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Cells
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Abstract— Compact battery pack design and cooling re-
quirements present significant challenges for the placement of
temperature sensors. Typically, temperature sensors are located
near the edge of the battery, and away from the hottest
regions, which leads to slower response times and increased
errors in the prediction of interior cell temperature. New
sensor technology allows for sensor placement between cells to
improve sensor performance. With the ability to place sensors
anywhere on the exterior of the cell, an observability analysis is
necessary to determine the optimal locations for these sensors.
The analysis is performed using a spatial discretization of a
validated electrothermal model. This model describes a 5 Ah
Li-ion cell harvested from a Ford C-max 2013 pack. Given that
the spatial discretization of the heat partial differential equation
(PDE) governing the system results in singular values that
are very small (numerically zero), two methods are presented
in this paper to quantify observability and address the issue
of optimal sensor placement. The optimal sensor placement
between cells yields a 240% improvement (for 3 sensors on the
surface) and 15% improvement (for one sensor on the surface)
in observability over existing sensor placement near the top
edge of the cell. The pack geometry and airflow conditions
impact sensor placement. It is preferable to place the sensors
towards the outlet side of the airflow as opposed to the inlet
side, resulting in a 13% improvement in observability.

I. INTRODUCTION

In many engineering applications, it is important to deter-
mine the state of a system or sub-system using only partial
measurements of that system. Of particular interest in hybrid
electric vehicle applications is the measurement of the cell
temperature in a battery pack. Monitoring temperature allows
for control algorithms that can prevent excessive temperature
rise and ultimately prevent thermal runways [1]. Although
higher temperatures enhance the lithium transport kinetics,
it is well established that excessive temperatures can also
result in degradation in battery cells [2]-[4], and must be
monitored.

Complex and expensive packaging and engineering
schemes are required to position temperature sensors close
to the regions of interest. Insertion of thermistors between
battery cells is infeasable because the thickness of the sensors
(>1mm) will cause failure or rupture of the cells due to
compression on the thick sensors. However, new sensor
technologies are emerging that enable the placement of tem-
perature sensors anywhere on the cell surface at lower cost
and without causing risk of battery failure. This motivates an
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observability analysis to determine the optimal location for a
sensor on the surface of the cell. Since the core temperatures
of the cell are of interest, maximizing observability, in this
paper, is defined as identifying optimal sensor locations for
the best estimation of the core temperatures.

Optimal sensor and actuator placement has been the fo-
cus of significant research in the controls community. The
optimal locations for sensors and actuators for parabolic
PDEs, which include the heat equation, have been widely
investigated [5], [6]. Georges looked at the optimal sensor
and actuator locations in both discrete and continuous time
domains based on the observability and controllability grami-
ans [7]. This concept of looking at observability for defining
optimal sensor placements is of major importance because
it allows for the best estimation of unknown system states
using the sensor data. Several papers have looked at aspects
of observability for PDEs [8]-[12]. Wolf et al. studied the
optimal sensor placement in battery packs by performing
eigen decomposition of the heat equation PDEs that govern
the entire battery pack and looking at the magnitude of their
corresponding eigenmodes [13]. However, little work has
been done on optimal temperature sensor placements on a
single battery cell.

Two methods are presented here for studying the ob-
servability and optimal temperature sensor placement on a
battery cell with air flow (convection) over its surface to
simulate battery pack conditions. The first is an extension
to the method presented by Lim where observability is
defined in terms of the projections of the eigenvectors on
the observability subspace [14], while the second looks at the
trace of the gramian matrix [15]. The advantage of using the
first method is that it is possible to maximize observability
of certain nodes of interest, such as core nodes of a battery
cell. The second method looks at maximizing observability
for the system as a whole and is a more traditional method
of looking at observability.

