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ABSTRACT

An advanced combustion mode, Spark Assisted Compres-
sion Ignition (SACI) has shown the ability to extend loads rela-
tive to Homogenous Charge Compression Ignition (HCCI) com-
bustion but at reduced fuel conversion efficiency. SACI com-
bustion is initiated by a spark, with flame propagation followed
by a rapid autoignition of the remaining end-gas fuel fraction.
Extending upon previous work [1, 2], the Wiebe function coeffi-
cients used to fit the two combustion phases are regressed here
as functions of the air path variables and actuator settings. The
parameterized regression model enables mean-value modeling
and model-based combustion phasing control. SACI combustion
however, exhibits high cyclic variability with random character-
istics. Thus, combustion phasing feedback control needs to ac-
count for the cyclic variability to correctly filter the phasing data.
This paper documents the success in regressing the cyclic vari-
ability (defined as the standard deviation in combustion phas-
ing) at various operating conditions, again as a function of air
path variables and actuator settings. The combination of the re-
gressed mean and standard deviation models is a breakthrough
in predicting the mean-value engine behavior and the random
statistics of the cycle-to-cycle variability.

∗Address all correspondence to this author.

1 INTRODUCTION
While Homogenous Charge Compression Ignition (HCCI)

combustion is more fuel efficient than normal spark ignited (SI)
combustion, its load range is extremely limited [3–6]. More-
over since the entire combustion process is autoignition based,
combustion initiation and phasing are difficult to control. A hy-
brid SI-HCCI combustion mode, Spark Assisted Compression
Ignition (SACI) has shown the ability to extend loads relative
to HCCI [7–10]. SACI is a low temperature combustion (LTC)
process, combining both spark ignited flame propagation and
end-gas autoignition. Beginning with spark-ignition under ultra-
dilute conditions, flame and piston compression drive the end-
gas to autoignition. Through the appropriate selection of spark
timing and temperature at intake valve closing (IVC), which is
affected by the temperature of both the hot residual fraction and
colder recirculated external exhaust gas, the timing and frac-
tion of SACI end-gas autoignition heat release can be manipu-
lated [8, 11].

The two combustion modes present during SACI occur at
distinctly different rates, challenging cycle characterization and
control oriented modeling. Yang and Zhu [12] presented a con-
trols oriented SACI model in real time Hardware In the Loop
(HIL) simulations. The flame propagation combustion phase
was simulated with a two-zone combustion model, while the
autoignition phase was simulated with a one-zone model. The
transition from flame propagation to autoignition was determined
through an Arrhenius integral, calculated at every crank angle de-
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gree to predict the start of autoignition. The work in [1] also used
an Arrhenius integral to determine the transition point. Glewen et
al. [13] used a differentiated form of the double-Wiebe function
to build a model that determined the flame propagation to au-
toignition transition and the relative contribution of each phase
during a particular cycle. Real-time analysis was recommended
to control the relative contributions to ensure stable combustion.

A simpler predictive-model is proposed in this paper. Given
that SACI combustion exhibits high CV, representative cycles
[14] from a large SACI dataset are characterized with a dou-
ble Wiebe function to capture the two-stage SACI heat release
with the approach of Hellström et al. [2]. A phenomenologi-
cal, controls-orientated model is then developed for replicating
the heat release profile of SACI combustion. In the future, with
such a model, a model-based controller can be created to regulate
combustion phasing to an optimum value. An effort was made to
build a generalized model that would apply over a range of en-
gine conditions for SACI combustion. Wiebe function durations
and exponents were parametrized to mean-value engine variables
predicted from cylinder conditions and actuator settings. Com-
bustion phasing or CA 50 (the crank angle location when 50%
of the fuel mass has burned) predicted from this model showed
good agreement with experimental data.

