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Abstract

A new Monte Carlo (MC) algorithm, the “Dose Planning Method” (DPM), and its associated computer
program for simulating the transport of electrons and photons in radiotherapy class problems employing
primary electron beams is presented. DPM is intended to be a high accuracy Monte Carlo alternative to the
current generation of treatment planning codes which rely on analytical algorithms based on approximate
solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable
of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with
widely used and exhaustively benchmarked general purpose, public domain MC codes in only a fraction of
the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon
a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 minutes on a
modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron
multiple scattering distribution functions which have been derived to permit long transport steps (on the order
of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a “mixed” class simulation
scheme, with differential cross sections for hard inelastic collisions and Bremsstrahlung events described in
an approximate manner to simplify their sampling. The continuous energy loss approximation is employed
for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric
absorption and pair production) is simulated in an analog manner. The δ-scattering method (Woodcock
tracking) is adopted to minimize the computational costs of transporting photons across voxels.
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1 Introduction

Several researchers have recently suggested that Monte Carlo (MC) based systems will soon become the dominant
vehicles for dose computation in radiotherapy treatment planning (Bielajew 1994a; Mohan 1997; Hartmann-
Siantar et al 1997; Bielajew 1997). The superior accuracy of the Monte Carlo method, which converges to
results which are exact to the degree to which physical parameters are known, over that of deterministic models
has long been well established. Public domain codes such as EGS4 (Nelson et al 1985; Bielajew et al 1994),
ITS (Halbleib 1989; Halbleib et al 1992), MCNP (Briesmeister 1993), and PENELOPE (Baró et al 1995; Salvat
et al 1996; Sempau et al 1997) have all been extensively benchmarked against experimental data for a wide range
of materials and energies. EGS4 in particular has been throughly tested in the specific region of dosimetric
interest (Rogers and Bielajew 1989b; Rogers and Bielajew 1990), and is widely accepted as a computational
standard for radiotherapy dose calculations. Further, the near-equivalence of the prevalent Monte Carlo codes
has also been established (Rogers and Bielajew 1989a; Andreo 1991), and their differences shown to be of little
significance in the radiotherapy dose calculation problem1.

By contrast, the deterministic algorithms currently used for calculating electron dose in treatment planning
systems rely on analytic approximations to the solution of the transport equation which fail to adhere to their
limiting conditions in certain radiotherapy applications. Errors up to 50% for electron beams (Cygler et al 1987)
and up to 30% for problems involving photon and electron transport near inhomogeneities (Ma et al 1999) have
been reported. These discrepancies arise because the deterministic methods are based on approximate analytical
solutions of the transport problem in semi-infinite media which are then modified semi-empirically to account for
inhomogeneities. Such methods often are not adequate for treatment planning computations in which interfaces
between materials with large differences in density and/or atomic numbers (e.g. soft tissue, bone and air) play
an important role. Monte Carlo based techniques, on the other hand, are capable of modeling heterogeneities
with a fine granularity.

Thus far, the impediment to the widespread implementation of Monte Carlo based methods for dose computation
has been that, even with continuing advances in computer architecture and clock speed, the currently available
codes are quite slow. The practical requirement imposed by clinical radiotherapy treatment planning systems
is to provide dose distributions of sufficient accuracy (∼2–3% of the dose maximum) within a time of practical
clinical relevance (/5 minutes) and with a modest investment in computer hardware. Though most MC programs
are sufficiently fast for simulating dose deposition in homogeneous media and simple geometries, radiotherapy
applications involve numerous variations of material and density over small distances. Patient geometry is usually
simulated as a map of densities over a large number (1283) of relatively small (∼1–4 mm) parallelepipeds (voxels),
obtained from computed tomography (CT) scans. Currently, Monte Carlo simulation of absorbed dose for such
large scale problems is feasible only when employing computer resources of a scale not generally available in
medical centers (Hartmann-Siantar et al 1995; Hartmann-Siantar et al 1997; Ma et al 1999).

Recently, Keall and Hoban (1996), Neuenschwander and Born (1992), Neuenschwander et al. (Neuenschwander,
Mackie, and Reckwerdt 1995), Kawrakow et al. (Kawrakow, Fippel, and Friedrich 1996) and the PEREGRINE
code (Hartmann-Siantar et al 1995; Hartmann-Siantar et al 1997) have attempted to surmount the CPU con-
straint by significantly modifying the basic MC electron transport algorithm. These new methods rely on some
combination of simplifying the physics to different degrees of accuracy; re-using all or parts of particle histories;
and/or implementing parallel processing (requiring a significant investment in hardware). In this work we present
a new MC algorithm “Dose Planning Method” (DPM) for the simulation of coupled electron-photon transport
in radiotherapy treatment planning without reliance on these limiting approximations and requirements.

DPM employs the standard condensed history model for electron transport, and falls into what has been called
by Berger (1963) a “mixed” scheme for the treatment of energy losses, treating large energy transfer collisions
in an analog sense and using the continuous slowing down approximation (CSDA) to model small loss collisions.
Gains in performance derive from a series of significant enhancements to the algorithm for transporting particles
from point to point (the “transport mechanics”) and corresponding re-formulation of the distribution functions
describing the physics, as described below.

The first modification involves the employment and refinement of a new step size independent multiple-scattering
theory (Kawrakow and Bielajew 1998b). This method is a robust implementation of Lewis’s (Lewis 1950) for-
mulation of Goudsmit-Saunderson theory (Goudsmit and Saunderson 1940a; Goudsmit and Saunderson 1940b),

1The comparisons performed by Rogers and Bielajew employed the ETRAN code (Berger 1963; Seltzer 1989; Seltzer 1991) from
which the electron transport physics (with some subtle modifications) for ITS and MCNP was derived.
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which is an exact solution for the angular distribution of charged particles traversing a given distance, assuming
a constant cross section over the path. The underlying cross section used here is the screened Rutherford cross
section with the Molière screening factor (Molière 1947), after that implemented in Molière’s small-angle multiple-
scattering theory (Molière 1948) and employed in the EGS4 code with a correction for large angle suggested by
Bethe (1953). From the validity of the EGS4 code for radiotherapy applications, we infer that the use of this
form is sufficiently accurate. In addition to being derived under an exact framework, because it can be recast into
a form independent of energy, the Kawrakow-Bielajew multiple scattering formulation provides a vehicle which
can be exploited to permit transport across inhomogeneities, as discussed later. Use of the Kawrakow-Bielajew
distribution provides one other advantage. Larsen (1992) has demonstrated that the accuracy of a transport
simulation scheme for charged particles is dominated by the faithfulness of the multiple-scattering theory it
employs. In the limit of small electron step size, the correct solution to the transport equation is guaranteed if
and only if the multiple-scattering theory faithfully reproduces the discrete single scattering distributions. To
our knowledge, the Kawrakow-Bielajew formalism yields the only purely multiple scattering distribution func-
tion which is correct in the multiple, plural, and single scattering regimes. Thus, DPM is guaranteed to always
converge to a correct solution as the step size is reduced.