II. EXPERIMENTAL CONDITIONS

A 3-cell fixture was fabricated in order to replicate a
vehicle battery pack. The cells considered are prismatic
hard case Lithium-Nickel-Manganese-Cobalt-Oxide (NMC)
with a 5 Ah nominal capacity. Each cell has dimensions
of 120mm x 85mm x 12.7mm. The cells are sandwiched
between two garolite end plates and bolted down to a specific
preload as shown in Fig. 1. Thin film RTD (resistance tem-
perature detector) sensors were supplied by General Electric.
They are mounted between the cells for measuring spatial
temperature distributions. The RTDs have a low profile,



flexible structure that allows placement between cells without
obstructing airflow for cooling or possibly damaging the
cells. The RTDs are fabricated on a flexible Kapton substrate
and the elements are composed of Platinum (Pt) with a
nominal 100 ohm resistance. The total thickness of the sensor
is less than 100 microns which is 10x thinner than the current
state of the art temperature sensors used on electric vehicles.
The RTDs are mounted on the dimples of spacers which
act as sites for holding the RTDs. The separators maintain
compression whilst still allowing for airflow between the
cells as shown in Fig. 1. Ambient temperature control is
provided via a Cincinnati Sub-Zero ZPHS16-3.5-SCT/AC
thermal chamber. Figure 1 also shows the mounting locations
for the RTD sensors. There are 36 RTD sensors which
span the face of the battery and are arranged in arrays of
6 temperature sensors laterally along the flow direction. A
fan is used to simulate cabin air used to cool the cells.
This allows the experiment to generate surface temperature
profiles that are representative of those seen in the pack.
When the cooling fan is off, the chamber circulates air that
would result in convection over the surface of the cell with
airflow velocity of v = 0.65m/s. A negative temperature
coefficient (NTC) thermistor is mounted on top of the middle
cell using the same sensor and cell location implemented
in the Ford C-max 2013 pack. This allows for comparing
observability of the current sensor to the placement of the
RTD sensors over the surface.

NTC thermistor placed

near tab Fan Connection

Battery

dimples
RTD sensor placement:

6 arrays of 6 sensors each
to measure spatial
temperature variation
(shown in blue)

Fig. 1. Exploded view of the fixture showing locations of temperature
sensors on the surface of the battery
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X
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Fig. 2. Schematic of the 5 layered nx m mesh used for the thermal model
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III. SENSOR PLACEMENT MODEL
A. Thermo-electric model

A thermo-electric model, as presented in [16], is being
considered here. The model consists of a 3-D thermal net-
work coupled to a distributed equivalent circuit model as
shown in Fig. 2. The core nodes in Fig. 2 represent the
lumped properties of the jelly roll, while the surface nodes
represent the aluminum casing of the cell with thickness
0.6mm. The cell also has air gaps between the jelly roll
and the casing which are modeled using the air thermal
properties. Since air is flowing over the surface of the cell,
the air nodes on top of the surface of the cell have to be also
modeled. The overall heat transfer equation applies to each
node in the cell:

pCV% = Qgen + an - Qout~ (1)

where p is the density of the node volume, c is the specific
heat capacity, and V' the volume of that node. Qgen is the
heat generation, and Qm — Qout is the net heat transfer into
the node volume. The heat generation is defined as:

I’R, + ;—1? + ;—22 +IT9Y jelly roll node.

0. other nodes

Qgen = (2)

Note that for an interior node, the first 3 terms of the
heat generation equation represent ohmic heat losses, while

the last term represents the entropic heat generation. The
entropic heat generation % is constant as a function of
temperature but varies with state of charge (SOC). Since the
analysis is done around a nominal SOC, ‘f# is assumed to

be constant. The net heat transfer for an interior node (with
temperature 7T;) is:

KoyyAyy

(an - Qout)core = Z 7 (Txy,i - Tz)

K””y A 3)
REE T..,—=T).
+> (T —T)
The net heat transfer for all surface nodes is:
) . KA,
(an - Qout)surf - Z %(sz,z - :rz)
“4)

L
+ hsurfAsurf (Tairﬂ' - Tz)

Finally the net heat transfer for the airflow nodes is defined
as:

Yy
+ Z R4 (T = T3)

(Qin - Qout)air = hsquAsurf (Tsurf,i - sz) (5)
+ (pc)airAgapv(Tair,in - Tair,out)~

where K is the thermal conductivity and h is the heat
transfer coefficient. A and L are the corresponding areas and
lengths between neighboring volumes. 17, ; and T, ; are the
temperatures of the surrounding nodes in the xy — plane and
z — direction consecutively, and v is the velocity of air.

The thermal properties used in equations 1 through 5 are
summarized in Table I.