As with all diluted engines, SACI has cyclic variability
which is manifested in the significant fluctuations of cycle to cy-
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FIGURE 1. CYLINDER PRESSURE FOR DIFFERENT RATES OF
EXTERNAL EGR AT THE SAME SPARK AND SOI TIMING SHOW
DIFFERENT TRANSITION POINTS TO AUTOIGNITION. SLOW
FLAME PROPOGATION UP TO THE TRANSITION POINT IS FOL-
LOWED BY RAPID AUTOIGNITION. MORE FLAME PROPOGA-
TION LEADS TO LOWER PEAK PRESSURES. SPEED = 1500 RPM,
BMEP = 4.2 BAR, SPARK = 40◦ bTDC, SOI = 400◦ bTDC, NVO =
154o

cle combustion phasing [15]. In contrast with HCCI variability,
SACI variability was normally distributed and hence could be
represented by a mean and a variance. Therefore, a regression
model was also developed to predict the standard deviation of
CA 50 for a given steady state operating condition. The model
can guide the control design for combustion phasing associated
with low fuel consumption, low CV, and low ringing.

The paper is arranged as follows. Section 2 lists out the
experimental set up, the operating conditions and data analysis
methods. Section 3 defines the selected pressure cycle from 300
cycles of a steady state data point. Section 4 details the double
Wiebe function fitting algorithm. Section 5 describes the regres-
sion analysis of the Wiebe function parameters and provides the
basis functions. Finally Section 6 highlights SACI cyclic vari-
ability and presents predictive models of this variability.

2 EXPERIMENTS AND HEAT RELEASE ANALYSIS
SACI combustion experiments were performed in a proto-

type modified four-cylinder 2.0 L SI engine, based on the GM
Ecotec, running on Tier-II certification gasoline fuel. The com-
pression ratio was 11.7, the bore and stroke were 88 mm, and the
connecting rod length was 146 mm. The engine was designed for
running multiple modes of combustion such as HCCI, SACI, and
SI. The important features of the engine included a dual-lift val-
vetrain with a dual-independent cam phasers, external exhaust
gas recirculation (eEGR), spray-guided direct and port fuel in-
jection, and in-cylinder pressure sensing. Additional details on
the prototype engine are provided in [2]. The data presented here
are from SACI combustion operated close to stoichiometry, with
direct injection, and with low cam lift profiles for intake and ex-
haust. Negative valve overlap is utilized to trap internal residual
gas, while a high-pressure EGR system provides cooled external
residual gas.

A total of 264 steady state data points were taken from
the engine, each data point consisting of 300 cycles. The load
range was from 3.0 bar BMEP to 5.0 bar BMEP and the speed
from 1500 RPM to 2000 RPM. Sweeps of spark timing, start
of injection timing and external EGR fraction were performed.
The spark timing varied from 20◦ to 65◦ before top dead center
(TDC), while the start of injection timing varied from 340◦ to
420◦ before TDC. The in-cylinder external EGR fraction ranged
from 1% to 12% and internal EGR fraction from 24% to 50%.

Heat release analysis was performed on the in-cylinder pres-
sure data for each individual cycle from the experiments with the
code developed by Larimore et al. [16]. To remove noise prior
to heat release analysis, zero-phase filtering was performed on
each pressure trace with an eighth order Butterworth filter. The
internal residual mass for each cycle was determined with the
approach of Fitzgerald et al. [17]. Heat transfer to the com-
bustion chamber boundaries was computed with the modified
Woschni [18] method for constant wall temperatures of 473 K.
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FIGURE 2. FITTED WIEBE FUNCTIONS FOR THE LINEARIZED FLAME PROPOGATION (a) AND AUTOIGNITION (b) COMBUSTION
PHASES. THE COMBINED MASS FRACTION BURNED CURVE (c) AND THE FITTED PRESSURE TRACE (d). SPEED = 1500 RPM, BMEP
= 3.6 BAR, SPARK = 60◦ bTDC, SOI = 400◦ bTDC, NVO = 157◦

Heat release analysis was performed in two regions of interest,
including windows of the main heat release from 100◦ before and
after TDC, and for the re-compression period of negative valve
overlap, from Exhaust Valve Closing to Intake Valve Opening.

