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Sandro P. Nüesch ∗ Jeff Sterniak ∗∗ Li Jiang ∗∗

Anna G. Stefanopoulou ∗

∗ Dept. of Mechanical Engineering, University of Michigan,
Ann Arbor, MI 48109 USA (e-mail: snuesch@umich.edu).
∗∗ Robert Bosch LLC, Farmington Hills, MI 48331 USA.

Abstract: Multimode combustion in automotive engines have the potential to increase fuel
efficiency by choosing the best combustion mode at each operating condition. When switches
among the combustion modes are neither instantaneous nor lossless, a mode switch can only be
beneficial if the associated residence time in the target mode is long enough to compensate for the
fuel penalty of the switch. An accurate engine load prediction over a short-term horizon is thus
necessary for deciding on a beneficial mode switch. This paper addresses this. In the application
of spark ignited (SI) and homogeneous charge compression ignition (HCCI) combustion modes,
prior work quantified fuel efficiency benefits and mode switch penalties. In this paper, it is
estimated that, to result in a fuel economy benefit, the residence time in HCCI mode is required
to be longer than 1.2 s. If it is possible to accurately predict engine load over such a time horizon,
an optimal mode switch decision could be made. To this end, five receding horizon prediction
methods, based on artificial neural networks and polynomial extrapolation, are tested with
vehicle measurement data and compared in terms of their accuracy in predicting engine load as
well as HCCI entry and exit events. It is shown that although the prediction accuracy is very
low for visitations of the HCCI regime around 1.2 s, all the methods are able to determine if
an immediate entry of exit will occur, and if a HCCI visitation is going to be very short. This
finding is applied in a basic mode switch decision structure.

Keywords: Advanced combustion, Engine control, Supervisory control, Combustion mode
switches, Prediction methods, Artificial neural networks

1. INTRODUCTION

Advanced combustion modes such as homogeneous charge
compression ignition (HCCI) have significant benefits in
fuel efficiency and engine-out NOx emissions, as shown by
Zhao et al. (2003). However, they have a limited operating
range and are not able to fulfill all the drivers demands,
see Thring (1989). For that reason they are combined with
spark ignition (SI) combustion in a multimode combustion
engine, which switches the mode based on operating con-
dition, as suggested by Kulzer et al. (2007). SI and HCCI
combustion are radically different, and the mode switch
from one to the other is a difficult control task, shown by
Gorzelic et al. (2014) and Zhang and Zhu (2014). Those
mode switches require a certain duration and, as shown
in Matsuda et al. (2008), incur a fuel penalty. Based on
Nüesch et al. (2014) it can be seen that during a conven-
tional drive cycle some residence times in the HCCI mode
are very short and due to the switching penalty in fact
harmful for overall fuel economy. A supervisory control

� This material is based upon work supported by the Department
of Energy [National Energy Technology Laboratory] under Award
Number(s) DE-EE0003533. This work is performed as a part of the
ACCESS project consortium (Robert Bosch LLC, AVL Inc., Emitec
Inc., Stanford University, University of Michigan) under the direction
of PI Hakan Yilmaz and Co-PI Oliver Miersch-Wiemers, Robert
Bosch LLC.

strategy is required to decide when a mode switch should
be performed. Such a strategy could be based on the
prediction of future operating conditions, thereby making
an optimum decision in terms of fuel economy.

In Sun et al. (2014) several methods to predict vehicle
speed are compared in the context of hybrid electric ve-
hicles (HEV). By applying model predictive control the
predictions are used to determine the optimal power split
while obeying constraints on battery state-of-charge. Even
though the problem of optimal HEV power management
shows similarities to the one of optimal combustion mode
switching, there are significant differences. First, the im-
pact of non-optimal decisions are different. In the HEV
problem a prediction error might lead to a temporarily
wrong power split. However, the supervisory controller will
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Fig. 1. Reduced representation of the combustion mode
switch model from Nüesch et al. (2015). Shown are
the values for fuel penalties pi, and durations ds,i and
dc,i in seconds and engine cycles, respectively.

