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A general solution is given to the three-dimensional linear elastic problem of a prismatic
bar subjected to arbitrary tractions on its lateral surfaces, subject only to the restriction
that they can be expanded as finite power series in the axial coordinate z. The solution is
obtained by repeated differentiation of the tractions with respect to z, establishing a set of
sub-problems Pj . A recursive procedure is then developed for generating the solution to
PjC1 from that for Pj . This procedure involves three steps: integration of the stress and
displacement fields Pj with respect to z, using an appropriate Papkovich–Neuber (P–N)
representation; solution of two-dimensional in-plane and antiplane corrective problems for
the tractions in PjC1 that are independent of z; and expression of these corrective solutions
in P–N form. The method is illustrated by an example.
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1. Introduction

One of the major achievements in the theory of linear elasticity is the
establishment of a general solution to the two-dimensional problem for the
prismatic bar within the formalism of complex variable theory (Stevenson 1943,
1945; Green & Zerna 1954; Muskhelishvili 1963). The problem naturally
decomposes into two sub-problems: the plane strain problem (Milne-Thomson
1968), in which the stress and displacement fields are independent of distance z
along the axis of the bar and the only permissible tractions and body forces lie in
the xy-plane, and the antiplane problem (Milne-Thomson 1962), in which the
ends of the bar are subjected to prescribed force and/or moment resultants, but
the lateral surfaces of the bar are traction-free. Certain stress and displacement
components in the antiplane problem have low-order polynomial dependence on z,
but the solution reduces to that of a two-dimensional boundary-value problem on
the bar cross-section.

Methods for the problem of the prismatic bar with more general loading are
less well developed. Michell (1901) gave a solution for the case where tractions
are applied that are independent of z and this case is also discussed by Love
(1927) and Sokolnikoff (1956). Some problems with higher-order polynomial
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loading were considered by Almansi (1901a,b). However, no systematic
procedure is available for solving problems of this class. In the present paper,
we shall develop such a general procedure. The problem is reduced to the
solution of a succession of purely two-dimensional problems (plane strain and
antiplane), interspersed with partial integrations with respect to z, which are
performed within the formalism of an appropriate form of the Papkovich–Neuber
(P–N) solution. Closed-form solutions can be obtained to any problem in which
the loading is expressible in terms of polynomials in z and for which the
corresponding plane and antiplane two-dimensional problems can be solved.

The method provides an exact solution for a wide range of beam problems and
has the advantage of generality in comparison with numerical methods. It can
also be used to investigate the effect of three-dimensional loading on stress-
concentrating features, such as holes and cracks.
2. General considerations

Consider the problem of a long bar of uniform cross-section under arbitrary
loading, the only restriction being that the boundary conditions on the ends of
the bar are satisfied only in the weak, force-resultant sense. We shall assume
that the bar is aligned with the z-direction and that its cross-section U defines
either the interior of a closed curve G in the xy-plane, or that part of the region
interior to a closed curve G0 that is also exterior to one or more closed curves
G1;G2, etc. The following derivations and examples will be restricted to the
former, simply-connected case, but it will be clear from the methods used that
the additional complications associated with multiply-connected cross-sections
occur only in the classical solution of the two-dimensional problem.

The case where the lateral surfaces of the bar are traction-free and the only
loading is on the ends can be treated by classical methods. In particular, a
combination of axial loading and bending moments on the ends is solved exactly
by the elementary bending theory, whilst torsional and shear loading on the ends
can be reduced to two-dimensional potential problems in the bar cross-section.

We denote the local outward normal to G by n and the corresponding tangent
by t, where the rotation from n to t is counterclockwise when looking in the
positive z-direction. The most general loading of these surfaces therefore
comprise the three traction components Tn;Tt;Tz .
(a ) Power series solutions

Consider the problem in which the three tractions Tn;Tt;Tz can be written as
power series in z, i.e.

Tn Z
XmK1

iZ1

fiðsÞziK1; Tt Z
XmK1

iZ1

giðsÞziK1; Tz Z
Xm
iZ1

hiðsÞziK1; ð2:1Þ

where f, g, h are arbitrary functions of the curvilinear coordinate s defining
position on G. We shall denote this system of tractions by the symbol T ðmÞ. Note
that the in-plane tractions Tn;Tt are carried only up to the order zmK2, whereas
the out-of-plane traction Tz includes a term proportional to zmK1. Practical cases
Proc. R. Soc. A (2006)
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where the highest-order term in all three tractions is the same (zn say) can of
course be treated by setting mZnC2 and hmðsÞZ0.