3 SELECTION OF THE REPRESENTATIVE CYCLES
Combustion with high rates of internal and external exhaust

gas recirculation (EGR) is known to have high cyclic variability
(CV). The peak pressure and peak pressure location vary for 300
cycles of a given operating condition. For such high CV at a
given speed and load, a range of cycles exist from which the
most representative cycle can be found to closely match the mean
cycle parameters such as CA 50, the crank angle of 50% mass
fraction burned.

Analysis in [14] showed that simply using an ensemble-
averaged pressure trace for the heat release analysis produced
CA 50 values that were different from the mean CA 50 of all of
the cycles processed individually. Hence a representative cycle
had to be used that matched the mean CA 50 values. Consistent
with [14] the least squares fitted (LSF) mean cycle was the most
representative cycle for the mean CA 50. The representative cy-
cle can be defined as the cycle having at a given crank angle, the
smallest RMS error in pressure relative to the ensemble averaged
pressure trace computed from all cycles. The representative cy-
cles produced the smallest RMS errors in CA 50, combustion du-
ration, maximum pressure, IMEP, internal residual fraction and
temperature at IVC, relative to mean values determined for each
operating condition within the entire dataset. Although the en-
semble average of many cycles is not a useful or representative
cycle, the ensemble average of a few cycles can be beneficial for
noise reduction.

To this end, the representative cycle is chosen not as a real
cycle but instead as the ensemble average of 10 cycles with the
smallest RMS error relative to the ensemble averaged pressure

data. This is done to reduce the noise in the pressure data and
heat release, which poses difficulty for the accurate fitting of the
Wiebe functions. This error is then carried into the regression
model, compounding it further. Noise also affects computation
of the transition point from flame to autoignition combustion, de-
fined as the maxima of the third derivative, which is greatly af-
fected by even the smallest amount of noise. All analyses within
this paper were carried out on the representative cycle and the
heat release, cylinder composition and thermodynamic param-
eters generated from these were used in the ensuing regression
model.

4 DOUBLE WIEBE FUNCTION FITTING USING A LIN-
EAR LEAST SQUARES APPROACH
The mass fraction burned curves were fit using a double

Wiebe function with the linear least squares algorithm of [2,19].
With this algorithm, combustion is divided into two distinct
phases, which is done considering that the transition between the
combustion phases shown in Figure 1 is rapid. The transition
point is determined from the maxima of the third derivative of
the heat release. Wiebe functions for two phases are fit then sep-
arately and later joined to form a combined Wiebe function for
the entire combustion process through a sigmoid function, with
the results of this process shown in Figure 2c.

The Wiebe functions are defined as the mass fraction burned
at a crank angle (θ), with three tunable parameters, a, d and
m. Parameter a is chosen such that x(d) has a desired value.
This is done by assuming 90% mass fraction burned at the end of
combustion, or at x = 0.9 when θ = d and a = log(1− 0.90) =
−2.3026. Parameter d is the duration of combustion and m the
exponent. The Wiebe function is fit to the mass fraction burned
curve in the crank angle duration from 5% to 90% of mass frac-
tion burned. The exponential Wiebe function is linearized to give
the other two unknown parameters d and m as the slope and in-
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FIGURE 3. WIEBE FUNCTION PARAMETERS ’D’ AND ’M’ FOR THE SPARK IGNITION AND AUTOIGNITION PHASES OF COMBUS-
TION. TRENDS OF D1 AND D2 FOLLOW EACH OTHER. PARAMETER M1 IS ALMOST CONSTANT AND M2 VARIES SIGNIFICANTLY

tercept respectively:

x(θ ;m,d) = 1− exp[a(
θ

d
)(m+1)]−→

logθ =
1

m+1
log[

1
a

log(1− x(θ))]+ log(d)
(1)

There are several methods to determine the start and end
of combustion in the literature. They include using the nega-
tive most point and the positive most point of the crank angle
resolved heat release curve as the start and end respectively [2];
using the range of crank angle degrees where the heat release
rate is positive [13], or using the spark timing as the start of
combustion [20]. In the current work, using such methods de-
graded the ability of the computed Wiebe functions to accurately
reproduce the experimental results. Therefore, the mass fraction
burned data was considered for a window from a 100o CA be-
fore and after TDC combustion, normalized over this range and
then fit for a given span of mass fraction burned. This provided
the added benefit of eliminating the need to find and regress the
starting and end points for combustion.