TABLE I
IDENTIFIED THERMAL PARAMETERS

Parameter Jelly roll  Aluminum casing  Air gaps
Koy [ W/m?K] 22 237 0.024
K[ W/m?K] 1.7 237 0.024
hsurf[ W/mK] — 45 —
hedge[ W/mK} - 18 -

(po)[ J/m3K] 2.75€6 2.42¢6 1200

B. State-Space Representation

The model presented in section III-A is nonlinear. The
nonlinearity is present in the form of temperature dependent
resistances (R, Ry and Rs), and entropic heat generation
I T%' For any given profile or excitation input, the steady
state value is found using the non-linear model, and lin-
earization is done around that steady state value for both
the temperature dependent resistances (Rs, Ry and Rz), and

the entropic heat generation [ T‘f#, where for the resistance:
OR
R(T)=R(Teq) + z=| (T —Tey). (6)
oT T
and for the entropic heat generation f(I%,T) = IT %:
of of
2 _ 2 2 72
f(I 7T) _f(quvTeq)—i_ﬁ(I _qu)—i_aiT(T_Teq)' (7
where % is calculated as:
af 1 dUu
—— = —(Teg—)- 8
orz 21, (Teq dT) ®

Note that linearization is done with respect to I? and T
since 12 is an input to the system, and 7' is a state variable.
Accordingly, the system can thus be written in state space
representation as:

T =AT + Bu.

y =CT 9

Where T = [Ty, Ty, ..., T;,]7 is the matrix of state variables
of temperatures at each node and u = [I%, Ty,p)7 is the
input to the system. A and B are the system matrices that
correspond to linearizing equations 1 through 8, and C is a
matrix defining the locations of sensors on the system, and
thus the observable output y, where:

cC=[01 0]. (10)

indicates that, for example, only one sensor at node 2 is
placed.

C. Sensor placement and observability

Several methods have been proposed for studying the
observability of ODEs and addressing the issue of optimal
sensor placement. The most common metric is the condition
number or minimum singular values of the observability
gramian matrix W°. However, for studying the observability
of the heat equation, it has been shown that increasing the
number of modes of a system will rapidly decrease the
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value of the smallest eigenvalue, o, . of the observability

gramian matrix implying weak observability [17]. After N=8
modes, the smallest eigenvalue, o, . is almost zero. For
heat transfer problems, one would be interested in looking
at the observability of certain modes or eigenvalues instead of
all the eigenvalues of the system. Hence, a different approach
for looking at observability has to be established.

Two methods for quantifying sensor placement are ana-
lyzed and compared. The first method is based on analyzing
the trace of the observability gramian matrix similar to the
work done by Fang et al. [15]. This method leverages the
fact that a larger trace of the observability gramian matrix
W€ tends to result in a higher rank for the matrix [18]. The
other method is based upon the work by Lim [14], where
optimal sensor placement is found using the orthogonal
projections of the eigenmodes onto the observable subspace.
This method is expanded upon by studying the projections
of certain eigenmodes that are of interest to the application.
Thus maximizing the observability of certain nodes instead
of the system as a whole.

1) Trace analysis: For the system defined in Section III-
B, and for a chosen sensor location as defined by matrix Cj,
the observability gramian matrix W is defined as:

We — / AT CT e dr.
0

2

(1)

The trace of the matrix W7 is defined as:

n
tr(We) = X (Wy). (12)
j=1
where \;;(W7) are the eigenvalues of W7, with correspond-
ing eigenvectors ¢;;(W7).

2) Eigenmode projections: The method presented ex-
pands upon Lim [14] to achieve maximum observability for
certain critical nodes of interest. Given the system presented
in Section III-B, a given matrix C; for the locations of
sensors and the resulting observability gramian matrix W,
presented in section III-C.1, one can decompose W/ into its
eigen decomposition, which would be written as:

3

where U, is a matrix with column vectors that form
an orthogonal basis for matrix Wio, and Zf
diag(Xi1, Nij2, ..., Ai,g) is a diagonal matrix of the eigenval-
ues of W (where \; 1 > X\j2 > ... > )\ 4), and q is the rank
of the gramian matrix W or the dimension of matrix U; (the
threshold for defining the rank is set by default at 9.2x 10713
using MATLAB). As outlined in [14], the projection of the
eigenvectors, ¢;;, corresponding to eigenvalues );; onto the

subspace U; is:

o
7

UT

Wy =[Ui U] { = gir (13)

proj
b J

= U(UFU) UL 645 (14)

