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Fast Computation of Combustion
Phasing and Its Influence
on Classifying Random
or Deterministic Patterns
The classification between a sequence of highly variable combustion events that have an
underlying deterministic pattern and a sequence of combustion events with similar level
of variability but random characteristics is important for control of combustion phasing.
In the case of high cyclic variation (CV) with underlying deterministic patterns, it is pos-
sible to apply closed-loop combustion control on a cyclic-basis with a fixed mean value,
such as injection timing in homogeneous charge compression ignition (HCCI) or spark
timing in spark ignition (SI) applications, to contract the CV. In the case of a random dis-
tribution, the high CV can be avoided by shifting operating conditions away from the
unstable region via advancing or retarding the injection timing or the spark timing in the
mean-sense. Therefore, the focus of this paper is on the various methods of computing
CA50 for analyzing and classifying cycle-to-cycle variability. The assumptions made to
establish fast and possibly online methods can alter the distribution of the calculated pa-
rameters from cycle-to-cycle, possibly leading to incorrect pattern interpretation and
improper control action. Finally, we apply a statistical technique named “permutation
entropy” for the first time on classifying combustion patterns in HCCI and SI engine for
varying operating conditions. Then, the various fast methods for computing CA50 feed
the two statistical methods, permutation and the Shannon entropy, and their differences
and similarities are highlighted. [DOI: 10.1115/1.4033469]

1 Introduction

Control of combustion process on a cycle-to-cycle basis can
improve fuel economy and emission performance. The character-
istics of combustion process represented by combustion phasing
could be random [1] or deterministic [2,3] and would lead to a dif-
ferent control strategy aiming to contract the CV. In the case of
high CV with underlying deterministic patterns, it is possible to
apply closed-loop combustion control of certain variable on a
cycle-basis with a fixed mean value, such as injection timing in
HCCI engine or spark timing in SI engine, to contract the CV. In
the case of a random distribution, the high CV should be avoided
by shifting operating conditions via advancing or retarding the
injection timing or the spark timing in the mean-sense.

Real time heat release can be used with statistical methods for
online quantification of combustion process variations as random
or deterministic. However, errors within these fast heat release
(fHR) analyses can bias sequence statistics and lead to the incor-
rect classification of combustion variations as random or deter-
ministic, potentially leading to improper control action. In the
current work, we compare the influence of several fHR methods
on the statistics of deterministic, high CV HCCI combustion and
SI combustion, where the CV is random in nature.

The paper is organized as follows: In Sec. 2, three fast compu-
tational methods for the determination of combustion phasing are
briefly described. In Sec. 3, CV is quantified with return maps, the
modified Shannon entropy, and symbol statistics. The impact of
each combustion phasing estimation method on the quantification
of CV is assessed through comparison with the baseline detailed
heat release (dHR) analysis [4]. Section 4 introduces a diagnostic

technique based on the permutation entropy to classify if SI and
HCCI combustion process are deterministic or random, which is
necessary for choosing the optimal control strategy. Comparisons
with modified Shannon entropy are also included. Figure 1 sum-
marizes the scope of the current work.

2 Estimation of Combustion Phasing

Three fast combustion phasing estimation methods have been
evaluated for HCCI and SI combustion phasing: fast, single-zone
heat release with a constant ratio of specific heats [2], Rasseweiler
and Withrow’s (R&W) method based on the assumption of isen-
tropic compression and expansion [2], and Marvin’s graphic
method [6]. The methods were evaluated offline against dHR
analysis which estimates burned gas properties with chemical
equilibrium and a routine for the prediction of trapped residual
mass [5].