As shown in Figure 2, the Wiebe functions are well fit for
the spark ignition region and also through most of the autoigni-

tion phase. The main source of error is towards 90− 95% mass
fraction burned, where the Wiebe function is unable to accu-
rately model the gradual drop in the heat release rate. When
the burn duration under consideration was increased above 90%,
the Wiebe function showed a greater error in the 10−90% burn
region. This implied that 90% is the optimum burn duration to
consider for the fitting algorithm under the current conditions.
By using a range up to 90% MFB and then extrapolating over the
rest of the crank angle degrees, the Wiebe functions do not reach
100% MFB. However, such a fitting range ensured that the error
between the model and experimental CA 50 was minimized.

5 WIEBE FUNCTION REGRESSION
The variation in the Wiebe function parameters d and m are

shown in Figure 3 for sweeps of SOI timing, spark timing and
varying rates of external EGR. These parameters were fit with a
least squares approach that minimized predicted RMS errors rel-
ative to experimental values. Parameter d1 (defined for the flame
based Wiebe function) varies from 105 to 125 and d2 (for the
second autoignition Wiebe function) from 100 to 126. Parameter
m1, the slope for the flame based combustion, is approximately
constant, and is held constant for the regression analysis. Param-
eter m2 is highly variable, as the rate of autoignition during SACI
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FIGURE 4. MEASURED AND PREDICTED CA 50 OVER ACTUATOR SWEEPS OF a) START OF INJECTION TIMING, b) SPARK TIMING
AND c) EXTERNAL EGR FRACTION

depends on operating strategy [9] and hence was parameterized.

Variables chosen for the global regression were, spark tim-
ing (Spark), SOI timing (SOI), external EGR fraction (eEGR),
and the fuel to charge equivalence ratio (φ ′) [21], which can
be used as an estimate of the level of charge dilution within the
cylinder

φ
′ = (1− (eEGR+ iEGR))/λ . (2)

Variable iEGR is the fraction of the internal residual relative to
the total mass within the cylinder and λ the ratio of actual air-
fuel ratio to stoichiometric air-fuel ratio.

The data set under analysis consisted of sweeps of spark tim-
ing, start of injection timing and external EGR fraction over dif-
ferent loads as shown in Figure 4. It was found that CA 50 varies
inversely with spark and SOI timings and proportionately with
eEGR. Regression models using linear least squares were cre-
ated for individual sweeps to determine the engine parameters
affecting the Wiebe function and their orders. The basis function
was used to construct a global regression model that could be
applied over all actuator sweeps and all loads.

It was found that the Wiebe function parameter d2 showed a
good linear correlation with CA 50. Hence d2 became the most
important parameter to be regressed for accurate prediction of
CA 50. In particular, d2 was found to be inversely related to
spark timing and start of injection timing, and varied proportion-
ately to the external EGR fraction in the cylinder. The cylinder
composition (quantified via φ ′) also affected d2. The variables
αi, βi and γi are the regression coefficients. The resulting expres-
sion of d2 is as follows:

d2 = α1 +α2 ·SOI +α3 · eEGR+α4 ·Spark

+α5 ·SOI · eEGR+α6 ·φ ′.
(3)

Parameter d1 follows the trends of parameter d2 and its ex-
pression is given in equation 4. The ratio of flame to autoignition
heat release is determined by the transition point, which is dic-
tated by the exponents m1 and m2. As mentioned above, m1 is
held constant, while m2 varies significantly over the different op-
erating conditions and is a function of charge dilution (i.e. φ ′ and
external EGR fraction). m2 was also found to be a function of pa-
rameter d2 due to the fact that d2 captures the effect of actuator
timings in its computation:

d1 = β1 +β2 · eEGR+β3 ·d2 (4)
m2 = γ1 + γ2 · eEGR+ γ3 ·φ ′. (5)

Although the regression model does not contain any explicit
speed correlation, it was still able to capture CA 50 in the range
of 1500 to 2000 RPM. A more drastic increase of enigne speeds
would lead to changes in the flame wrinkling and possibly com-
bustion characteristics, which may require another parametriza-
tion to account for such changes.