A scalar, o, is defined to reflect the relative significance of
the corresponding eigenvector ¢;;, where:

.T .
= ol WGl

)

(15)



Equation 15 implies that «;; takes a larger value when the
projected eigenvector, ¢}, is in the direction of maximum
observability. However, smce the nodes corresponding to the
jelly roll inside the cell are of interest, and observing those
nodes is critical, the method presented in [14] is expanded to
look at the observability of those critical nodes by analyzing
the contribution of the corresponding eigenmodes of those
nodes. This expansion of Lim’s method is shown in the
eigenvalue plot of system matrix A in Fig. 3. The plot in
Fig. 3 corresponds to the eigenvalues when only chamber fan
is turned on to maintain ambient temperature (resulting in a
flow rate of v = 0.65m/s over the surface of the cell). This
analysis however could be performed for different ambient
and flow conditions.

Eigen Values — Chamber convection

LVery fast dynamics /
i Y First cluster
(slowest dynamics),

Im(\)

L L
~2000 ~1500 -500

Re(t)
Fig. 3. Eigenvalue plot of system matrix A

Since each eigenvector corresponding to each eigenvalue
in the system represents the contribution of the different
states to that eigenvalue, a criteria is established to identify
the states that contribute most to the eigenvalues of interest.
It is also required that at least the states corresponding
or contributing to the slowest dynamics in the system are
observed. A procedure for doing such an analysis is outlined
below:

Step 1: Choose eigenvalues of interest

1) Perform eigen decomposition on system matrix A.
2) For any given eigenvalue, quantify the contribution
( ij) of each state to that specific eigenvalue according

to:

|61 (k)]
n:l |¢ij(k)|
Equation 16 above implies that for a given sensor
placement represented by matrix C;, and for a given
eigenvalue \;; with corresponding eigenvector ¢;;, 557-
(for k=1, ..., ny = number of states) will represent
the contribution of state £ to eigenvalue \;;.
Choose the eigenvalues for which the states of interest
(such as the core nodes) have the highest mean fj
The eigenvectors, ¢;;, corresponding to those eigen-
values, A;;, will be projected onto subspace U; for
observability analysis. This tailors the solution towards
maximizing the observability of those states instead of
the system as a whole.

5 (%) = x 100. (16)

3)
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Step 2: Perform observability

1) Find parameter «y;; for each eigenvector of the eigen-
values chosen in Step I above using Eq. 15.

Define a final metric, 7,5, for quantifying the degree of
observability of the chosen eigenmodes using a given
sensor placement represented by matrix C;, using the
Lo norm of ay;:

2)

a7

Yi = [levs |-
where j =1, 2, ..., n. sweeps the number of eigenval-

ues of interest, and ¢ = 1, 2, ..., n. sweeps the number
of possible sensor placements.

IV. RESULTS

In this section, the results of the trace and eigenmode
projection methods are summarized for a given flow rate
condition over the surface of the cell (chamber fan convection
only). For easier analysis of sensor placement, 23 x 18 nodes
were chosen such that they coincide with sensor locations
(or dimple locations) as shown in Fig. 4. In total, there are
23x18%5 = 2070 nodes. Figure 4 shows that there are 36
possible sensor locations on the surface of the battery.
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ONst over
sel ode Locations curface
N B R B R R R R R R
T
O 040 O OO0 O OO0 O O 0 O OO0 O 0,0 O O O_
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o 6 a0 6 0.0 0 040 0 010 o o o
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2 o 1%001&001500160017001(8 o o
o S0 0600006000800 ®ch o g
15 o o (1 90 o 026 o %10 o 022 o ?30 ) ?40 o
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Fig. 4. Locations of sensors and nodes on the surface of the battery

Analysis is divided into two parts: one sensor analysis,
and a strip of 3 sensor analysis. The first analysis highlights
the advantage of using sensors placed on the surface as
opposed to a thermistor placed closer to the tab (like the
Ford C-max placement). The second analysis identifies an
optimal location for placing a strip of 3 sensors. However,
for the eigenmode projections method, certain eigenvalues
of interest have to be chosen first. As shown in Fig. 3, a
threshold or cutoff is set to chose the eigenvalues with slow
dynamics and those for which the jelly roll states contribute
the most. A plot of parameter ij as a function of the first
z number of eiegnvalues is shown in Fig. 5. The plot shows
that choosing the first 303 slowest eigenvalues and their
corresponding eigenmodes captures the slowest dynamics
of the battery and constitutes the highest contribution from
the jelly roll states. Accordingly, only the first 303 slowest
eigenvalues are chosen for the eigenmode projections method
that is summarized in sections IV-A and IV-B.
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A. One sensor analysis