2.1 Experimental Setup. SI and HCCI combustion experi-
ments were performed in a prototype modified four-cylinder 2.0 L
SI engine, based on the GM Ecotec, running on Tier-II certifica-
tion gasoline fuel. The compression ratio was 11.7, the bore and
stroke were 88 mm, and the connecting rod length was 146 mm.
The engine was designed for running multiple modes of combus-
tion, such as an HCCI, spark assisted compression ignition
(SACI), and SI. The important features of the engine were dual-
lift valvetrain with dual-independent cam phasers, external
exhaust gas recirculation (eEGR), spray-guided direct and port
fuel injection, and in-cylinder pressure sensing. The data pre-
sented here for SI combustion were operated close to stoichiome-
try, with direct injection and with low cam lift intake and exhaust
profile. Negative valve overlap was utilized to trap up to approxi-
mately 40% internal residual, while a high-pressure EGR system
provides cooled external residual gas [7,8]. For HCCI combustion,
the data were taken from experiments at constant speed of
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2000 rpm, with fuel injection at 60 deg after top dead center with
negative valve overlapping. The chosen condition was diluted and
lean with approximately 50% residual gas and air–fuel equiva-
lence ratio of 1.3–1.4 [9].

2.2 Marvin’s Method. Marvin [6] proposed a graphical
method with a logarithmic P–V diagram based on the assumption
that both compression and expansion processes follow a poly-
tropic relation

PVc ¼ constant (1)

Marvin’s method is illustrated in Fig. 2. Constant volume com-
bustion was assumed to follow the polytropic compression process
with the pressure rise shown between points b and d. The mass
fraction burned at point c on the line b–d can be estimated as

xb ¼
Pc � Pb

Pd � Pc
(2)

By drawing a line c� c0 from point c parallel to the polytropic
compression slope that intersects with the actual P–V diagram at
c0, a combination of in-cylinder pressure and volume is defined

from the intersection point. The corresponding combustion phas-
ing crank angle can be uniquely calculated from the combination
of pressure and volume.

A natural question of this technique is the resolution in defining
the intersection point and combustion phasing calculation. We
have found that 1/10 crank angle is a reasonable measurement re-
solution for SI combustion applications, which has been adopted
for all the results in the current work. In the case with poor mea-
surement resolution, it is recommended to interpolate the pressure
data with a cubic interpolation method to ensure estimation
accuracy.

2.3 R&W Method. Another well-known method to estimate
combustion phasing was proposed by Rassweiler and Withrow
[10], who correlated pressure rise with flame photographs. The
analysis assumes that unburned gas with a volume of Vu has been
compressed polytropically through the expansion of the charge as
it is consumed by the flame front, thus the unburned gas volume
Vu;r at the start of combustion can be expressed as

Vu;r ¼ VuðP=PrÞ1=n
(3)

where P is the crank-angle-resolved in-cylinder pressure, and Pr
is the pressure at the start of combustion, defined as the time of
spark timing for SI and intake valve closing (IVC) for HCCI
combustion.

Similarly, the burnt gas volume Vb;f at the end of combustion
(EOC) can be expressed in Eq. (4), where the EOC is arbitrarily
defined. In the current work on SI combustion, we define the EOC
around the crank angle where the P–V diagram converges to the
polytropic expansion phase as shown in Fig. 2. For HCCI combus-
tion, it is difficult to identify the crank angle where the logarith-
mic P–V diagram converges to the polytropic expansion phase,
due to the presence of slow-burning cycles. The EOC is defined
approximately 30 deg after top dead center, where combustion
ends in most of the cycles. It should be noted that the arbitrary
choice of the EOC is the major factor responsible for the inaccur-
acy of this method

Vb;f ¼ VbðP=Pf Þ1=n
(4)

The mass fraction burned xb can be approximated with the
unburned gas volume consumed by the flame front as

xb ¼ 1� Vu;r

Vr
(5)

Combining Eqs. (3) and (5) and considering volume conservation
V ¼ Vu þ Vb, the mass fraction burnt xb is then derived as

xb ¼
P1=nV � P1=n

r Vr

P
1=n
f Vf � P

1=n
r Vr

(6)

The polytropic exponent n has been used as an averaged value of
compression and expansion processes.

The combustion phasing crank angle is calculated from the
interpolation of the mass fraction burned xb, with a resolution of
0.1 deg crank angle.