The second major innovation introduced by DPM lies in the use of new transport mechanics, i.e., the algorithm
for moving charged particles from point-to-point in media given the composition of the material traversed, the
length of the step and the multiple scattering angle. Larsen’s work suggests that the schemes employed in
current general-purpose codes are not optimal, and that a measure of the quality of a transport mechanism is
measured by how quickly it converges to the small step size limit. Transport schemes can be characterized also
by their adherence to the exact spatial-angular moments first reported by Lewis (Lewis 1950), and a new scheme
with high order convergence has been reported recently (Kawrakow and Bielajew 1998a). The implementation
of this new method is computationally and algorithmically demanding, however, and so DPM has adopted the
“random hinge” scheme2 employed in PENELOPE. This algorithm has been shown to be almost as accurate as the
Kawrakow-Bielajew transport mechanics (1998a) in preserving the basic Lewis moments, but has a much simpler
implementation. Recent work of Larsen3 and of Bielajew and Salvat (Bielajew and Salvat 2000) demonstrate
that higher-order convergent schemes exist, but they were not studied due to algorithmic complexity.

A third new technique introduced by DPM is the use of large electron transport steps, in which many voxels
may be traversed before sampling a multiple scattering angle. This is made possible because of the stability
of the random hinge algorithm across heterogeneities, the accuracy of the Kawrakow-Bielajew distribution, and
because the multiple-scattering angle, when the step size is suitably scaled in terms of energy and scattering
in the medium (as described below), is very nearly independent of atomic number. This feature of multiple
scattering distributions has been shown to be rigorously true in small angle theory (Bothe 1921b; Bothe 1921a;
Wentzel 1922; Molière 1948; Bielajew 1994b). We thus assume that the small residual dependencies on the
media of both the scattering distributions and of the random hinge Lewis moments can be safely ignored for
radiotherapy-class problems, and relatively large steps (of the order of 5 mm) can be employed.

Because the differential cross section is a fairly strong function of energy and there is significant energy loss
over the long steps taken in DPM, a fourth modification has been introduced which scales the step sizes by the
number of (material and energy dependent) transport mean free paths traversed. This preserves the total amount
of scattering modeled by the multiple scattering distribution functions over the long steps, and is essential for
permitting tracking across sharp heterogeneities.

In these as well as other features, DPM exploits the small dynamic range (in energy and material) of radiotherapy
class problems. Energies are limited to those between ∼ 100 keV to ∼ 20 MeV, and, while the program has been
benchmarked against a wide range of atomic numbers for completeness, because in most clinical applications
only a few low atomic number materials are seen, certain cross sections and distribution functions are determined
by scaling them appropriately to exactly computed data for water.

In the following sections, we present in detail the multiple scattering model, electron transport mechanics,
treatment of large energy loss processes, photon transport algorithm, and cross-voxel transport found in DPM.
Results from electron dose deposition simulations in homogeneous and inhomogeneous phantoms, as well as in
a CT geometry, are then presented, followed by a section devoted to the analysis of CPU run time and of the
simulation efficiency achieved.

2We are grateful to Dr. Ronald Kensek of Sandia National Laboratories for this colorful nomenclature.
3We are grateful to Dr. Ed Larsen of the University of Michigan for providing us with this information ahead of publication.

4



2 Multiple scattering

In all condensed history Monte Carlo programs, the effect of the large number of elastic interactions which
occur over a given pathlength is modeled by means of a multiple scattering theory. The theory of Goudsmit
and Saunderson (1940a) (GS, hereafter), which is exact if the cross section is constant over the step, describes
the angular deflection of electrons after traveling a given pathlength s in terms of transport coefficients g`
(` = 0, 1 . . .∞), defined by

g` = 1−
∫ 1

−1

dω P`(ω) p(ω) . (1)

Here ω = cos θ is the angular deviation with respect to the initial electron direction, P` is the `-th Legendre
polynomial and the quantity

p(ω) ≡ σ(ω)∫ 1

−1 dω′ σ(ω′)
(2)

represents the probability density function (PDF) associated to the single event differential cross section (DCS)
σ(ω). Under this formalism, the angular distribution of electrons having traversed a distance s is given by

FGS(ω) dω =
∞∑
`=0

(`+
1
2

)P`(ω) exp
(
− s
λ
g`
)

dω , (3)

where λ is the elastic scattering mean free path (MFP) 1/Nσ, given that N is the atom density of the medium
and σ is the total microscopic cross section. An important consequence of this formalism is that the transport
coefficients fully characterize the elastic scattering process. Note that this series diverges for ω = 1, because of
the presence of uncollided particles. Numerically, this divergence appears as an instability in FGS when values
of s/λ (the number of MFP’s along s) fall below 100.

As the GS model is exact only in as much as the transport coefficients are exact, σ(ω) must be chosen carefully.
Scattering from a screened Rutherford potential, though not rigorously accurate, provides a physically sound
model for single elastic collisions, and leads to a PDF

pR(ω) =
2A(1 +A)

(1 + 2A− ω)2
, (4)

where A is the screening parameter in the Rutherford potential. An advantage of using the screened potential
PDF is that analytical expressions for all of the transport coefficients can be derived in terms of A. Further, A can
be arbitrarily set so as to reproduce the first transport coefficient g1 obtained from numerical integration of more
accurate (and computationally cumbersome) DCS’s found elsewhere (Mayol and Salvat 1997). Typical values
of A for water in the energy range relevant for radiotherapy fall in the interval from 10−8 to 10−4. In practice,
1000 coefficients are enough to ensure the convergence of the GS series except for very small pathlengths, and
the approximate small momentum method of Kawrakow and Bielajew (1998b) can be used to calculate these
coefficients.

Direct use of the screened Rutherford cross section and the GS theory, however, requires an impractical amount
of computer memory to store accurate numerical representations of the resulting steeply forward-peaked distri-
bution. Following Kawrakow and Bielajew (1998b), this difficulty can be overcome by a change to a new angular
variable u, which is defined so that the relation∣∣∣∣ dudω

∣∣∣∣ =
2B(1 +B)

(1 + 2B − ω)2
, (5)

is fulfilled, where B represents a free parameter that is called the “broad screening” parameter, to associate it
with the screened Rutherford-shape. Moreover, if the boundary conditions

u(ω=1) = 0 and u(ω=−1) = 1 , (6)

are imposed, equation (5) together with (6) fully determine u, and the expression for the new variable u is found
to be

u = (1− ω)
1 +B

1 + 2B − ω . (7)

5



The PDF q(u) of the new variable is related with the GS distribution through

FGS(ω) ≡ q(u)
∣∣∣∣dudω

∣∣∣∣ = q(u)
2B(1 +B)

(1 + 2B − ω)2
, (8)

and so q can be interpreted as a “correction” factor that transforms a screened Rutherford PDF into the GS
distribution. Equation (8) also shows that the sampling of ω values according to the PDF FGS(ω) can be readily
carried out using the rejection method, employing q(u) as the rejection function.