Complete definition of the problem requires that we also specify the force
resultants FðmÞð0Þ;Mð0ÞðmÞ at the plane zZ0, where

F ðmÞ
x Z

ð ð
U
szx dU; F ðmÞ

y Z

ð ð
U
szy dU; F ðmÞ

z Z

ð ð
U
szz dU; ð2:2Þ

M ðmÞ
x Z

ð ð
U

szzy dU; M ðmÞ
y ZK

ð ð
U

szzx dU; M ðmÞ
z Z

ð ð
U

ðxszyKyszxÞdU:

ð2:3Þ
We describe this problem as Pm and the resulting stress and displacement
fields in the bar by sðmÞ, uðmÞ, respectively. Note that mZ1 corresponds to the
non-trivial case, where Tz is proportional to z0, i.e. out-of-plane tractions that
are uniform along the bar.
(b ) Superposition by differentiation

Suppose that the solution to a given problem Pm is known, i.e. that we have
found stress and displacement components sðmÞ, uðmÞ that reduce to a particular
set of polynomial tractions (2.1) on the lateral surfaces of the bar and that satisfy
the quasi-static equations of elasticity in the absence of body forces, which we
here represent in the symbolic form

LðsðmÞ;uðmÞÞZ 0; ð2:4Þ
where L is a set of linear differential operators. Differentiating (2.4) with respect
to z, we have

v

vz
LðsðmÞ;uðmÞÞZL vsðmÞ

vz
;
vuðmÞ

vz

 !
Z 0: ð2:5Þ

It follows that the new set of stresses and displacements defined by differentiation
as

sðmK1Þ Z l
vsðmÞ

vz
; uðmK1Þ Z l

vuðmÞ

vz
; ð2:6Þ

will also satisfy the equations of elasticity and will correspond to the tractions

Tn Z l
XmK2

iZ1

ifiC1ðsÞziK1; Tt Z l
XmK2

iZ1

igiC1ðsÞziK1; Tz Z l
XmK1

iZ1

ihiC1ðsÞziK1: ð2:7Þ

The constant l has dimensions of length and is introduced to ensure that sðmK1Þ,
uðmK1Þ have the dimensions of stress and displacement, respectively. It clearly
cancels in equations (2.5) and its magnitude can be taken as unity without loss of
generality. We therefore omit it in the subsequent derivations.

This process of generating a new particular solution by differentiation with
respect to a spatial coordinate can be seen as a form of linear superposition of the
original solution on itself after an infinitesimal displacement in the z-direction.
Since uðmÞðx; y; zÞ satisfies (2.4), so does uðmÞðx; y; zCaÞ, since this represents the
Proc. R. Soc. A (2006)
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same field displaced a distance a in the negative z-direction. Superposing the two
fields and multiplying by the dimensionless constant l/a, we can construct the
new solution of (2.4),

lðuðmÞðx; y; zCaÞKuðmÞðx; y; zÞÞ
a

;

which reduces to (2.6)(ii) in the limit a/0.
The tractions (2.7) resulting from this operation are clearly of the form T ðmK1Þ.

There will also generally be force and moment resultants on the end given by

FðmK1Þð0ÞZ dFðmÞ

dz
ð0Þ; M ðmK1Þð0ÞZ dM ðmÞ

dz
ð0Þ: ð2:8Þ

Thus, the stress field vsðmÞ=vz is the solution of a problem of the class PmK1.
Repeating this operation m times, we find that the stress and displacement

fields,

sð0Þ Z
vmsðmÞ

vzm
; uð0Þ Z

vmuðmÞ

vzm
; ð2:9Þ

correspond to the physical problem P0, in which the tractions TZ0 and the
force resultants on the end are

Fð0Þð0ÞZ dmFðmÞ

dzm
ð0Þ; M ð0Þð0ÞZ dmM ðmÞ

dzm
ð0Þ: ð2:10Þ

This is a classical antiplane problem and the solution sð0Þ is such that
s
ð0Þ
xx Zs

ð0Þ
xy Zs

ð0Þ
yy Z0, s

ð0Þ
zx ;s

ð0Þ
zy are independent of z and s

ð0Þ
zz corresponds to a

linearly varying bending moment and takes the form

sð0Þzz Z ðC1xCC2yCC3ÞzCD1xCD2yCD3: ð2:11Þ
From these results, it is clear that the solution of problem Pm possesses the

following features:

(i) The stress and displacement components, sðmÞ, uðmÞ can be expressed as
power series in z.

(ii) The highest-order terms in the stress components s
ðmÞ
xx ;s

ðmÞ
xy ;s

ðmÞ
yy are of the

order zmK2, since after m differentiations with respect to z they are zero.
(iii) The highest-order terms in the stress components szx ;szy are of the order

zmK1, since after m differentiations with respect to z they are independent
of z.

(iv) The highest-order terms in the stress component szz are of the form

szz Z
ðC1xCC2yCC3ÞzmC1

ðmC1Þ! C
ðD1xCD2yCD3Þzm

m!
; ð2:12Þ

from (2.9) and (2.11).
(v) The exact form of the highest-order term in the stress components s

ðmÞ
zx ,

s
ðmÞ
zy , s

ðmÞ
zz depends only on the force and moment resultants F, M

associated with the highest-order term in the loading.