4th IFAC Workshop on
Engine and Powertrain Control, Simulation and Modeling
August 23-26, 2015. Columbus, OH, USA

Copyright © 2015 IFAC 159

On Beneficial Mode Switch Decisions based
on Short-term Engine Load Prediction �
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generally get the opportunity to compensate for the mis-
take later, thereby limiting the impact of a wrong decision.
In case of the multimode combustion problem this is not
possible. If a mode switch decision is wrong, the associated
opportunity for fuel economy benefits has passed. Second,
in the power split case a trend-wise correct prediction
is enough to achieve satisfactory controller performance.
However, in the case of mode switches, precise prediction
of the direction and magnitude of the operating conditions
is necessary to achieve the optimal switching decision. In
Nüesch et al. (2015) it is shown that the majority of mode
switches are due to the dynamics in engine load rather
than engine speed. For that reason in this paper it is
focused on methods of predicting engine load, and perfect
knowledge of future engine speed is assumed. Even if
elevation changes are taken into account, it can be assumed
that the fast dynamics in engine load are mainly caused
by the driver. It can be expected that a model might not
be able to perfectly mimic a human driver and compared
to the more erratic human behavior, a model might be
more predictable. Therefore, the assessment in this paper
is done from actual measurements from a drive cycle with
a human driver rather than a driver model.

In Sect. 2 the engine and vehicle data is described, and
in Sect. 3 the required minimum duration of a stay in
HCCI mode is estimated. Sect. 4 introduces the different
prediction methods, which are assessed in Sect. 5, followed
by a brief discussion in Sect. 6.

2. DATA

2.1 Engine Data

In this paper a 2.0 L I4 multimode combustion engine with
a stock turbocharger is used. Compared to the production
version (GM Ecotec LNF) the engine includes increased
compression ratio, two-step cam profile switching, electric
cam phasing for recompression, and stronger reciprocat-
ing components. This enables naturally aspirated (NA)
HCCI, as well as traditional SI mode. Note that advanced
combustion strategies, such as multi injection and multi
ignition (MIMI) or boosted HCCI can expand the HCCI
operating regime beyond the NA basic HCCI region used
in this paper. A combustion mode switch model, based on
a finite state machine, was introduced in Nüesch et al.
(2014) and parameterized with experiments in Nüesch
et al. (2015). A simplified version of this model, reduced to
the six significant transition states i, is depicted in Fig. 1.
The associated parameters are fuel penalties pi as well as
durations ds,i in seconds and dc,i in engine cycles. Engine
speed n in RPM relates the two durations with

ds,i = dc,i ·
2 · 60
n

. (1)

2.2 Drive Cycle Data

Chassis dynamometer measurements for FTP75, HWFET,
and US06 drive cycles were used, acquired with a stock
Cadillac CTS 2009. The measured velocity data is denoted
v̄, the measured engine torque and speed data are T̄ and
n̄, respectively. The selected gear is ḡ. Note that the drive
cycle data does not originate from the multimode engine
but from the larger 3.6 L V6 stock engine. However, it
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Fig. 2. Vehicle measurements for FTP75, HWFET, and
US06 drive cycles. Top: Velocity v̄. Center: Engine
torque T̄ . Bottom: Combustion Regime.
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is assumed that, given vehicle and drive cycle, the load
requirement from the driver to the downsized engine is
similar to the one seen by the stock one. In any case
the applied prediction methods need to be accurate under
varying driver and engine behavior.

Velocity and engine load for all three drive cycles are
shown in Fig. 2. In addition every stay in the HCCI
operating regime is highlighted. It should be noted that
the cold-start period at the beginning of the FTP75 has
been neglected in this study, since it is irrelevant to the
problem of load prediction.

The distribution of durations of visitations in the HCCI
operating regime is shown in Fig. 3. As can be seen, the
distributions strongly depend on the applied drive cycle.
The aggressive US06 drive cycle exhibits a significantly
larger fraction of short visitations than both the FTP75
and the HWFET cycle.

3. REQUIRED MINIMUM DURATION IN HCCI

Each switch to HCCI and back exhibits a fuel penalty.
Therefore the residence time in the HCCI mode ∆tHCCI

needs to be long enough to result in a net benefit in
fuel economy. This duration is denoted required minimum
duration of a visitation ∆tHCCI,min.

By using the durations ds,i, the total mode switch duration
ds,tot(n) as a function of engine speed is calculated, which
includes both, the SI-HCCI and the HCCI-SI direction:
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fuel economy. This duration is denoted required minimum
duration of a visitation ∆tHCCI,min.