2.1 Optimizing q

Rejection sampling for ω will be accurate and efficient and will require a manageable amount of computer
memory only if q(u), which depends only on s/λ,A and B, is sufficiently smooth. The introduction of the
arbitrary parameter B in eq. (8) provides a degree of freedom that can be exploited to manipulate the shape of
q to bring this about. The requirement that q be as smooth as possible can be expressed mathematically as

∂

∂B

∫ 1

0

du [1− q]2 = 0 . (9)

Since q(u) is a PDF, its integral is 1 and the former equation simplifies to

∂

∂B

∫ 1

0

du q2 = 0 , (10)

which can be solved analytically (Kawrakow and Bielajew 1998b) to obtain B as a function of s/λ and A.

A fairly good approximation for B(s/λ,A) (and for the corresponding q) can be obtained in the small angle limit,
i.e., when s/λ is not very large and the scattering is weak (equivalent to A being small). It is noted that within
this approach, which has been extensively studied by Bielajew (1994b), neither q nor the ratio B/A depend on
A, making somewhat simpler the interpolation process. However, as large step sizes are required to significantly
reduce computation time in DPM, the conditions necessary to apply this simplification will not be met, and a
numerical solution of the exact expression in (10) is used instead.

Since s, as discussed in a later section, is almost always expressed as a function of the kinetic energy of the
electron, E, and since λ and the screening parameter A are also functions of E, q depends only on the dynamic
variables u and E. In figure 1 a plot of the surface q(u;E) is presented for s=1 cm, showing that the change of
variable introduced in eq. (7) does indeed produce a smooth q. Typically, less than 20 kB (varying slightly with
the selected s(E)) are needed to reproduce q with a mean accuracy better than 0.1%. The problem of sampling
the GS distribution has thus been reduced to interpolating q(u;E).

2.2 Multiple scattering with energy losses

Since electrons lose energy continuously as they pass through matter and the elastic scattering cross section is a
fairly strong function of the electron energy, there is dependence on energy in both λ and g` in the exponential in
(3). Lewis (1950) first accounted for this by recasting s as an integral over energy loss in the continuous slowing
down approximation, noting that the pathlength can be expressed in terms of energy loss as

s =
∫ E

E−∆E

dE
S(E)

≡ R(E)−R(E −∆E) . (11)

Here S(E) is the energy dependent energy loss per pathlength or CSDA stopping power, and R(E) is called the
CSDA range. The average energy loss ∆E for an electron with initial energy E traveling a given distance s can
be determined by inverting the CSDA range, as in

∆E = E −R−1 (R(E)− s) . (12)

Thus Lewis was able to introduce energy dependence into (3) by using (11) to write s/λg` in the exponential as
an integral over energy loss,

FL(ω) =
∞∑
`=0

(`+
1
2

)P`(ω) exp

[
−
∫ E

E−∆E

dE
G`
S

]
, (13)
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Figure 1: q surface for s = 1 cm as a function of the angular variable u and the logarithm of the kinetic energy
in eV. Note that the vertical scale is linear. The lower limit EL of the energy interval considered is chosen to be
slightly larger than energy Er for which the residual range is 1 cm. At energies below Er, the surface collapses to
the plane q = 1, and the parameter B in (8) goes to ∞, yielding FGS of 1/2, which implies isotropic scattering.
To avoid this singularity in the interpolating routine, one must cut off at a slightly greater value, EL. This, of
course, implies the need for a last-step strategy, that is, the last step is treated as a special case.
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in which
G` ≡

g`
λ
, (14)

is defined as the `-th inverse transport MFP. The first inverse MFP, G1, is often referred to as the scattering
power. As FL depends only on the dynamic variables ω and E, the change of variable (7) and the condition (10)
can be applied as before with the GS distribution. Again, this process splits FL into a screened Rutherford PDF
and a q(u;E) surface, which now includes the effect of the energy losses within the CSDA model. Neither the
memory storage nor the simulation time are significantly affected by this change. However, because the integral
in (13) must be evaluated numerically for each `, the computation time required to generate the table from which
q will be interpolated during the execution of DPM does increase considerably. Fortunately, this needs to be done
just once for a given material. It is worth noting that, unlike other schemes (Kawrakow and Bielajew 1998a),
the method presented here is rigorously exact within the CSDA model, and the only approximation introduced
involves the assumption of a screened Rutherford potential.

The importance of including energy losses into the multiple scattering theory for large pathlengths is apparent
from figure 2, which shows the difference in depth dose profiles for a 10 MeV electron beam in water when the
more accurate Lewis approach is used instead of the GS scheme.

2.3 Electron transport mechanics

Since large pathlengths must be used to attain appreciable speed up of MC electron transport computations, the
mechanism used to generate final phase space variables after a transport step plays a critical role in determining
the accuracy of the model. As noted earlier, the efficacy of a given transport model can be evaluated by its
faithfulness in reproducing the spatial and angular moments of the phase variables and the spatial and angular
distributions, at the end of a given step. A comparison of transport mechanics methods has been performed
by Larsen (1992) and by Kawrakow and Bielajew (1998a). They concluded that when the energy loss along
a step is disregarded, PENELOPE’s random hinge model (Fernández-Varea et al 1993) provides an excellent
compromise between speed and accuracy, and is therefore well-suited for a fast Monte Carlo code. The random
hinge transport method is described as follows. The pathlength s is split in two sub-steps of lengths

sA = ξs and sB = s− sA , (15)

respectively, where ξ is a random number between 0 and 1. A first sub-step sA is taken in the electron initial
direction, after which the particle is deflected according to any multiple scattering law which provides polar and
azimuthal deflection angles Θ and Φ determined over the entire step s. A second sub-step is then taken over
the remaining distance sB in the new direction. For a particle directed along the z-axis starting at location
~x = 0, provided that the scattering law is correct and disregarding energy losses along the step, it can be
shown that this method yields average values of the normalized penetration depth z/s and lateral displacement
(x2 + y2)/s2, which are correct to O(s). Other moments preserved to this order accuracy include (zvz)/s (for
|v| = 1), (xvx + yvy)/s, z2/s2, and (x2 + y2)z/s3.