The RMS error for CA 50 predicted by the Wiebe function
regression models was 1.2◦ CA over all data points with a mean
absolute error of 0.9◦ CA. The highest under-prediction in CA
50 was 2.8o CA, while the the highest over prediction was 3.8◦

CA. The Wiebe function parameters and associated prediction
accuracy are shown in Figure 4.
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6 CYCLIC VARIABILITY INVESTIGATION
The data set considered here had a range of 2◦ to 5◦ CA

standard deviation in CA 50 corresponding to a 1% to 5% IMEP
COV. This variation could be caused by multiple factors such as
differences in the amount of hot residual mass trapped from the
previous cycle that would influence the temperature at the time
of spark and transition to autoignition [22]. Additionally, bulk
and turbulent flow fluctuations can affect flame stretch hence the
duration of flame based combustion [23].

Steady state data points were processed cycle-by-cycle and
the trapped internal residual mass was determined cyclically. An
iterative form of the Fitzgerald algorithm was used for each case
where the individual cycle pressure trace and an average exhaust
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FIGURE 7. PREDICTION OF CA 50 AND STANDARD DEVIA-
TION OF CA 50 FOR STEADY STATE SPARK SWEEPS

gas temperature were inputs to the algorithm. Heat release anal-
ysis was also performed iteratively on each pressure trace indi-
vidually. From cyclic analysis of the pressure traces for a given
steady state operating condition, a wide variation was observed
in combustion phasing and combustion duration. The gross heat
release and maximum pressure varied from 530 J to 600 J and
23 bar to 44 bar, respectively. Internal EGR also varied from 38%
to 45%, leading to a variation in φ ′ of 0.53 to 0.60. The temper-
ature at intake valve closing was positively correlated with φ ′.
Similar deviations were observed for other operating conditions.

For the Wiebe function model described above, the only in-
put changing cycle by cycle was φ ′. Imposing these variations
onto the Wiebe regression model for each cycle, CA 50 was pre-
dicted to be nearly constant as shown in Figure 6. An experi-

6 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



mental standard deviation in CA 50 of 3.35◦ CA was observed,
while the Wiebe regression model predicted a standard devia-
tion of 0.28◦ CA, with phasing close to the mean. The mean
prediction is expected as the model was created on a representa-
tive cycle that was closest to the mean CA 50 value. However,
the lack of variability in the CA 50 predicted by the model, es-
pecially for such large variations in φ ′, suggests that something
other than the cylinder composition and associated fluctuations
in IVC temperature contributes to the cyclic variability. To this
end an effort was made to regress the variation in CA 50, quan-
tified with the CA 50 standard deviation (σ(CA50)) to various
engine conditions and actuator settings.

Interestingly, the statistics of the CA 50 variation were well
correlated to spark advance, cylinder composition and combus-
tion phasing. It was found that an advanced spark reduced σ (CA
50), as shown in Figure 5a. As expected the rate of external ex-
haust gas recirculation (eEGR) also influenced the variability in a
linear fashion, with variability increasing with increasing eEGR
fraction as shown in Figure 5b. Another influence on the standard
deviation was the mean combustion phasing itself. A linear rela-
tion was observed showing that if the steady state data point had
a later CA 50 it produced more variability in phasing as shown
in Figure 5c.

The cold external charge influences the variability by reduc-
ing the temperature at the time of spark, delaying the transition
to autoignition and, hence making the flame more susceptible
to cylinder composition and turbulence. This model could pro-
vide a useful method to arrive at an optimum EGR rate which
would not significantly increase the fluctuations of CA 50 while
at the same time satisfying ideal operating conditions for high
efficiency operation.