By using the durations ds,i, the total mode switch duration
ds,tot(n) as a function of engine speed is calculated, which
includes both, the SI-HCCI and the HCCI-SI direction:
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economy benefit ∆tHCCI,min.

ds,tot(n) =

6∑
i=1

ds,i. (2)

It must be noted that, since as of now only experimental
mode switch data at one operating condition is available,
the parameters are constant in terms of n and T , which
leads to the linearly changing ds,tot in Fig. 4-top. Based
on the fuel efficiency map the fuel flows ṁf,SI(n, T ),
ṁf,HCCI(n, T ) are calculated. The relative improvement
of the fuel efficiency in HCCI compared to SI is shown
in Fig. 4-center. The minimum duration in HCCI mode
to lead to a net fuel economy benefit ∆tHCCI,min(n, T )
follows as:

mf,Pen(n, T ) =

(
6∑

i=1

pi ·∆ti

)
· ṁf,SI (3)

∆tHCCI,min(n, T ) =
mf,Pen

ṁf,HCCI
(4)

In Fig. 4-bottom the map of ∆tHCCI,min(n, T ) is shown.
As can be seen at higher engine speeds a visitation of
the HCCI regime needs to be be at least around 0.8 s to
be beneficial. With decreasing speed this value increases
up to 1.2 s. If a stay in HCCI is predicted to be longer
than 1.2 s it is ensured that the stay will be beneficial.
Vice versa if the stay in HCCI is predicted to be shorter
than 0.8 s. Note that these numbers do not include other
fuel penalties, e.g. due to the depletion of the catalyst’s
oxygen storage. Such additional penalties could increase
∆tHCCI,min significantly.

As can be seen in Fig. 3, a large fraction of stays is either
longer than 1.2 s or much shorter. Here prediction can
resolve the trade-off between switching to HCCI as early as
possible and avoiding very short residences in HCCI mode.
For the cases 0.8 s < ∆tHCCI < 1.2 s the fuel consumption
needs to be predicted to make an optimal decision. It has
to be noted that this analysis assumes constant load and
speed during the entire visitation of HCCI, which does not
occur in reality. Nevertheless it gives a good estimate for
the prediction horizon needed to make an optimal mode
switch decision.

4. ENGINE LOAD HORIZON PREDICTORS

Five receding horizon methods for torque prediction are
compared. Two of them apply Artificial Neural Networks
(ANN) and are labeled with A. Neural networks have
been used successfully to forecast timeseries of nonlinear
behavior. The prediction of an ANN depends on its tuning.
However, a set of ANNs based different tuning parameters
all resulted in comparable performance with the selected
ones being the best. The other three methods use linear
least squares to compute linear and quadratic polynomial
fits P1 and P2, respectively. In further distinction, the
methods labeled with V are based on the velocity his-
tory to predict future velocities and, by using a vehicle
model, to compute the future engine torque trajectory.
Conversely, the methods denoted T are based on using the
engine torque history directly to predict future torque. All
the methods are described in detail below.

Based on the result for ∆tHCCI,min a prediction horizon
length H is chosen for all the methods such that

τ1 ·H = 2 s (5)

with sampling time τ1 = 0.01 s. Velocity and engine torque
at time step k are denoted

vk = v(kτ) ; Tk = T (kτ). (6)

At each time step k the receding horizon of engine torque
Tk is calculated

Tk =
(
T̂ k
k+1, T̂

k
k+2, ..., T̂

k
k+H

)T

(7)

with predicted torque T̂ k
k+j at j time steps after current

time k.

4.1 ANN Torque Predictor (A/T )

The ANN to predict future torque is denoted fA/T , using

historical torque data T̄ as input to compute torque
predictions T̂ . At each time step k the receding horizon

of engine torque T
A/T
k is calculated:

T
A/T
k = fA/T (T̄k−h, ..., T̄k−2, T̄k−1, T̄k) (8)

The history for the torque predictor was chosen h·τ1 = 1 s.
The ANN fA/T was trained based on the measured torque
data shown in Fig. 2. The network consist of 15 hidden
layers. 70% of the dataset, sampled with 0.1 s, was used
for training, based on the Levenberg-Marquardt method.

4.2 Linear Torque Predictor (P1/T )

The linear least squares methods is used to create a linear
fit of engine torque with matrices A1 and W and based on
the history h · τ1 = 0.5 s with weighting factor a = 10:

Thist
k =

(
T̄k−h, ..., T̄k−2, T̄k−1, T̄k

)T
(9)

A1 = (−h · τ1,−(h− 1)τ1, . . . ,−τ1, 0 )
T

(10)

W =




e−a·h·τ1 0 0 0

0 e−a·(h−1)·τ1 0 0

0 0
. . . 0

0 0 0 1


 . (11)
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The polynomial is constrained to the initial engine torque

Tk. The slope of the torque trajectory x
P1/T
k at each time

step follows by solving:

(AT
1 WA1)x

P1/T
k = AT

1 W(Thist
k − T̄k). (12)

Finally the receding torque horizon follows as

T
P1/T
k = T̄k + x

P1/T
k · (0, τ1, . . . , H · τ1)T . (13)

4.3 Quadratic Torque Predictor (P2/T )

The quadratic torque predictor is based on the same
principle as the linear one and uses a history h · τ1 = 0.5 s
with weighting factor a = 10. However, in addition to the

slope x
P2/T,1
k the curvature x

P2/T,2
k is computed:

A2 =

(
−h · τ1,−(h− 1)τ1, . . . ,−τ1, 0

(h · τ1)2, ((h− 1) · τ1)2 , . . . , τ21 , 0

)T

(14)

AT
2 WA2

(
x
P2/T,1
k

x
P2/T,2
k

)
= AT

2 W(Thist
k − T̄k) (15)

T
P2/T
k = T̄k + x

P2/T,1
k · (0, τ1, . . . , H · τ1)T . . . (16)

+ x
P2/T,2
k ·

(
0, τ21 , . . . , (H · τ1)2

)T
. (17)

4.4 ANN Velocity Predictor (A/V )

The following predictor is based on the ANN fA/V , trained
with the measured velocity data shown in Fig. 2. Training
conditions of the ANN are the same as above for fA/T .
The velocity history is chosen to be h · τ1 = 3 s. At each
time step k, based on current velocity v̄k and h historical

values, the receding velocity horizon v
A/V
k is calculated:

v
A/V
k = fA/V (v̄k−h, ..., v̄k−2, v̄k−1, v̄k) (18)

=
(
v̂kk+1, v̂

k
k+2, ..., v̂

k
k+H

)T
. (19)

The quasi-static vehicle model fv is used to compute
engine torque as a function of velocity and gear:

T̂k = fv(v̄k, ḡk). (20)

The model fv relies on differentiation of the velocity using
finite differences to compute acceleration and therefore
propulsion torque. It is compared to measurements in
Fig. 5. As can be seen the general behavior of T is
reproduced well. However, the model filters some of the
fast torque dynamics, one reason being a higher sampling
frequency for torque compared to velocity during data
acquisition.

The gear over the receding horizon is assumed to be
constant at the recorded value ḡk. The difference at k

between computed and actual torque T̃k, due to modeling
errors and uncertainties, can be calculated

T̃k = T̄k − T̂k (21)

and therefore the entire prediction can be shifted, finally
leading to

T
A/V
k = fv(v

A/V
k , ḡk) + T̃k. (22)

4.5 Quadratic Velocity Predictor (P2/V )

The quadratic velocity predictor is fitted over a history
h · τs = 1 s and the weights are exponentially decaying
with a = 5.
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Fig. 6. Velocity and torque prediction result of the five
predictors at two example situations.

AT
2 WA2

(
x
P2/V,1
k

x
P2/V,2
k

)
= AT

2 W(vhist
k − v̄k) (24)

v
P2/V
k = v̄k + x

P2/V,1
k · (0, τs, . . . , H · τs)T . . . (25)

+ x
P2/V,2
k ·

(
0, τ2s , . . . , (H · τs)2

)T
(26)

T
P2/V
k = fv(v

P2/V
k , ḡk) + T̃k. (27)

4.6 Examples

Two examples of receding horizons for all predictions
methods are shown in Fig. 6. On the left, during an
acceleration, all the load predictions are qualitatively
correct. Note that (A/V ) predicts the velocity profile
perfectly and nevertheless results in a relatively large
discrepancy in the torque trajectory. On the right, during
a coasting phase, none of the methods are able to predict
the sudden decrease in load.

Examples of receding torque horizons over a larger time
frame are shown in Fig. 7. Generally, the two velocity
predictors (A/V ) and (P2/V ) (top) forecast the load to re-
main relatively close to the real value. The predictor (A/T )
(left center) shows larger discrepancies with increasing pre-
diction time. The predictions (P1/T ), (P2/T ) (center and
bottom right) sometimes show very large slopes leading
to extremely high torque predictions towards the end of
the horizon. It can be reasoned that the velocity based
predictors are able to forecast the general trend in load
relatively well. However, the application of the quasi-static
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The polynomial is constrained to the initial engine torque

Tk. The slope of the torque trajectory x
P1/T
k at each time

step follows by solving:

(AT
1 WA1)x

P1/T
k = AT

1 W(Thist
k − T̄k). (12)

Finally the receding torque horizon follows as

T
P1/T
k = T̄k + x

P1/T
k · (0, τ1, . . . , H · τ1)T . (13)