2.4 fHR. The logarithmic P–V diagram provides a good rep-
resentation of engine work but cannot infer details of the combus-
tion process to directly relate the pressure rise due to the chemical
energy released. While dHR analysis based on the first law of
thermodynamics includes subroutines for estimating burned gas
properties with chemical equilibrium and prediction of the trapped
residual mass, these subroutines are time-consuming and inappli-
cable for online diagnostic purposes. Alternatively, a simplified
fHR method that has been widely applied [2] is used here. The

Fig. 1 Scope of the current work (engine map from Ref. [5])

Fig. 2 Marvin’s graphical method for estimating combustion
phasing of SI combustion, with 42% internal EGR fraction,
spark timing 38 deg bTDC, 298 cycles
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fHR analysis is based on the assumption of a single-zone combus-
tion chamber and a fixed ratio of specific heats for gas properties.

The energy equation based on the first law of thermodynamics
can be expressed as follows for a closed system to evaluate its ef-
ficiency during high CV conditions:

dQch

dh
¼ mccvdT

dh
þ P

dV

dh
þ dQht

dh
(7)

based on the assumption of ideal gas law

PV ¼ m
R

M
T (8)

Introducing the differential from the ideal gas law into the
energy equation yields

dQn

dh
¼ dQch

dh
� dQht

dh
¼ c

c� 1
P

dV

dh
þ 1

c� 1
V

dP

dh
(9)

The apparent heat release is calculated by solving Eq. (9), while
gamma is assumed to be constant (1.35). Equation (9) was eval-
uated from the start to end of combustion (SOC and EOC, respec-
tively) to determine the net rate of heat release. SOC was defined
as the crank angle of IVC for HCCI and the crank angle of spark
for SI. EOC was defined as 30 deg after top dead center, where
combustion ends in most cycles. The mass fraction burned (xb)
was defined by normalizing the cumulative heat release from SOC
to a given crank angle by the net cumulative heat release deter-
mined from SOC to EOC. The corresponding combustion phasing
is then defined proportional to the mass fraction burned. The ini-
tial condition of pressure and volume for each cycle is defined
slightly before the SOC from the experimental pressure measure-
ment. Although the residual mass is not considered in this case,
the initial condition is updated each cycle to reflect the variation
of in-cylinder charge. The coupled equations and their conver-
gence have been studied for an HCCI application in our previous
work [11].

While the choice of EOC affects the combustion phasing calcu-
lation (CA50), this choice did not affect the HCCI and SI symbol
statistics for slow-burning or misfiring cycles or the quantification
of random or deterministic patterns discussed in Sec. 3. Due to the
equally probable coarse binning approach, this approach lumps
very slow-burning and misfiring cycles into a single bin.

Applying the three methods on pressure data from SI combus-
tion, the CA50 calculated from each method is shown in Fig. 3. It
is shown in Figs. 3(a) and 3(b) that all the three fast computation

methods perform well for SI combustion with small discrepancies
relative to the baseline detailed heat release analysis, labeled as
dHR. The CA50 calculation for HCCI combustion is shown in
Fig. 4. Deviations from baseline are observed for all of the three
fast computation methods. However, the inaccuracies of these
three methods in the estimation of SI combustion phasing were
found mostly for slow-burning cycles. CA50 computations were
performed on a 2 GHz Intel Core i7 with 8 GB memory, with cal-
culation times (per cycle) within 10 ms for the three methods.

In summary, the fHR and R&W methods are accurate for rapid
burning HCCI combustion cycles but could result in discrepancies
in late burning cycles. This is due to the fact that both methods
involve an arbitrarily defined EOC, which contributes to most of
the inaccuracy in phasing estimations for the late burning cycles.
Marvin’s method could result in noticeable deviation due to the
constant volume assumption and limited resolution when deter-
mining the intersection point.

3 Determinism Versus Randomness in CV

The cyclic dispersion of SI and HCCI combustion was quanti-
fied with return maps, modified Shannon Entropies, and symbol
sequence statistics [9] of the estimated combustion phasing pa-
rameters. These techniques help to quantify the influence of deter-
ministic patterns in the seemingly random events. A brief
summary of the three techniques is included for clarification pur-
poses. A detailed description of these techniques can be found in
Ref. [3]. In this section, we investigate if the skewness of the fast
methods described earlier could also affect the entropy of the
combustion phasing for both deterministic HCCI and random SI
combustion.