A combination of spark timing, eEGR and mean CA 50 were
used to create a regression model to predict the standard devia-
tion of CA 50. The prediction for CA 50 (markers) and cyclic
variability (error bars) can be seen in Figure 7 with the regres-
sion in Equation 6:

σ(CA50) = δ1 +δ2×Spark+δ3× eEGR+δ4×CA50. (6)

Model predictions followed the general trend of the data and
showed an RMS error of 0.24o. Prediction of the standard devia-
tion can be used in determining appropriate actuator settings for
low variability regions and with appropriate combustion phas-
ing. However, care must be taken to ensure that the regions of
low variability, i.e. early CA 50 are not so early that the pressure
rise rates are sufficiently high enough to cause ringing. Ringing
intensity was calculated by Equation 7 [24], where MPRR is the
maximum pressure rise rate and MaxP the maximum pressure
during the cycle:
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FIGURE 8. PREDICTION OF RINGING INTENSITY OF REPRE-
SENTATIVE CYCLES. THE PREDICTIONS HAVE RMSE = 0.78
RELATIVE TO THE EXPERIMENTS

RI = 2.88×10−8× (MPRR)× (Speed)2/(MaxP). (7)

By using the Wiebe function to calculate the pressure over
the given crank angle range, the maximum pressure and maxi-
mum pressure rise rates were computed by the model. The re-
sults are shown in Figure 8. Hence the combustion phasing has
to be kept later than the CA 50s associated with elevated ringing
yet before the late CA 50s associated with the high CV region.

7 CONCLUSIONS
A phenomenological, controls-oriented predictive model

was devised to characterize SACI combustion and to predict
combustion phasing (CA 50). The model was based on a dou-
ble Wiebe function and predicted the Wiebe function parmeters
d1, d2 and m2, for actuator settings of spark timing, SOI tim-
ing and charge composition through external EGR fraction and
φ ’. The model predicted a mean behavior of combustion phasing
given the above variables.

For quantification of cyclic variability, another regression
model was created to predict the standard deviation of CA 50.
Use of this model could determine the operating conditions for
low variability and act as a filter while driving the above model. It
was also shown that while regions of early CA 50 corresponded
to low variability, they also corresponded to high pressure rise
rates. Representative cycles close to the ringing limit had several
cycles above the limit and hence care should be taken to ensure
that regions of high ringing are not approached.

7 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ACKNOWLEDGMENT
This material is based upon work supported partially by the

Department of Energy [National Energy Technology Laboratory]
under Award Number(s) DE-EE0003533 and partially funded by
Robert Bosch LLC. The authors would like to thank Dr. Shyam
Jade for the SACI data.

REFERENCES
[1] Qu, Z., Ravi, N., Oudart, J., Doran, E., Mittal, V., and Ko-

jic, A. “Control-oriented modeling of spark assisted com-
pression ignition using a double wiebe function”. In ACC,
no. (Accepted).

[2] Hellström, E., Stefanopoulou, A., and Jiang, L., 2013. “A
linear least-squares algorithm for double-wiebe functions
applied to spark-assisted compression ignition”. Journal of
Engineering for Gas Turbines and Power, 136.

[3] Najt, P. M., and Foster, D. E., 1983. “Compression-ignited
homogeneous charge combustion”. In SAE, no. 830264.

[4] Thring, R. H., 1989. “Homogeneous-charge compression-
ignition (HCCI) engines”. In SAE, no. 892068.

[5] Li, J., H., Z., and Ladommatos, N., 2001. “Research and
development of controlled autoignition (CAI) combustion
in a 4-stroke multi-cylinder gasoline engine”. In SAE,
no. 2001-01-3608.

[6] Aoyama, T., Hattori, Y., and Mizuta, J., 1996. “An ex-
perimental study on premixed-charge compression ignition
gasoline engine”. In SAE, no. 960081.

[7] Saxena, S. Bedoya, I., 2013. “Fundamental phenomena
affecting low temperature combustion and hcci engines,
high load limits and strategies for extending these limits”.
Progress in Energy and Combustion Science, 39, pp. 457–
488.