4.3 Quadratic Torque Predictor (P2/T )

The quadratic torque predictor is based on the same
principle as the linear one and uses a history h · τ1 = 0.5 s
with weighting factor a = 10. However, in addition to the

slope x
P2/T,1
k the curvature x

P2/T,2
k is computed:

A2 =

(
−h · τ1,−(h− 1)τ1, . . . ,−τ1, 0

(h · τ1)2, ((h− 1) · τ1)2 , . . . , τ21 , 0

)T

(14)

AT
2 WA2

(
x
P2/T,1
k

x
P2/T,2
k

)
= AT

2 W(Thist
k − T̄k) (15)

T
P2/T
k = T̄k + x

P2/T,1
k · (0, τ1, . . . , H · τ1)T . . . (16)

+ x
P2/T,2
k ·

(
0, τ21 , . . . , (H · τ1)2

)T
. (17)

4.4 ANN Velocity Predictor (A/V )

The following predictor is based on the ANN fA/V , trained
with the measured velocity data shown in Fig. 2. Training
conditions of the ANN are the same as above for fA/T .
The velocity history is chosen to be h · τ1 = 3 s. At each
time step k, based on current velocity v̄k and h historical

values, the receding velocity horizon v
A/V
k is calculated:

v
A/V
k = fA/V (v̄k−h, ..., v̄k−2, v̄k−1, v̄k) (18)

=
(
v̂kk+1, v̂

k
k+2, ..., v̂

k
k+H

)T
. (19)

The quasi-static vehicle model fv is used to compute
engine torque as a function of velocity and gear:

T̂k = fv(v̄k, ḡk). (20)

The model fv relies on differentiation of the velocity using
finite differences to compute acceleration and therefore
propulsion torque. It is compared to measurements in
Fig. 5. As can be seen the general behavior of T is
reproduced well. However, the model filters some of the
fast torque dynamics, one reason being a higher sampling
frequency for torque compared to velocity during data
acquisition.

The gear over the receding horizon is assumed to be
constant at the recorded value ḡk. The difference at k

between computed and actual torque T̃k, due to modeling
errors and uncertainties, can be calculated

T̃k = T̄k − T̂k (21)

and therefore the entire prediction can be shifted, finally
leading to

T
A/V
k = fv(v

A/V
k , ḡk) + T̃k. (22)

4.5 Quadratic Velocity Predictor (P2/V )

The quadratic velocity predictor is fitted over a history
h · τs = 1 s and the weights are exponentially decaying
with a = 5.
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2 WA2
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P2/V,1
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P2/V,2
k

)
= AT

2 W(vhist
k − v̄k) (24)

v
P2/V
k = v̄k + x

P2/V,1
k · (0, τs, . . . , H · τs)T . . . (25)

+ x
P2/V,2
k ·

(
0, τ2s , . . . , (H · τs)2

)T
(26)

T
P2/V
k = fv(v

P2/V
k , ḡk) + T̃k. (27)

4.6 Examples

Two examples of receding horizons for all predictions
methods are shown in Fig. 6. On the left, during an
acceleration, all the load predictions are qualitatively
correct. Note that (A/V ) predicts the velocity profile
perfectly and nevertheless results in a relatively large
discrepancy in the torque trajectory. On the right, during
a coasting phase, none of the methods are able to predict
the sudden decrease in load.

Examples of receding torque horizons over a larger time
frame are shown in Fig. 7. Generally, the two velocity
predictors (A/V ) and (P2/V ) (top) forecast the load to re-
main relatively close to the real value. The predictor (A/T )
(left center) shows larger discrepancies with increasing pre-
diction time. The predictions (P1/T ), (P2/T ) (center and
bottom right) sometimes show very large slopes leading
to extremely high torque predictions towards the end of
the horizon. It can be reasoned that the velocity based
predictors are able to forecast the general trend in load
relatively well. However, the application of the quasi-static
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Fig. 7. Torque prediction result of the five predictors for part of the FTP75. The actual torque in shown in blue. The
predicted torque is shown in red across the prediction horizon of 2 s at each second. The associated velocity profile
is shown in the bottom left plot.

vehicle model as well as the velocity differentiation leads
to large uncertainties in the fast torque dynamics. Even a
torque forecast based on perfect vehicle speed prediction
shows relatively large deviations from the real trajectory.
On the other hand, the torque predictors are more suited
to forecast the fast torque dynamics. Towards the end
of the prediction horizon, however, they often show large
deviations from the actual trajectory.

