rotational speed which
both have estimation errors as Fig. 4 shows. Even if the pres-
sure ratio and the rotational speed are estimated accurately, there
would be deviations between the compressor characteristic map
data provided by a turbo supplier and the one measured when it
is integrated into an engine air path system. Therefore the tuning
procedure should reduce the estimation error for three variables;
compressor pressure ratio, rotational speed and air flow. To do
so, the turbocharger dynamical model is parameterized as:

Itcωtcω̇tc = α1ṁtTuptCp,t(1−
Pdst

Pupt

(1−1/γt )

)−

[α2ṁc,map +α3]TupcCp,c(
Pim

Pupc

(1−1/γc)

−1)

(9)
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FIGURE 6: Importance measure for different components from
the on-line analysis
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the off-line analysis

In Eqn. 9, α1 is included to cancel the inaccuracy in the tur-
bocharger efficiency caused by pulsation and heat transfer which
happen during the engine operation and α2 and α3 correct the
compressor flow model. An optimization problem can be defined
to calculate these three parameters as the following:

[α1,α2,α3] = argmin
α1,α2,α3

||
Pim,meas−Pim

Pim,meas
||2 + ||

ωtc,meas−ωtc

ωtc,meas
||2+

||
ṁc,meas− ṁc

ṁc,meas
||2

(10)
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where Pim is the estimated intake manifold pressure from the fill-
ing dynamics and

ṁc = α2ṁc,map +α3 (11)

It is difficult to solve the optimization problem for all three pa-
rameters simultaneously from Eqn. 10 subjected to the nonlinear
engine equations. Instead, a specific procedure is proposed here
to tune all three parameters within a 2-step solution as described
in the following.

Step1: Tuning the Compressor Flow Model
At the first step, α2, α3 used to apply the bi-linear correction

to the compressor flow model were estimated using linear least
square method to remove the compressor flow error defined as:
eṁc = ṁc,meas− ˆ̇mc using measurements collected during the en-
gine mapping tests. The compressor flow corrected by α2 = 0.9
and α3 =−0.027 is compared to the measured air flow in Fig. 8-
(a). As shown, the model matches the measured data within the
10% accuracy bound as plotted.

Step2: Tuning the turbocharger efficiency
The compressor model from Step1 assures that if Pim and ωtc

are estimated accurately, the compressor air flow from Eqn.11
would be accurate as well. Therefore, the optimization problem
defined in Eqn. 10 is reduced to:

α1 = argmin
α1

||
Pim,meas− P̂im

Pim,meas
||2 + ||

ωtc,meas− ω̂tc

ωtc,meas
||2 (12)

Equation. 12 is solved numerically using the steepest descent al-
gorithm over drive cycles different to what is shown in Fig. 4
in which the engine speed was kept constant and calculated α1
is tabulated as shown in Fig. 8-(b). Final results of the model
with applied corrections to the turbocharger model are shown in
Fig. 9 within test procedures similar to those shown in Fig. 4.
Compared to Fig. 4, both test cycles show noticeable accuracy
improvements for all variables except the engine torque. The rea-
son for this observation is that in a diesel engine, torque is mainly
affected by the amount of injected fuel [5].

CONCLUSION
A new methodology to detect main elements in a complete

engine model was presented in this paper. A heavy duty 6-
cylinder engine model with high pressure EGR was developed
at first. For the modeling, each component was modeled indi-
vidually using data from steady state engine tests and then the
complete engine model was formed by connecting component
models. Despite the fact that individual component models had
acceptable accuracy, noticeable offset from measured data was
observed when the complete engine model was simulated. To
further tune the model, sensitivity analysis was used to deter-
mine how much specific components affect the complete engine
model and select the most influential one. This was done by
principle component analysis of the sensitivity matrix and use
of a measure for quantifying the importance. It was found that
the turbocharger was the main component among selected ones.
Moreover, the importance measure was found dependent on the
selected test procedure by showing different levels of importance
for each selected component at different test procedures. Final
tuning was applied to the turbocharger model in a two step pro-
cedure showed remarkable improvement of the complete engine
model.
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(a) Test 1

(b) Test 2

FIGURE 9: Performance of the tuned engine model
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