[8] Yun, H., Wermuth, N., and Najt, P., 2010. “Extending
the high load operating limit of a naturally-aspirated gaso-
line hcci combustion engine”. SAE Int J Engines, 3(1),
p. 681699.

[9] Manofsky, D., Vavra, J., Assanis, D., and Babjimopoulou,
A., 2011. “Bridging the gap between HCCI and SI: Spark-
assisted compression ignition”. In SAE, no. 2011-01-1179.

[10] Szybist, J., Nafziger, E., and Weall, A., 2010. “Load expan-
sion of stoichiometric hcci using spark assist and hydraulic
valve actuation”. SAE Int J Engines, 3(2), pp. 244–258.

[11] Olesky, L., Martz, J., Lavoie, G., Vavra, J., Assanis, D.,
and Babajimopoulos, A., 2013. “The effects of spark tim-
ing, unburned gas temperature, and negative valve overlap
on the rates of stoichiometric spark assisted compression
ignition combustion”. Appl Energy, 2013, pp. 407–417.

[12] Yang, X., and Zhu, G. G., 2012. “A control-oriented hybrid
combustion model of a homogeneous charge compression
ignition capable spark ignition engine”. Proc IMechE, 226,
pp. 1380–1395.

[13] Glewen, W. J., Wagner, R. M., Edwards, K. D., and Daw,
C. S., 2009. “Analysis of cyclic variability in spark-assisted
HCCI combustion using a double wiebe function”. Proc
Combustion Institute, 32, pp. 2885–2892.

[14] Temel, V., and Sterniak, J., 2014. “Characterization of
SACI combustion for use in model based controls”. In SAE,
no. 2014-01-1289.

[15] Young, M. B., 1980. “Cyclic dispersion - some quantitative
cause-and-effect relationships”. In SAE, no. 800459.

[16] Larimore, J., Hellström, E., Li, J., and Stefanopoulou, A.,
2012. “Experiments and analysis of high cyclic variability
at the operational limits of spark-assisted HCCI combus-
tion”. In ACC, pp. 2072–2077.

[17] Fitzgerald, R., Steeper, R., Snyder, J., Hanson, R., and Hes-
sel, R., 2010. “Determination of cycle temperatures and
residual gas fraction for HCCI negative valve overlap oper-
ation”. In SAE, no. 2010-01-0343.

[18] Hohenberg, G. F., 1979. “Advanced approaches for heat
transfer calculations”. In SAE, no. 790825.

[19] Ghojel, J., 2010. “Review of the development and appli-
cations of the wiebe function: a tribute to the contribution
of ivan wiebe to engine research”. International Journal of
Engine Research, 11, pp. 297–312.

[20] Rousseau, S., Lemoult, B., and Tazerout, M., 2009. “Com-
bustion characterization of natural gas in a lean burn spark-
ignition engine”. Proc IMechE, 32, pp. 2885–2892.

[21] Lavoie, G., Martz, J., Wooldridge, M., and Assanis, D.,
2010. “A multi-mode combustion diagram for spark as-
sisted compression ignition”. Combust. Flame, 157,
pp. 1106–1110.

[22] Larimore J. Hellström, E., Sterniak, J., Jiang, L., and Ste-
fanopoulou, A., 2012. “Quantifying cyclic variability in a
multicylinder HCCI engine with high residuals”. Journal
of Engineering for Gas Turbines and Power, 134.

[23] Dai, W., Trigui, N., and Lu, Y., 2000. “Modeling of cyclic
variations in spark-ignited engines”. In SAE, no. 2000-01-
2036.

[24] Polovina, D., McKenna, D., Wheeler, J., Sterniak, J.,
Miersch-Wiemers, O., Mond, A., and Yilmaz, H., 2013.
“Steady-state combustion development of a downsized
multi-cylinder engine with range extended HCCI/SACI ca-
pability”. In SAE, no. 2013-01-1655.

8 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/06/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use