A return map qualitatively shows the relationship of two con-
secutive cycles of a specific cycle-dependent combustion feature.
The modified Shannon entropy [3] is a quantitative measurement
of the randomness of a given time series sequence. It shows the
temporal correlation in time series data when discretized into
symbols with a specific sequence division N and length L and is
defined as

Hs ¼ �
1

log nseq

X

k

pk log pk (10)

where pk is the probability of observing a sequence k, and nseq is
the number of different sequences observed in the time series. The
entropy equaling 1 (Hs¼ 1) represents a random process, while
Hs < 1 shows the presence of deterministic patterns. In practice,
the modified Shannon entropy can be used to: (a) quantify the ran-
domness in time series data and (b) optimize symbol sequence pa-
rameters N and L, with the best representation of temporal
correlation occurring in the engine cycles. The symbol sequence

Fig. 3 CA50 calculation of SI combustion with 42% internal
EGR fraction, spark timing 38 deg bTDC: (a) scatter plot and (b)
relationship with the baseline CA50 from dHR. Detailed heat
release is noted as dHR and fast heat release is noted as fHR.
Marvin’s method is noted as Marvin, and Rasseweiler and With-
row’s method is noted as R&W.

Fig. 4 CA50 calculation of HCCI combustion: (a) scatter plot
and (b) relationship with the baseline CA50 from dHR
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histogram describes the probability of the occurrence of a specific
sequence and hence could point to a deterministic mechanism
causing this sequence.

3.1 Impact of Combustion Phasing Estimation on the
Deterministic Patterns. To examine the impact of the combus-
tion phasing estimation on quantifying deterministic patterns, we
used previously published HCCI data [9]. The CA50 of HCCI
combustion has been used to examine the sensitivity of the quanti-
fication of CV to processing method. Figure 5 is the return map of
CA50 calculated from various fast methods superimposed onto
the baseline CA50 calculated with the dHR. Oscillations between
early and later cycles are observed, representing the presence of
nonrandomness for each of the three fast computation methods.
The fHR and R&W method had negligible impact on the return
map, while Marvin’s method distorts the map slightly.

The modified Shannon entropy of CA50 from dHR is shown in
Fig. 6(a) as the baseline, with the fHR, Marvin’s method, and
R&W method shown in Figs. 6(b), 6(c), and 6(d), respectively.
The minimum Shannon entropy of the baseline case is around
0.75, with each of the three fast processing methods resulting in a
similar value, suggesting that the deterministic dynamic behavior
could be captured by either method. However, Marvin’s method
shows a decrease in the magnitude in the modified Shannon en-
tropy with various combinations of partition number N and
sequence length L, consistent with the deviation observed in the
return maps in Fig. 5.

The symbol statistics of CA50 are shown in Fig. 7 for the three
fast computation method with baseline dHR plotted in gray.
Sequence partition number N and sequence length L are defined as
5 and 3, consistent with the approach of our previous work [12].
Such combination yields a magnitude of 0.85 for the modified
Shannon entropy, but it is not the lowest value for all of the com-
binations. Any of the three methods captures certain sequences
(for example, 041, 410, 141, and 320) with higher frequency,
which suggests the undergoing deterministic dynamics induced by
the recirculated residual gas [9]. Despite the discrepancies in

estimating CA50 with Marvin’s method, the sequences are identi-
fied in symbol statistics (Fig. 7(b)). This is due to the coarse bin-
ning approach of symbol sequencing that ensures the robustness
of this quantification technique.

The return map, modified Shannon entropy, and symbol statis-
tics for 298 cycles at the condition with highest internal EGR rate
are plotted in Fig. 8. The scatter-ball-shaped return map in
Fig. 8(a) qualitatively indicates randomness. The contour of the
modified Shannon entropy of CA50 with sequence division
NðN ¼ 2; 3; 9Þ and length LðL ¼ 2; 3; 15Þ is shown in Fig. 8(b),
with the minimum magnitude of the modified Shannon entropy
around 0.975 which quantitatively shows the combustion phasing
of SI combustion to be random. There are no sequences with rela-
tive high frequency in the symbol statistics shown in Fig. 8(c).
Thus, in the SI case presented here, we observe randomly distrib-
uted patterns in the CVs. This conclusion is obviously reached for
all the methods of computing the CA50, since the variability in SI
data we observed did not include slow burns and late combustion.