The inclusion of energy losses along s reduces the accuracy of the random hinge model. Indeed, Larsen’s analysis
of the spatial moments is valid only when the scattering power, G1, and other inverse transport MFP’s do not
depend on s, or equivalently, on the energy E. For long steps s, these conditions will not be met and a modified
formulation of random hinge mechanics must be employed. We begin by noting that exact Lewis moments
(indicated by 〈.〉L) under the CSDA energy-loss model are given by

〈z〉L
s

=
1
s

∫ s

0

ds′ exp[−K1(s′)] ' 1− 1
s

∫ s

0

ds′ K1(s′) ' 1− 1
2
s G1

(s
3

)
, (16)

for the penetration depth and

〈x2 + y2〉L
s2

=
4

3s2

∫ s

0

ds′ exp[−K1(s′)]
∫ s′

0

ds′′ exp[K1(s′′)] (1− exp[−K2(s′′)]) '

4
3s2

∫ s

0

ds′
∫ s′

0

ds′′ K2(s′′) ' 2
9
s G2

(s
4

)
, (17)
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for the lateral displacement. K` is defined as

K`(s) ≡
∫ s

0

ds′ G`(s′) ' s G`
(s

2

)
, (18)

with K1 called the “scattering strength.” These relations use a first order Taylor expansion for G`(s), and neglect
terms containing products of two or more K`’s. This gives an upper bound for the Lewis lateral displacement
and an acceptable approximation for values of s not extremely large and energies not too low. If energy loss is
taken into account in sampling cos θ and PENELOPE’s mechanics (eq (15)) is used otherwise, the random hinge
moments can be computed to be (Fernández-Varea et al 1993)

〈z〉P
s

=
1 + 〈cos θ〉

2
=

1 + exp[−K1(s)]
2

' 1− 1
2
s G1

(s
2

)
, (19)

and
〈x2 + y2〉P

s2
=

1
3
(
1− 〈cos2 θ〉

)
=

2
9

(1− exp[−K2(s)]) ' 2
9
s G2

(s
2

)
. (20)

We therefore see that the effect of ignoring energy loss in the transport mechanics is equivalent to evaluating
the G`(s)’s at the step mid-point rather than the correct distances of s/3 or s/4. As G`(s) increases as s
increases (and E decreases), 〈z〉P slightly underestimates the true value 〈z〉L, and 〈x2 + y2〉P substantially
overestimates 〈x2 + y2〉L. In physical terms, the PENELOPE model overestimates the scattering for very large
pathlengths. Computations of these moments for 10 MeV electrons in water with a pathlength of 1 cm show
that the PENELOPE model is in error by less than 0.1% for the penetration 〈z〉, but gives an excess lateral
displacement of about 3%. These discrepancies increase with decreasing energy, with the lateral displacement
error rising to approximately 10% at 4 MeV. Moreover, this deviation is systematic and compounds as the total
pathlength traveled by the electron increases.

The above analysis suggests a modification of the random hinge model which preserves the Lewis moments by
sampling uniformly in scattering strength K(A)

1 rather than in distance s, i.e.,

K
(A)
1 = ξK1(s) . (21)

An electron is then transported until it “accumulates” a scattering strength equal to K(A)
1 , where a deflection is

imposed. The electron is then moved the pathlength required to exhaust the scattering strength K1(s)−K(A)
1 It

can be shown that this non-uniform PDF for the first sub-step distance sA yields correct values for the average
penetration depth, lateral displacement and other spatial moments to first order in sG1 and sG2 when a linear
approximation is adopted for G`(s). Perhaps more importantly, in addition to correcting for the scattering
overestimation, this new transport mechanism also provides a basis for simulating scattering across material or
density boundaries. Time saved in multi-voxel transport offsets by far the additional bookkeeping required in
calculating the K1 accumulated over the steps. The details of the transport through voxels is presented in a
subsequent section.

3 Discrete electron energy loss interactions

DPM employs what Berger (1963) has categorized as a class II mixed simulation scheme for energy losses. Hard
interactions, i.e., those yielding energy loss above given cutoffs, are simulated discretely using an analog (event-
by-event) model. Soft events, which are much more frequent but result in energy transfer below the cutoffs, are
modeled as contributing to a continuous deposition of energy throughout the transport step, and are accounted
for in the CSDA approximation through the use of a restricted stopping power, as described later. In addition
to resulting in energy loss to the primary electron, hard ionization events generate secondary electrons and hard
Bremsstrahlung collisions generate secondary photons. The energy loss of the primary and the phase state of
the secondary particles are generated by sampling from the appropriate PDF’s describing the processes.
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3.1 Hard inelastic collisions

DPM uses the Møller DCS, σM, to treat inelastic collisions of electrons with atomic electrons. The Møller cross
section, which was derived for collisions with free electrons at rest, is given by

σM(k) =
2πe4

mv2

Z

Ek2

[
1 +

(
k

1− k

)2

− k

1− k +
(
γ − 1
γ

)2(
k2 +

k

1− k

)]
, (22)

where e is the charge of the electron, m its rest mass, v its speed, γ is the ratio of its total energy E+mc2 to its
rest energy, Z is the number of electrons in the target molecule and k = W/E is the fraction of kinetic energy
lost. Note that in the Møller formalism, the maximum allowed value of k is 1/2 due to the indistinguishability
of the projectile and target electrons.

The inverse MFP λ−1
M for hard inelastic events (those above the cutoff WM) in homogeneous media is easily

derived by integrating (22),

λ−1
M =

2πe4

mv2

Znm

E

[
1−2kM

kM(1−kM)
+
(
γ−1
γ

)2(1
2
−kM

)
+

[(
γ−1
γ

)2

−1

]
ln

1−kM

kM

]
, (23)

where nm is the number of molecules per unit volume and

kM ≡ WM

E
. (24)

In the limit that mc2 � E and kM � 1, eq. (23), an be approximated as

λM ' A

Zρ

mc2WM

NA2πe4
, (25)

where A is the atomic weight of the species and NA is Avogadro’s number. By default, DPM sets WM = 200 keV,
as knock-on electrons with less than that energy have ranges much smaller than the minimum 1 mm voxel size.
For water, (23) yields a value of λM roughly equal to 2 cm and practically independent of E, as shown by eq.
(25). The simple A/Zρ dependence of (25) on medium composition will be exploited later in transport across
voxel boundaries.

When a Møller interaction takes place, the fraction k of energy lost is sampled from the normalized PDF based
on (22) by combining the rejection and composition methods (Salvat and Fernández-Varea 1992), and a knock-on
electron is generated and its energy, direction and position stored for later transport. Since energy losses are
usually much larger than the binding energies, the approximation that target electrons are initially free and at
rest is appropriate. A knock-on electron will then have a kinetic energy equal to W and a direction of movement
determined by the conservation of momentum. Naming θ2 as the angle formed between this direction and the
velocity of the incoming electron, it is found that

cos θ2 =

√
W (E + 2mc2)
E(W + 2mc2)

. (26)

3.2 Hard Bremsstrahlung interactions

The Bremsstrahlung DCS for an electron impinging on a neutral atom with Z electrons to produce a photon
with energy W = kE can be written as

σB(k) =
Z2

β2k
f(k) (27)

where β is the electron velocity in units of the speed of light. Except for very high values of Z and low values of
E, the leading term in (27) removes almost all the dependence of σB(k) on E and Z, and the correction f is a
smooth function of k. Seltzer and Berger (1985) have given a tabulation of f(k) in terms of Z and E for selected
Z values. For materials and energies typically seen in radiotherapy problems, the data contained in these tables
can be roughly approximated by means of a linear function,

f(k) = a(1− bk) (28)
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with a and b being material and energy independent constants selected by performing a fit to the tabulated data.
Inaccuracies in this approximation have little effect for most problems of interest, as the parameters a and b are
weak functions of E and Z in the radiotherapy regime.