5. COMPARISON OF PREDICTION METHODS

In the following section the five predictors are compared in
more detail, first in terms of their general accuracy over the
entire load range, then focused on the HCCI load regime
and their predictions of entry and exit times.

5.1 General Performance

To quantify the accuracy of the different prediction meth-
ods, at each time step k the error Ek

j between the load

prediction Tk and the actual value TReal
k is calculated,

based on the infinity norm of the deviation:

TReal
k =

(
T̄k+1, T̄k+2, ..., T̄k+H

)T
(28)

ekj = |T̄k+j − T̂ k
k+j | with j = 1, 2, . . . , H (29)

Ek
j = max

(
ek1 , . . . , e

k
j

)
. (30)

The entire dataset, shown in Fig. 2, was sampled at
τ2 = 0.5 s and a prediction performed for each time
step k at which the velocity is nonzero and the load
is positive. Note that the time step for the predictions
themselves is still τ1. The distribution of the prediction
errors Ek

j for all k was calculated and is shown in Fig. 8
as a function of the receding horizon j · τ1. The contour
lines, representing 3Nm, 6Nm, and 9Nm, are plotted in
Fig. 9 to directly compare the five prediction methods. In
addition to the five methods the performance of a naive
predictor, which simply assumes constant load over the
prediction horizon, is shown as well. At the beginning of
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with Ek
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j < 6Nm, and Ek

j < 9Nm.

the prediction most methods are more accurate than the
naive predictor. However, the accuracy of all the predictors
drops rapidly with increasing j and are outperformed by
the naive predictor. Beyond jτ1 > 0.5 s less than 40% of
predictions show Ek

j < 3Nm. At the end of the prediction
horizon at jτ1 = 2 s the number of accurate predictions
is below 5%. The fraction of predictions, that are still
somewhat accurate with Ek

j < 9Nm, is higher and at best
20%. All the methods show comparable and relatively poor
performance, with (A/T ) resulting in the lowest accuracy.

One question is, how the different prediction methods
compare for different driving styles and cycles. The anal-
ysis from above was conducted for the three drive cycle
individually and is shown in Fig. 10. The torque response
during the HWFET seems overall to be easier to predict
versus one during the US06 cycle. This includes the naive
predictor, which simply assumes constant load. Those dif-
ferences might be due to the characteristics of the drive
cycles themselves and their number of fast accelerations,
gearshifts, driver behavior, and engine response etc. For
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example, it is reasonable to assume that a linear fit works
well for slow dynamics but poorly for fast ones. In addi-
tion, other method-related aspects may play a role. For
example the weighting factors of the polynomial fits, the
applied training data for the ANNs or the accuracy of the
measurements will have an influence. However, based on
the variety of methods and drive cycles tested here, we
believe the presented trends in terms of short-term load
prediction are representative.

5.2 HCCI Performance

The load predictions from above are tested specifically
towards their application in SI/HCCI mode switches. They
are used to give an estimate of the next entry and exit
times in the HCCI operating regime and the associated
duration of a stay in the regime. At each time step k, Tk

is used to find the next crossings of either the maximum
or the minimum HCCI load boundary. As mentioned
above, perfect knowledge of engine speed n is assumed.
If at k the engine operates outside the HCCI regime, the
duration until the next crossing of the HCCI limits is
denoted tEntry,Pred. Similarly, the predicted duration until
the HCCI regime is left again is denoted tExit,Pred. The
annotations are explained in Fig. 11. The subscript Real
is used for the associated values derived from the actual
torque trajectory.
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Fig. 11. Annotation for HCCI entry and exit times at
example engine speed and load trajectories.

The prediction based entry and exit durations are com-
pared to the actual values in Fig. 12. The durations are
separated into different bins from 0 s to 2 s, the end of the
horizon. If no crossing is detected within the horizon, the
bin is called No Entry or No Exit. Note that the probabili-
ties for the exit assumes that the prediction is made within
the HCCI regime. For a given prediction the probability is
calculated at which the prediction lies in the same bin as an
actual duration. In case of a perfect prediction the entries
on the diagonal would be 100%. The larger the deviation
from the diagonal the worse the overall prediction quality.
As can be seen in Fig. 12 all the methods show high
accuracies between 60-70% in predicting an entry or exit
within the next 0.2 s. In addition, the accuracies of no entry
and exit predictions are relatively high as well with 77-81%
and 50-67%, respectively. However, prediction in-between
those two cases show very low accuracy and are throughout
too pessimistic.