Fig. 5 Return map of CA50 of high CV HCCI combustion: (a)
detailed heat release (noted as dHR in gray dots) versus fast
heat release (noted as fHR, in black dots), (b) detailed heat
release (noted as dHR in gray dots) versus Marvin’s method
(noted as Marvin, in black dots), and (c) detailed heat release
(noted as dHR in gray dots) versus Rasseweiler and Withrow’s
method (noted as R&W, in black dots)

Fig. 6 The modified Shannon entropy of CA50 of high CV
HCCI combustion: (a) dHR, (b) fHR, (c) Marvin’s method, and (d)
R&W method

Fig. 7 Symbol statistics of CA50 of high CV HCCI combustion:
(a) dHR versus fHR, (b) dHR versus Marvin’s method, and (c)
dHR versus R&W method
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4 Diagnostic of Determinism

To decide if SI and HCCI combustion is deterministic or ran-
dom and to select the corresponding control strategy, we introduce
a diagnostic technique based on the permutation entropy [13,14],
which quantifies the rank order pattern of combustion phasing and
tracks the temporal development of “determinism” in the time se-
ries data. Comparisons with the modified Shannon entropy are
made as follows. The theory of permutation is briefly described
before discussing an application to HCCI and SI combustion.

4.1 Permutation Entropy. The permutation entropy is an
invariant of the rank order pattern in time series data proposed by
Bandt and Pompe [13] based on entropy measures and symbolic
dynamics. It has been applied to quantify combustion complexity,
flame front dynamics [15], and to detect blowout in a lean burn
premixed gas-turbine [16]. Symbol statistics rely on coarse bin-
ning with the benefit of robustness in the presence of noise. How-
ever, this robustness sacrifices the large volume of information
contained in the re-representation of the time series data. In order
to capture more details, larger partition numbers N and sequence
lengths L are needed, but this would result in large number of
combinations NL and would cause difficulties in identifying spe-
cific sequences with relatively higher frequency above the random
line. Permutation is based on sorting and could provide additional
information and work together with Shannon entropy and symbol
statistics to examine if the time series data are deterministic or
random.

Permutation entropy of the time series data could provide track-
ing of rank order patterns. Given a time series X ¼ xi; i ¼ 1; :::;m
with m as the number of time series data, the chosen order of per-
mutation n defines the dimension in phase space. For example, an
order of permutation n¼ 4 defines a three-dimensional phase
space and quantifies the rank order pattern of xi; xiþs; xiþ2s; xiþ3s.
The relative frequency of each permutation is calculated as

pj ¼
zjX

zk

(11)

where zj is the count of realization of the jth permutation, and zk is
the total realizations. Following the definition of Shannon entropy,
the permutation entropy is defined as

Hp ¼ �
Xn!

j¼1

pj log2ðpjÞ (12)

The permutation entropy Hp is then normalized by the maxi-
mum permutation entropy log2n! following Domen’s approach
[16] noted as Hn as in Eq. (13), so that Hn¼ 0 corresponds to a
monotonic relationship that is completely deterministic and
Hn¼ 1 corresponds to randomness

Hn ¼
�
Xn!

j¼1

pj log2 pjð Þ

log2n!
(13)

An graphic example of data discretization for the calculation of
permutation entropy is given in Fig. 9. A detailed step-by-step
description is provided in Ref. [14]. Comparing to binning discre-
tization for the symbol statistics and the modified Shannon en-
tropy, the discretization approach for permutation represents the
ranking order value in data sequence. This is the major difference
between the definition of the permutation entropy and the modi-
fied Shannon entropy [3].

4.2 Diagnostic of Determinism With Varying Operating
Conditions. The modified Shannon entropy and the permutation
entropy of CA50 of HCCI and multicylinder SI combustion were
calculated. These analyses are now extended to handle variations
in engine operating conditions, which will be encountered given
the transient nature of engine applications. The CA50 values are
calculated from in-cylinder pressure with the three fast computa-
tional methods as well as the baseline dHR analysis. The influence
of the three fast computational methods on entropies is examined.