For compounds or mixtures, DPM relies on the additivity rule, replacing Z2 in eq. (27) with

Z2
eq ≡

∑
i

qiZ
2
i (29)

where qi and Zi represent the stoichiometric index and the atomic number of the i-th atom, respectively. (For
the sake of simplicity, the symbol Z2, will be used throughout in place of Z2

eq.)

For a given cut-off energy for Bremsstrahlung production WB, the inverse MFP resulting from this approximate
DCS is

λ−1
B =

Z2nma

β2

[
ln

1
kB
− b(1− kB)

]
, (30)

where kB = WB/E. In the limit mc2 � E and kB � 1, eq. (30) can be approximated as

λB '
A

Z2ρNAa

(
ln

E

WB
− b
)−1

(31)

which shows that λB has a mild variation with E at high energies. This fact, along with the linear scaling of λB

with Z2ρ/A will be used to facilitate cross-voxel transport.

The analog simulation of hard Bremsstrahlung events, despite their infrequent occurence, is necessary to accu-
rately reproduce the fluctuations of the kinetic energy of impingent electrons. As the Møller DCS depends on the
energy loss roughly as k−2 and the Bremsstrahlung DCS as k−1 (eqs. (22) and (27) respectively), large energy
losses are more likely to happen when the latter type of interaction occurs. As a result, a non-negligible fraction
of incident electron energy straggling is caused by Bremsstrahlung.

The random sampling of the PDF corresponding to the normalized σB(k) can be performed using f(k) in eq. (27)
as a rejection function. The angular deflection of the incoming electron is small and can be neglected and the
scattering angle of the secondary photon is set equal to its mean value, approximately given by (Heitler 1954),

〈θ〉 ' mc2

E +mc2
, (32)

which is the approximation adopted in the original version of EGS.

4 Photon interactions

Photon transport is described following a conventional analog Monte Carlo treatment until the energy falls below
some user-defined absorption energy. Three processes, photoelectric absorption, Compton scattering and pair
production, are considered. The inverse MFP’s for these interactions are taken from those generated by the
PENELOPE pre-processing program MATERIAL. In radiotherapy class problems, Compton scattering is the
only significant dose delivery mechanism, and so approximations have been adopted for treating photoelectric
and pair production interactions.

Photoelectric absorption, which is relevant only at very low energies and for high atomic numbers, is simulated
by assuming that all the energy is locally deposited. DPM does not generate secondary electrons or relaxation
radiation, so it is therefore convenient to set the electron and photon absorption energies above the highest
absorption edge of the highest Z material in the problem. In most applications, DPM uses absorption thresholds
of 50 keV for photons and 200 keV for electrons.

Pair production is important only at the high end of the energy range relevant to radiotherapy, and only for high
atomic numbers, and so some very rough approximations are made. DPM assumes that for the first emerging
particle, all kinetic energies are equally probable, and generates two electrons traveling in the same direction
as the incident photon. Both particles are tracked as electrons, and one is randomly selected upon stopping to
emit 2 annihilation photons traveling in randomly selected opposite directions. This approach disregards the
differences in the cross sections and stopping powers between the created electron and positron (and the small

12



possibility of in-flight annihilation of the positron), approximations which are justified by the relatively small
impact of this effect in practical problems.

Compton interactions are assumed to involve free electrons at rest, and therefore binding effects (accounted for
by means of the incoherent scattering function) and the Doppler broadening (Ribberfors 1975) of the energy
of the scattered photon are ignored. These approximations are in general excellent for energies above 1 MeV,
and are even more applicable to radiotherapy problems, where the only sources of low energy photons are either
contamination in the accelerator head and relatively rare hard Bremsstrahlung interactions. DPM determines the
energy of the scattered photon by sampling the Klein-Nishina DCS using the recipe contained in EGS4 (Nelson
et al 1985). The recoil electron, which has direction and energy determined by the energy and momentum
conservations laws, is stored in the secondary stack and simulated afterwards.

Photon histories terminate when the energy falls below a user-defined absorption energy or when they reach the
geometry limits.

5 Transport across inhomogeneous voxel boundaries

As noted previously, a Monte Carlo electron transport algorithm sufficiently fast for clinical radiotherapy treat-
ment planning will require the use of transport steps significantly greater than patient geometry voxel dimensions.
This is problematic, as patient geometry (composition and density), which is typically inferred from CT data4,
varies across almost every voxel boundary. Conventional MC programs are not capable of single step transport
over boundaries between differing media because the cross sections used in their multiple scattering laws are
medium dependent. Because DPM uses the medium invariant q(u) function to describe multiple scattering,
however, transport across inhomogeneities is possible, as described below.

5.1 Electrons

The atomic number and density dependencies of the physical models adopted by DPM have been examined in
detail in the preceding sections. Here we describe how the particular forms of these quantities can be exploited
to permit rapid simulation of electron transport in voxelized geometries.

In typical mixed class II electron transport MC models, electrons are started in an initial direction with an initial
energy and transported in a series of steps until they exit the problem geometry or their energies fall below a
user defined absorption cut-off. A transport step involves linear translation of the particle along its direction
vector until a boundary is crossed, a hard collision takes place, or a multiple elastic scattering event is imposed.
The details of how DPM determines when various events occur is presented here. Note that the computations
described below of the distances traveled prior to the simulation of the different events are done in parallel as
the electrons traverse the voxels.

• The distance to a Møller collision is sampled according to

tM = −λM ln ξ, (33)

where λM is the Møller MFP, eq. (23), for some reference material (which will be assumed to be, without
loss of generality, pure water) and ξ represents a random number uniformly distributed in (0, 1). A look
up table with values of λM on a grid of energies dense enough to allow accurate numerical interpolation is
calculated beforehand and read from an input file during the initialization of DPM.

When an electron travels a distance t inside a voxel, tM is decreased an amount ∆tM given by

∆tM = t
(Zρ/M)vox

(Zρ/M)water

. (34)

This is continued at each voxel until tM drops to zero. A Møller interaction is then simulated, in which
the energy lost by the incident electron is sampled from the Møller DCS of (22), and a knock-on electron
is generated and placed in the secondary stack. Note that for an homogeneous medium made of water, the
scattering event occurs when the distance t accumulated over voxels equals tM.