The duration of the next visitation in HCCI ∆t is calcu-
lated if at time step k the engine either operates in the
HCCI regime or or an entry is predicted to occur shortly:

∆t =



tExit − tEntry tEntry ≤ 0.5 s

tExit in HCCI

No calculation

(31)

The probabilities for a given predicted HCCI visitation
duration ∆tPred are shown in the bottom third of Fig. 12.
Note that the shown probabilities assume that an entry
within the next 0.5 s is correctly predicted. It can be
seen that short visitations with ∆t < 0.5 s are predicted
with a high accuracy of 66-71%. Also, predictions of long
visitations with ∆t > 1.5 s are relatively accurate. How-
ever, again all the prediction in-between show insufficient
accuracies and are in majority too pessimistic. The per-
formance of the different predictors is very similar. All the
methods are unable to give good predictions, except for
the extreme cases of very short or very long durations. The
velocity predictors show the lowest accuracies in predicting
entries and exits. The linear torque extrapolation shows
overall the highest accuracy.

5.3 Error Margins

In the following section it is estimated, how accurate a
prediction method would need to be to achieve satisfying
results. The actual torque trajectory TReal

k is perturbed
by adding an error which increases linearly with rate ferr
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example, it is reasonable to assume that a linear fit works
well for slow dynamics but poorly for fast ones. In addi-
tion, other method-related aspects may play a role. For
example the weighting factors of the polynomial fits, the
applied training data for the ANNs or the accuracy of the
measurements will have an influence. However, based on
the variety of methods and drive cycles tested here, we
believe the presented trends in terms of short-term load
prediction are representative.

5.2 HCCI Performance

The load predictions from above are tested specifically
towards their application in SI/HCCI mode switches. They
are used to give an estimate of the next entry and exit
times in the HCCI operating regime and the associated
duration of a stay in the regime. At each time step k, Tk

is used to find the next crossings of either the maximum
or the minimum HCCI load boundary. As mentioned
above, perfect knowledge of engine speed n is assumed.
If at k the engine operates outside the HCCI regime, the
duration until the next crossing of the HCCI limits is
denoted tEntry,Pred. Similarly, the predicted duration until
the HCCI regime is left again is denoted tExit,Pred. The
annotations are explained in Fig. 11. The subscript Real
is used for the associated values derived from the actual
torque trajectory.
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The prediction based entry and exit durations are com-
pared to the actual values in Fig. 12. The durations are
separated into different bins from 0 s to 2 s, the end of the
horizon. If no crossing is detected within the horizon, the
bin is called No Entry or No Exit. Note that the probabili-
ties for the exit assumes that the prediction is made within
the HCCI regime. For a given prediction the probability is
calculated at which the prediction lies in the same bin as an
actual duration. In case of a perfect prediction the entries
on the diagonal would be 100%. The larger the deviation
from the diagonal the worse the overall prediction quality.
As can be seen in Fig. 12 all the methods show high
accuracies between 60-70% in predicting an entry or exit
within the next 0.2 s. In addition, the accuracies of no entry
and exit predictions are relatively high as well with 77-81%
and 50-67%, respectively. However, prediction in-between
those two cases show very low accuracy and are throughout
too pessimistic.

The duration of the next visitation in HCCI ∆t is calcu-
lated if at time step k the engine either operates in the
HCCI regime or or an entry is predicted to occur shortly:

∆t =



tExit − tEntry tEntry ≤ 0.5 s

tExit in HCCI

No calculation

(31)

The probabilities for a given predicted HCCI visitation
duration ∆tPred are shown in the bottom third of Fig. 12.
Note that the shown probabilities assume that an entry
within the next 0.5 s is correctly predicted. It can be
seen that short visitations with ∆t < 0.5 s are predicted
with a high accuracy of 66-71%. Also, predictions of long
visitations with ∆t > 1.5 s are relatively accurate. How-
ever, again all the prediction in-between show insufficient
accuracies and are in majority too pessimistic. The per-
formance of the different predictors is very similar. All the
methods are unable to give good predictions, except for
the extreme cases of very short or very long durations. The
velocity predictors show the lowest accuracies in predicting
entries and exits. The linear torque extrapolation shows
overall the highest accuracy.