For each of the four cylinders, 298 cycles of CA50 of an SI
combustion engine are arranged by the firing order 1-3-4-2. To
represent the entropy characterization of both random and deter-
ministic data, 3000 cycles of HCCI CA50 are shown as a refer-
ence. The normalized permutation entropy Hn and the modified
Shannon entropy with partition N¼ 4 and L¼ 3 of CA50 of HCCI
and SI combustion are shown in Fig. 10(c). The order of permuta-
tion entropy n is chosen as 4. The time delay s is chosen as 1 and
window size m̂ as 100. The procedure for calculating Shannon en-
tropy is summarized below with 3000 cycles of HCCI data as an
example. The same procedure applies to the permutation entropy.

� Step 1: Define the window of interest with size of m̂ that con-
tains X ¼ xi; i ¼ 1; :::; m̂ cycles. For m̂ ¼ 100, 100 cycles are
used to calculate the Shannon entropy Hs.

� Step 2: Slide the window of interest with a step of 1 cycle
and repeat step 1 until cycle xm�m̂ .

The window size m̂ should be chosen considering the cycles
required for the entropy to converge and will be studied in our
future work.

Fig. 8 Quantification of CV in SI combustion with 42% internal
EGR fraction, spark timing 38 deg bTDC: (a) return map, (b) the
modified Shannon entropy, and (c) symbol statistics

Fig. 9 Example of discretization of the calculation of permuta-
tion entropy: (a) time series example and (b) rank order
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A graphic schematic of the sliding window method used to ena-
ble entropy calculation with varying operating conditions is
shown in Fig. 11.

A scatter plot of the CA50 of HCCI and SI combustion calcu-
lated with dHR analysis is shown in Fig. 10(a) with HCCI data
shown in black and SI data shown in gray. The difference in
CA50 magnitude reflects the mean value difference without indi-
cation on determinism or randomness nature. Figure 10(b) pro-
vides quantification on the deviation from the covariance (COV)
of indicated mean effective pressure (IMEP) and standard devia-
tion of CA50, which are calculated within 100 cycles and move at
the time lag of one cycle. SI combustion shows less deviation
from the value calculated over the entire range of sampling cycles
while HCCI combustion displays more intense fluctuations. Also,
the standard deviation of CA50 and COV of IMEP correlates
well. The entropy values deviate from one, suggesting the data to
be deterministic in the HCCI region and approach one in the ran-
dom SI region.

It should be mentioned that a discontinuity is observed in the
temporal evolution of variations and entropies from around
2900–3000 for HCCI and after around 4100 for SI. The disconti-
nuity range is determined by the chosen window size, which is
100 in the current result shown in Fig. 10. This is due to the artifi-
cially stitched HCCI and SI data, which does not represent a real
experiment with observed abrupt switching between two combus-
tion modes.

The influence of the three fast computational methods on en-
tropy tracking is examined as follows. The permutation entropy
and the modified Shannon entropy described above are calculated
for CA50 from the three fast computational methods. Unlike
Figs. 10(b) and 10(c), that the entropy evolutions are calculated
separately for the HCCI and SI cycles, Fig. 12 shows calculations
for the evolution of the entropies for artificially constructed 3000

cycles of HCCI connected by 298� 4 cycles of SI combustion.
This is to examine the entropy response to a known changed mag-
nitude of determinism in the time series data. The permutation en-
tropy is shown in Fig. 12(a), and the modified Shannon entropy is
shown in Fig. 12(b).

For both permutation entropy and the modified Shannon en-
tropy, the entropy evolutions of CA50 from fHR and R&W
method agree well with the baseline CA50 from dHR. Marvin’s
method could result in an increase in both entropies, suggesting a
decrease in the quantified determinism, consistent with the results
of symbol statistics. Thus, Marvin’s method should be avoided in
the studies of CV.

To show the entropy response to a known changed magnitude
of determinism in time series data, Fig. 12 is magnified between
cycles 2900 and 3000 shown in Fig. 13. Both entropies gradually
increase from lower values of deterministic HCCI to higher values
of random SI cycles.