4Following the method of (Knöös et al 1986), the program CTCREATE (Ma et al 1995) has been developed for the OMEGA
BEAM (Rogers et al 1995) project, and is publicly available.
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• The distance to a Bremsstrahlung collision is sampled according to

tB = −λB ln ξ, (35)

where λB is the Bremsstrahlung MFP, eq. (30), for the reference material i.e. for water. Again, an
interpolation table is generated beforehand for λB and read from an input file during the initialization of
DPM.

When an electron travels a distance t inside a voxel, tB is decremented by an amount equal to

∆tB = t

(
Z2ρ/M

)
vox

(Z2ρ/M)water

, (36)

and this process is repeated until tB drops to zero. At that point a radiative event is simulated, in which
a photon is generated with an energy sampled from the Bremsstrahlung DCS of eq. (27) and placed in the
secondary stack. For a homogeneous medium made of water, the interaction takes place when the total
distance s traveled across voxels equals tB.

• The total scattering strength K1, given by eq. (18) for `= 1, is obtained for water at the initial electron
energy. Values of K1 as a function of energy and a preset pathlength s are pre-calculated and read by
DPM during its initialization. The scattering strength prior to simulation of a multiple scattering event is
then sampled as

tS = K
(A)
1 ≡ ξK1, (37)

in accordance with the corrected version of the PENELOPE transport mechanics described earlier (see eq.
(21)). It must be stressed that the units on tS are not those of distance, but of scattering strength.

As each step t is taken inside a voxel, the scattering strength prior to multiple scattering, tS, is decreased
by an amount equal to

∆tS =
∫ t

0

dt′ G(vox)
1 (t′) ' t

2

[
G

(vox)
1 (t′ = 0) +G

(vox)
1 (t′ = t)

]
. (38)

Once tS is exhausted, the angular deviation is sampled from the Lewis PDF, as described in previous
sections, using the q(u;E) surface corresponding also to water. After rotating through the scattering angle
to determine the new electron direction, linear transport is resumed until a new quantity of scattering
strength, given by

tS = K
(B)
1 ≡ K1 −K(A)

1 , (39)

is spent. After the distance corresponding to tS (as determined by summing the ∆tS incurred while
stepping through each voxel) is traversed, the process is repeated, with a new total scattering strength K1

determined by table look-up and a new tS sampled according to (37). This procedure ensures that the
actual pathlength is such that it produces the same mean angular deviation as over a predefined reference
pathlength for water.

• Apart from discrete events, the continuous energy loss of the electrons is computed at each step. This is
given by

∆E =
∫ t

0

dt′S(vox)
r (t′), (40)

where t is the distance traversed in a given voxel prior to a hard collision or exiting the voxel and S(vox)
r is

the stopping power in the medium, “restricted” to energy transfers below the Møller and Bremsstrahlung
production thresholds for the problem. For large t, S(vox)

r can vary over the step, and so the integral is
approximated by first estimating the energy loss over t assuming that S(vox)

r is constant, and then averaging
the stopping power over the step, as in

∆E = t
S(vox)

r

∣∣∣
E0

+ S(vox)
r

∣∣∣
E0−tS(vox)

r

2
. (41)

Here E0 is the electron kinetic energy at the beginning of the step and E0−tS(vox)
r is what the energy would

be if the stopping power were constant. Values of S(vox)
r are pre-calculated for a dense grid of energies and

read by DPM during its initialization.

14



It should be noted that, since hard inelastic MFP’s depend on the energy, the exact sampling of the distance s
to the next interaction of type ’i’ is given by

− ln ξ =
∫ t

0

dt′ λ−1
i (t′). (42)

Equations (33) and (35) assume that λ(t)'constant between collisions, which is computationally cheap, quite
good for Møller collisions, and reasonably good for Bremsstrahlung interactions. However, because of the possi-
bility of large energy loss occurring in a hard collision, the energy dependence of λ(t) cannot be ignored when
determining distances to additional interactions, and so both tM and tB are recomputed whenever either type of
hard collision takes place.

The electron history terminates when it leaves the CT geometry or when its energy falls below a user-defined
absorption energy, Eabs, set by default to 200 keV that is the approximate energy at which the electron CSDA
range equals 1 mm, a typical voxel size.

One important advantage of this algorithm over conventional MC electron transport schemes is that the scaling of
the cross sections precludes expensive table look-ups when each new voxel is encountered. More significantly, the
number of multiple scattering events is dramatically reduced. In a conventional scheme, electrons are deflected
not only when a multiple scatter step is traversed, but also at every boundary crossing and prior to the simulation
of every hard inelastic collision. Thus DPM eliminates the majority of the computationally expensive samples
from the MS distributions and rotations through the scattering angles.

5.2 Photons

Since photons undergo a limited number of interactions before they are locally absorbed, their transport is almost
always treated in an analog manner. This requires that the distance to collision be recomputed at every media
boundary, as, unlike the case of electrons, there are no simple scaling laws which can be applied. Since voxelized
geometries can present frequent changes of material in short distances (relative to photon MFP’s), this imposes
a significant speed penalty.

To overcome this difficulty, DPM uses the δ-scattering method of Woodcock (Woodcock et al 1965), which avoids
calculating intersections with the interfaces of all the visited voxels by exploiting the fact that the distribution of
collision distances t contains the product of the probability of not colliding prior to t and the collision density. The
method is implemented by first determining the energy dependent minimum total MFP λ

(min)
γ (E) in the entire

geometry. A distance to the next interaction t is then sampled using λ(min)
γ (E), and the photon is transported

through t, ignoring all boundary crossings. Next, the material of the current voxel is determined, which is simple
and efficient for voxelized geometries. An interaction is simulated at t only with probability P equal to

P =
λ

(min)
γ

λ
(vox)
γ

(43)

where λ(vox)
γ represents the total MFP in the current voxel. If an interaction does not occur, the transport is

continued. The quantity 1−P , which is easily determined for every voxel, can be considered to be the probability
of a ‘fictitious’ event occurring, in which no phase space change takes place. If an interaction does occur, its type
is sampled according to the corresponding probabilities Pi (with ’i’ representing Compton collision, photoelectric
absorption or pair production), which are

Pi =
λ

(vox)
γ

λ
(vox)
i

. (44)

λ
(vox)
i represents the MFP of the interaction ’i’ in the current voxel. The Woodcock method will be efficient if

there is only slight variation in λ throughout the geometry, and so time expended in stopping to analyze collisions
which are then determined to be fictitious is less than the time saved by not stopping to recompute λ at each
voxel boundary.
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6 Results

Results from simulations performed using DPM are compared here to results generated by EGS4 and PENE-
LOPE. EGS4 has been extensively benchmarked against experimental data (Rogers and Bielajew 1989b; Rogers
and Bielajew 1990) for radiotherapy problems, and is widely accepted as a standard. PENELOPE has likewise
shown excellent agreement in a variety of comparisons with experimental and other Monte Carlo results (Baró
et al 1995; Sempau et al 1997). Additionally, as DPM draws much of its physics data from PENELOPE’s com-
prehensive and easily manipulated database, any discrepancies between DPM and PENELOPE should reflect
differences in algorithms rather than differences in the underlying data or physical constants and models.