5.3 Error Margins

In the following section it is estimated, how accurate a
prediction method would need to be to achieve satisfying
results. The actual torque trajectory TReal

k is perturbed
by adding an error which increases linearly with rate ferr
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T k
err,j = T̄k+j ± ferr · jτs (32)

Terr
k =

(
T k
err,k+1, T

k
err,k+2, ..., T

k
err,k+H

)T
. (33)

Terr
k is used as a prediction. This means, almost per-

fect knowledge of future torque with increasingly over
or under prediction is assumed. The same analysis of
duration of stay ∆t was done for error rates ferr =
{2Nm/s, 4Nm/s, 8Nm/s} and plotted on the top of Fig. 13.
It can be seen that for a small error the distribution is
still very close to diagonal. Even with ferr = 4Nm/s a
prediction of stays up to 1 s can still be made. However,
the case of ferr = 8Nm/s is already very similar to the
ones in Fig. 12. On the bottom of Fig. 13 those three
slopes are compared with the mean absolute error of the
five prediction methods. As can be seen, all those methods
show in average significantly larger error rates than 8Nm/s.
Note that the two velocity predictors show a decreasing
error rate compared to the torque predictors.

6. DISCUSSION

To make an optimal mode switch decision it would be
preferable to have an accurate torque prediction over a
short horizon. However, the results above suggest that
this is difficult. It is surprising to see in Fig. 9 how
a naive predictor assuming constant load performs in
average better than all the prediction methods. However,
it is impossible to predict HCCI entry and exit times by
assuming the load to remain constant.

One large difficulty seems to originate from the strong
nonlinearity in the driver’s torque response. In addition
modeling and measurement errors result in less accurate
predictions. Therefore it was deemed important to test
prediction methods against actual drive cycle measure-
ment and not simulation data, which is generally smoother
and more predictable. Maybe a different parameter offers
better potential for prediction such as commanded torque
by the ECU or the accelerator pedal position. Upcoming
generations of vehicles will offer capabilities for V2X com-
munication. Such technologies will provide valuable infor-
mation to make predictions of future vehicle and engine
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states. It must be tested if this data increases prediction
accuracy and enables optimal SI/HCCI mode switching
decisions.

Until then, based on the comparison of the different pre-
dictors above, it can be seen that none of the predictors is
accurate enough to allow an optimal decision for visitation
durations between 0.5 s < ∆t < 1.5 s. Therefore, visita-
tions slightly too short to lead to fuel efficiency benefits
cannot be predicted. Visitations with ∆t < 0.5 s can,
however, be predicted with any of the presented meth-
ods. Therefore if constraints posed by mode switch fuel
penalties, drivability, or hardware restrict the use of a sim-
ply reactive supervisory control strategy, some prediction
could be used to improve performance.

It can be seen that the prediction shows high accuracy for
immediate HCCI boundary crossings. This would allow for
some time to prepare the mode switch, thereby alleviating
potential issues concerning drivability. It is also able to
predict very short visitations of the HCCI regime rela-
tively well. For such a reduced strategy, a linear torque
extrapolation seems to be the preferable choice, due to its
simplicity. Based on the load extrapolation the predicted
HCCI entry time t̂HCCI,Entry and the predicted duration

of a visitation of HCCI ∆t̂HCCI can be derived. If the
entry time is closer than the time required to prepare
the mode switch t̂HCCI,Entry ≤ ds,1 and the predicted

duration of the visitation ∆t̂HCCI > 0.5s, the mode switch
should be prepared. As soon as HCCI is entered and still
∆t̂HCCI > 0.5s, the cam switch should be conducted. On
the other hand if ∆t̂HCCI increases above some threshold
it can be assumed that the prediction was wrong, and
it should be returned to standard SI. Vice versa for the
HCCI/SI mode switch, if t̂HCCI,Exit is smaller than the
time requirement then the strategy should be to start
preparing the switch.

7. CONCLUSION

Based on steady-state engine maps and combustion mode
switch experiments the required residence time in HCCI
combustion to lead to a fuel economy benefit was esti-
mated to be around 1.2 s. Different receding horizon pre-
diction methods were assessed with chassis dynamometer
experiments. The methods based on ANN and polynomial
fits were compared in terms of their general accuracy in
load prediction as well as their forecast of HCCI entry and
exit events. For the given engine data and all the methods
compared, it was seen that the prediction accuracy for
visitations of the HCCI regime with durations around
1.2 s is very low. Overall a linear extrapolation of engine
torque showed the best performance. In future work, a
supervisory control structure, based on determining an
immediate HCCI entry or exit, will be implemented in
simulation and tested in terms of fuel economy and driv-
ability. Combustion mode switch measurement data will
be used to extend the parameterization of the associated
model to other operating conditions.

This report was prepared as an account of work sponsored by an
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Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, or usefulness of any information,
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