Figure 6 shows the trace and v values for a sensor
permuted across all dimple locations (36 dimple locations).
This shows that the trace and eigenmode projections method
exhibit the same trends but differ slightly in the location of
best observability. This could be due to the fact that the trace
takes into account all the eigenvalues of the system, while
the eigenmode projection method only takes into account
some eigenvalues of interest. Moreover, comparing the best
location of one sensor on the surface to a conventional sensor
placed near the tabs shows that observability is higher for a
sensor on the surface than it is for one near the tabs as shown
in Table II.

Airflow 3.05
38 direction
3
3
<|— 295
25 oo
2 <— 285
15 28
<1
275
1
27
05 <1

0 05 i 15
a) Trace analysis
.

a1

Airflow
direction 08

144 44

o 05 1 15 2 25 3 35 4
b) y analysis

Fig. 6. Trace and «y based on a single sensor approach
TABLE II
ONE SENSOR SUMMARY
Method Surface  Near tab ~ %Improvement
Trace 3.109 2.685 15.79
Eigenmode projection  0.515 0.436 18.12
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B. Three sensor analysis

Sensors provided by GE are inline on a Kapton strip such
that they span dimples in the same row. Given this constraint,
the results of the three sensor permutation is summarized in
Fig. 7. Similar to to the results from section IV-A, it can
be seen that the best locations for sensors using the trace
and eigenmode projection methods are closer to the airflow
outlet side, with the worst positions towards the airflow inlet
side. Moreover, Table III shows the percent improvement in
observability if 3 sensors are used on the surface as compared
to a traditional sensor placed near the tabs. There is a huge
improvement for using 3 sensor on the surface instead of
1 sensor near the tabs (240% improvement). Up to 13%
improvement could be achieved when placing sensors closer
to the outlet as opposed to the inlet side of the airflow.
This is also true for the one sensor analysis where the best
locations are at positions 31 (using trace analysis in Fig.
6a) and 20 (using eigenmode projection method in Fig. 6b).
This is an obvious observability result since the highest
observability measures collocate with the highest measured
surface temperatures as shown in Fig. 8.

Best positions N
Worst positions A]rlloyv
r direction
3
<
Bi12 ]
) |24 <—
36 €T
,
4 45 5
Best positions Airflow

Worst positions direction

o 05
b) yanalysis

Fig. 7. Best and worst positions for three sensors using trace and -y analysis

TABLE III
THREE SENSOR SUMMARY

Method 7 (surface)  + (near tab)  %Improvement
Trace 9.168 2.685 241
Eigenmode projection  1.535 0.436 252

V. CONCLUSIONS

Two methods for looking at the observability of a thermal
model for a battery cell using novel thin RTD temperature
sensors have been analyzed. Results show that sensors placed



over the surface of the battery provide better observability
as compared to a conventional sensor placed on top of the
battery (near the tabs in the Ford C-max 2013 pack). The
analysis is done by looking at the trace of the observability
gramian matrix and at the projection of the eigenmodes
of the system matrix onto the observability subspace. A
15.79/18.12% improvement (trace method / eigenmode pro-
jection method) could be achieved if one sensor is placed
at the optimal location on the surface of the battery as
compared to a sensor placed on top of the battery. 241/252%
improvement (trace method / eigenmode projection method)
improvement could be achieved if 3 sensors are used. Results
also indicate that better observability could be achieved
if the sensors are placed closer to the outlet side of the
airflow as opposed to the inlet side. Although the results
from both methods are not entirely the same, the overall
trend from both methods indicates that placing the sensors
at the hot spot location results in best observability. For
the experimental conditions presented above, the eigenmode
projection method provides a better match. However, further
experiments are required to verify the adequacy of both
methods.

Airflow |
direction

Fig. 8. Experimental surface temperature profiles for a S0A charge
sustaining pulsing experiment
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