In order to fully exercise the approximations in DPM, a set of problems involving both homogeneous and multi-
layered geometries and a wide range of materials (including several not typically seen in radiotherapy problems)
has been simulated with all three codes.

6.1 Step size selection

The use of the condensed history method introduces an inherent error in Monte Carlo simulations, as elegantly
characterized by Larsen (1992), who showed that it vanishes as the pathlength s tends to zero. But as efficient
computation depends on taking long steps, ascertaining the longest multiple scattering step which preserves the
accuracy of the simulation is of critical importance, and so is addressed by all conventional Monte Carlo electron
transport programs. Common treatments allow particles to advance until either some predetermined fraction of
their initial kinetic energy is lost (e.g. PENELOPE when C2 is active, EGS4 with the ESTEPE option, ETRAN,
ITS, MCNP) or until some fixed pathlength has been traveled (e.g. PENELOPE when the option HFPMAX is
active, EGS4 with the SMAX option). Another frequently used technique (e.g. PENELOPE when C1 is active,
EGS4 by default) limits s by fixing the mean angular deviation and calculating the step size accordingly.

In DPM, the step size issue arises even though q(u) has been shown to be a function of u and E rather than
s. The energy dependence of q is driven by the energy dependence of s/λ(E), and since λ(E) is fixed by the
reference material, in order to use pre-computed tabulated values of q(u) in sampling for ω, s must be set in
advance. The maximum value of s which preserves accuracy in a simulation can be determined by comparing
simulation results for increasingly smaller step sizes. In figure 3, we show depth dose curves computed by DPM
for 1 million 10 MeV electrons incident on a homogeneous phantom of 1283 1 mm voxels, using q(u) and K1

calculated with step sizes ranging from 1 cm to 1 mm. There is little appreciable difference in the results for
steps shorter than 5 mm. Note that because of the computation of energy loss in each voxel and the modeling
of hard inelastic collisions, the computing time for a simulation is not directly proportional to the number of
steps. The CPU usage for the simulations shown in this figure increase by only a factor of 2 while the step
size decreased tenfold. At lower energies, there is more scatter for the same distance s, and the use of long
steps maximizes the underlying condensed history error, as is seen in 4. In the first case (s = 5 mm), the fall
of the DPM curve occurs just after completing the second step, reflecting the failure of the last 1 or 2 steps in
reproducing the remaining part of the depth dose. This behavior disappears when the pathlength is reduced to
1 or 2 mm. From these two sets of results, we determined that roughly 8-10 scattering events per history are
necessary to reproduce depth dose profiles accurately, and that no further accuracy is attained by moving to
steps of 1/20th of the range. By contrast, EGS4 requires the simulation of several multiple scattering events in
every voxel traversed by the electron.

6.2 Homogeneous phantoms

Figures 5 through 9 show deposited depth dose curves for electron beams in semi-infinite phantoms made of
different materials of interest in radiotherapy. The differences between EGS4, DPM and PENELOPE are equal
or less than 1.25% of the dose maximum in all cases and the statistical uncertainty of the curves presented are of
the order of 0.2% of the dose maximum, and step sizes of 5 mm are used. Energy cut-offs of 200 keV for electrons
and 50 keV for photons were used for all cases. In figure 5, the depth dose curve computed by MCNP is also
included. It is interesting to note that the results from DPM generally lie inside the envelope of the results from
the other programs.

16



0 2 4 6
depth (cm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

do
se

 (
M

eV
 c

m
2 /g

)

0.0

1.0

2.0

3.0

10 MeV electrons on Water
convergence of DPM for small step−sizes

1 cm steps
5 mm steps
2 mm steps
EGS4/PRESTA

Figure 3: Depth dose produced by a 10 MeV electron pencil beam impinging normally on a semi-infinite water
phantom using various reference step sizes.
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Figure 4: Depth dose produced by a 5 MeV electron pencil beam impinging normally on a semi-infinite water
phantom using various reference step sizes.
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Figure 5: Depth dose produced by a 10 MeV electron pencil beam impinging normally on a semi-infinite water
phantom.
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Figure 6: Dose integrated over planes perpendicular to the y-axis (that goes parallel to the water surface)
produced by a 10 MeV electron beam impinging normally on a semi-infinite water phantom in a 5×5 cm2 field.
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Figure 7: Depth dose for a 18 MeV normal pencil beam in a semi-infinite bone phantom.
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Figure 8: Depth dose for a 10 MeV normal pencil beam in an air phantom.
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Figure 9: Depth dose for a 15 MeV normal pencil beam in a titanium phantom.
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6.3 Effects of hard collision physics approximations in DPM

The next set of problems were specifically designed to test the limits of the approximate scaling of the hard
collision cross sections used in DPM. Recall that DPM samples the distance to a hard inelastic interaction as if
the MFP were constant along the path up to the interaction point. This approximation works well for Møller
interactions due to the relatively slow variation of their MFP over the relevant energy range, as reflected in eq.
(25). Although still acceptable, it does not work equally well for Bremsstrahlung, eq. (31). Therefore a small
error is introduced at those energies for which the Bremsstrahlung contribution to the dose is not negligible.
Since the slope of the Bremsstrahlung MFP as a function of the electron energy is negative in the region of
interest, DPM systematically underestimates this MFP. This effect is equivalent to an overestimation of the
radiative stopping power, which will appear as an increase in the dose at shallow depths when it dominates over
other sources of error.

In figures 10 and 11 depth dose curves in water for 15 and 20 MeV beams are represented to show the increase of
the overestimation of the radiative stopping power as the energy of the beam increases. Despite the approximation
on the Bremsstrahlung cross section, the agreement is good and no correction for this effect is needed below 20
MeV.

Figure 12 shows the effect of these approximations in an extreme case, that is, for a very high-Z material and at
the highest energy considered. With the current DPM model, discrepancies of up to 8% are seen between DPM
and other MC programs. By switching to a method in which energy loss between collisions is accounted for in
updating tB, the difference between DPM and both PENELOPE and EGS4 can be reduced to 3-5%, as seen in
the figure. However, as this introduces a computational overhead of close to 10% because of the frequency with
which the cross sections must be computed and this effect is significant only for thick targets and very high Z,
this correction is not retained in the basic DPM model.

6.4 Inhomogeneities

Several multiple slab configurations were chosen to test DPM with inhomogeneous geometries, and results are
presented in figures 13 to 15. Good agreement is found between the results from the three codes, with differences
of the order of 1% of the dose maximum, reaching a maximum of 2% between PENELOPE and EGS4 or DPM
in the higher energy cases.