Fig. 10 Diagnostic of determinism in HCCI and SI combustion:
(a) scatter plot of CA50 of HCCI and SI combustion, (b) COV of
IMEP and standard deviation of CA50 for 100 cycles with step of
1, and (c) the modified Shannon entropy and the permutation
entropy for 100 cycles with step of 1 cycle, the permutation
order is 4

Fig. 11 Schematic of the sliding window used to enable en-
tropy calculations with varying operating conditions

Fig. 12 Diagnostic of determinism in HCCI and SI combustion:
(a) permutation entropy and (b) Shannon entropy. Note that
2999 cycles of HCCI combustion and 1192 cycles of SI combus-
tion are artificially joined together for this analysis, which is
intended to demonstrate the entropy’s response to a change in
operating conditions with no real experiment with combustion
mode switch.

Fig. 13 Diagnostic of determinism in HCCI and SI combustion
between HCCI and SI transition: (a) permutation entropy and (b)
Shannon entropy. Note that 2999 cycles of HCCI combustion
and 1192 cycles of SI combustion are artificially joined together
for this analysis, which is intended to demonstrate the entro-
py’s response to a change in operating conditions with no real
experiment with combustion mode switch.
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To further examine the response of the two entropies, the first
derivative and its cumulative value of the permutation entropy
and Shannon entropy during the transition cycles 2900–3000 are
shown in Fig. 14. Both entropies respond fast to the switch. The
difference is that the magnitude of the permutation entropy is
lower than the Shannon entropy, which might be advantageous
when determining the threshold shown in Fig. 15 during the selec-
tion of the corresponding control strategy.

The entropy diagnostic method could assist in the selection of
the corresponding control strategy. This process is illustrated as a
diagram in Fig. 15. In the case of high CV with underlying deter-
ministic patterns, it is possible to apply closed-loop combustion
control on a cyclic-basis with a fixed mean value, such as injec-
tion timing in HCCI or spark timing in SI, to contract the CV. In
the case of a random distribution, the high CV can be avoided by
shifting operating conditions away from the unstable region. It
should be noted that the threshold for both entropies will possibly
need calibration. We intend to examine the threshold online on an
engine dyno and present more results in our future publications.
The determination of the value of the thresholds requires more
thorough investigations and is beyond the current scope of this
paper.

5 Conclusion

In summary, the current work has evaluated the affect that vari-
ous fast CA50 calculation methods have on the quantification of

CV as either random or deterministic. We have found that com-
bustion phasing derived from the single-zone fHR and the R&W
method had negligible impact when quantifying deterministic pat-
terns, however, Marvin’s method could cause certain deviations in
the deterministic patterns that one should be aware of when quan-
tifying CV. The robustness in quantifying the cyclic variability
with on-board combustion phasing estimation indicates the poten-
tial for short-term online feedback control.

We have used a diagnostic method to quantify the deterministic
and random nature of SI and HCCI combustion based on the per-
mutation entropy, with its performance compared to modified
Shannon entropy [3].

Combustion phasing derived from the single-zone fHR and the
R&W method had negligible impact on the entropy tracking algo-
rithms. However, the combustion phasing calculated from Mar-
vin’s method could increase both the permutation and the
modified Shannon entropy, resulting in misinterpretation of the
determinism of time series data.

Parameterization for the modified Shannon entropy and the per-
mutation entropy is one of the interesting directions of future
works that would extend the application of this quantification
technique.

Nomenclature

A ¼ combustion chamber surface area
A/F ¼ air fuel ratio

CA50 ¼ crank angle of 50% mass fraction burned
cv ¼ constant volume specific heat
h ¼ heat transfer coefficient

Hn ¼ normalized permutation entropy
Hp ¼ permutation entropy
Hs ¼ modified Shannon entropy
M ¼ molar mass
mc ¼ in-cylinder charge mass

n ¼ polytropic coefficient
P ¼ pressure
pk ¼ probability of a sequence

Qapparent ¼ apparent heat release
Qch ¼ chemical energy
Qht ¼ heat transfer
Qhv ¼ lower heating value of the fuel

R ¼ universal gas constant
T ¼ temperature

Tw ¼ cylinder wall temperature
V ¼ volume
xb ¼ mass fraction burned
c ¼ polytropic exponent
h ¼ crank angle degree
x ¼ crank angle degrees per unit time

Subscripts

b ¼ burned
f ¼ property at end of combustion
u ¼ unburned
r ¼ property at start of combustion
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