6.5 CT geometry

We present below results of dose computations using representative CT data to model density variation in a
voxelized geometry. As the default PENELOPE package was designed to work with objects made of solid bodies
with constant densities, it is unable to handle the density variations between neighboring voxels present in the
geometry of a real patient5. A utility for modeling density variations between regions does exist in the EGS4
system, and so this feature was exploited in generating simulation results for comparison with DPM.

In figure 16 a slice of the patient scan used for the current simulations is shown. Results from these calculations,
which assumed a fictitious 16 MeV electron beam, are presented in figures 17 to 19. In order to facilitate
comparisons of doses for individual voxels, a very large number of histories (109) were simulated. This number
is orders of magnitude higher than that required for a routine treatment plan simulation, and gives a standard
deviation of approximately 0.3% of the dose maximum for voxels of 1 mm on a side. The agreement between
DPM and EGS4 is good, as expected from the previous results for homogeneous and multi-layered geometries.
The differences in the voxel doses are less than 3% of the overall maximum dose found in the geometry. If the
differences are referred to the maximum dose in each figure, only the case with the lowest dose (x = 28.5 mm)
significantly exceeds 3% of that maximum, ranging from 3 to 8%. Moreover, dose volume histograms (DVH’s)
were obtained for a specific target volume (or region of interest, ROI) of the same CT shown in figure 16. In
figure 20 these DVH’s are compared, showing an excellent agreement, with differences of the order of a few
percent.

5A voxel based version of PENELOPE is currently being developed
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Figure 10: Depth dose for a 15 MeV pencil beam impinging on water.
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Figure 11: Depth dose for a 20 MeV pencil beam impinging on water.
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Figure 12: Depth dose produced by a 20 MeV pencil beam on a tungsten (Z =74) phantom.
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Figure 13: Depth dose in a water phantom with an air layer. The beam energy was 10 MeV.
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Figure 14: Depth dose in a water phantom with a bone layer. The beam energy was 18 MeV.
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Figure 15: Depth dose in a multi-layered geometry. The beam energy was 15 MeV.
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Figure 16: CT image representing a slice located 5.5 cm deep in the z direction, perpendicular to the paper.
The x-axis goes from left to right and the y-axis points downwards. The “universe” of the simulation consists
in 128×128×128 cubic voxels of 1 mm of side. A fictitious 16 MeV electron beam coming along the positive
direction of the y-axis was defined, entering the universe through a 5×5 cm2 square covering the range (x, z) =
(3.9− 8.9, 3.9− 8.9) cm. 109 histories were simulated to obtain the results presented in the next figures.
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Figure 17: Dose along a line parallel to the y-axis of the CT slice represented in figure 16 at the value of x
specified in the subtitle. Notice that the considered voxels lay outside the source field.
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Figure 18: Dose along a line parallel to the y-axis of the CT slice represented in figure 16 at the value of x
specified in the subtitle. Notice that the considered voxels lay directly under the source field.
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Figure 19: Dose along a line parallel to the y-axis of the CT slice represented in figure 16 at the value of x
specified in the subtitle. The considered voxels lay outside the source field.
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Figure 20: Integral DVH’s obtained for the ROI defined by a cube of 2×2×2 cm3 centered at x = 6.4, y = 5.9,
and z = 5.5 cm of the CT shown in figure 16.
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7 Timing and efficiency

In table 1 we present the measured CPU times required to run 1 million histories on several of the test problems
reported earlier. All runs were performed on an HP C3000 workstation, which is based on a 400 MHz HP PA8500
CPU. The program was compiled with the HP-UX f77 compiler and the recommended optimization switches
+O4 +E1 +E4 +E6 -K +U77. The reference step size was chosen to be the largest such that the DPM results lay
within 1% of the EGS4 results. This value was .5 cm in all cases except for 5 MeV on water, for which it was
necessary to use a .2 cm step. Note that the 16 MeV CT case requires more time than the 20 MeV water case
because the envelope of air and other less dense media under the beam give rise to deeper penetration of the
source particles, requiring more computations of energy deposition and voxel crossings.

Figures Problem Description CPU Time (sec)
5 10 MeV pencil beam on Water Slab 169.4
6 10 MeV broad beam on Water Slab 181.4
10 5 MeV pencil beam on Water Slab 111.2
11 15 MeV pencil beam on Water Slab 250.6
12 20 MeV pencil beam on Water Slab 327.0
17-20 16 MeV broad beam on CT Geometry 383.2

Table 1: CPU time for 1 M histories.

Table 2 presents results from a profiling study of DPM. Values are expressed in percentage of overall CPU time
spent in various process. Two important conclusions can be drawn. First, the time taken in multiple scattering
processes is quite small (∼ 3%), implying that little further speed-up can be achieved in electron transport Monte
Carlo simulations through manipulating step sizes. Second, a great deal of time (41%) is spent in voxel-to-voxel
boundary crossings and CSDA energy deposition calculations, two unavoidable tasks of any algorithm based
on mixed simulation of the inelastic interactions. Therefore, DPM can be considered to exhibit close to the
maximum achievable efficiency for condensed history CSDA MC codes.

86 e− transport =
55 transport through voxels =

14 geometry handling
41 CSDA E loss and translation

3 transport to collisions
3 sample scattering & rotations
25 data table look-ups

2 photon transport
1 I/O
11 tallying

Table 2: Code profile. Use of CPU time in % for 16 MeV electrons incident on CT profile phantom.

8 Conclusion

A fast Monte Carlo algorithm for the simulation of the dose deposited by electron-photon showers under radio-
therapy conditions has been developed. DPM takes advantage of a new transport mechanics and an accurate
multiple scattering formalism independent of Z, permitting long simulation steps across media boundaries, sig-
nificantly increasing the efficiency of the computation without appreciably distorting the results. DPM has
been shown to reproduce the dose distributions calculated with high-accuracy state-of-the-art general purpose
Monte Carlo codes within an error of the order of 1.25% of the dose maximum, but with significant increase in
computational efficiency. Dosimetric results accurate enough for electron beam radiotherapy applications can be
generated in times of the order of five minutes on desktop workstations.
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It has been pointed out (Bielajew 1994a; Bielajew 1997) that present radiotherapy treatment planning systems,
based on some type of analytic approximation to the solution of the transport equation will, some day, be replaced
by systems based on the much more accurate and conceptually simpler Monte Carlo methods. This work has
shown that the use of these methods for both fast and accurate simulation of the transport of electrons in CT
geometries is indeed feasible.
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Sempau J, Acosta E, Baró J, Fernández-Varea J M and Salvat F 1997 An algorithm for Monte Carlo simulation
of coupled electron-photon showers Nuclear Instruments and Methods B132 377 – 390

Wentzel G 1922 Zur theorie der streuung von β-strahlen Ann. Physik 69 335 – 368

Woodcock E, Murphy T, Hemmings P and Longworth S 1965 Techniques used in the GEM code for Monte
Carlo neutronics calculations in reactors and other systems of complex geometry In Proceedings of the
Conference on Applications of Computing Methods to Reactor Problems, pp. 557

40