Conclusions (ii) and (iii) explain why we chose to terminate the traction series
(2.1) at zmK2 in Tn;Tt and at zmK1 in Tz .
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3. Solution of Pm by successive partial integration

The process of differentiation elaborated in §2b shows that for every problem Pm,
there exists a set of lower-order problems Pj , jZð0;mK1Þ, for which

T ðjÞ Z
vT ðjC1Þ

vz
; sðjÞ Z

vsðjC1Þ

vz
; uðjÞ Z

vuðjC1Þ

vz
: ð3:1Þ

Complete definition of the sub-problems Pj also requires that we specify the force
resultants FðjÞð0Þ;M ðjÞð0Þ, but we shall find that it is not necessary to identify
these resultants explicitly except in the final problem Pm.

The lowest-order problem in this set, P0, can always be solved by classical
methods, so the more general problem Pm can be solved recursively if we can
devise a method to generate the solution of PjC1 from that of Pj . This process
clearly involves partial integration of sðjÞ;uðjÞ with respect to z. We obtain

sðjC1Þ Z

ð
sðjÞdzCf ðx; yÞ; ð3:2Þ

where f ðx; yÞ is an arbitrary function of x, y only. This function is required to
satisfy two conditions:

(i) the complete stress field sðjC1Þ, including f ðx; yÞ, must satisfy the equations
of elasticity in the strong sense, and

(ii) the stresses must reduce to the known tractions TðjC1Þ on the lateral
surfaces of the bar.

Condition (ii) involves only the coefficient of z0 in T ðjC1Þ, since the coefficients of
higher-order terms will have been taken care of at an earlier stage in the recursive
process. Similarly, the conditions imposed by the equations of elasticity can only
arise in the lowest-order terms in the stress field.

Since methods for solving the two-dimensional problem P0 are well
established, there are clear advantages in choosing a strategy for determining
f ðx; yÞ that will make use of these methods. We shall achieve this purpose by
expressing the solution of each sub-problem Pj in the formalism of the P–N
solution. Thus, the integration (3.2) will actually be performed on the P–N
potentials, rather than directly on the stress components, and the requirement (i)
that the solution satisfy the equations of elasticity will therefore be met by
ensuring that the integrated potentials are three-dimensional harmonic
functions. Correction of the zeroth-order term in the boundary tractions (ii)
will then correspond to the combination of a plane and antiplane problem on the
cross-section, which can be treated by classical methods. Since the P–N solution
acts as the vehicle through which the solution is transmitted from stage j to jC1,
we shall also need to express the solution of these two-dimensional problems in
P–N form. The formalism needed for these steps will be developed in §4.
4. The Papkovich–Neuber solution

A general solution of the equations of elasticity without body forces can be
written in the form

2mu ZK4ð1KnÞjCVðr$jCfÞ; ð4:1Þ
Proc. R. Soc. A (2006)
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where m; n are the modulus of rigidity and Poisson’s ratio, r is the position vector
and j;f are three-dimensional harmonic vector and scalar potentials,
respectively (Barber 2002, §18.3). We wish to perform the integrations (3.2)
on the potentials j;f instead of on the stress and displacement components, but
these two processes are not generally equivalent because of the dependence on z
implied by r in (4.1).

This z-dependence can be avoided by eliminating the component jz of the
vector potential j, which is therefore restricted to the xy-plane. A ‘proof’ that
this can be done without loss of generality has been given by various authors, but
Sokolnikoff (1956, p. 331 et seq.) showed that the proof fails unless the geometry
of the body meets certain conditions. Fortunately, a sufficient condition for the
elimination of jz is that any straight line parallel to the z-axis cuts the boundary
of the body in no more than two points (Eubanks & Sternberg 1956; see also
Barber 2002, §18.4). This condition is clearly satisfied by the prismatic bar under
consideration.

The displacements for the P–N solution can then be expanded as

2mux Z
vf

vx
Cx

vjx

vx
Kð3K4nÞjx Cy

vjy

vx
;

2muy Z
vf

vy
Cx

vjx

vy
Cy

vjy

vy
Kð3K4nÞjy;

2muz Z
vf

vz
Cx

vjx

vz
Cy

vjy

vz
;

9>>>>>>>>>=
>>>>>>>>>;

ð4:2Þ

where jx ;jy are the remaining components of j and the corresponding stress
components can then be obtained from the strain–displacement and stress–strain
relations as

sxx Z
v2f

vx2
Cx

v2jx

vx2
K2ð1KnÞ vjx

vx
Cy

v2jy

vx2
K2n

vjy

vy
; ð4:3Þ

sxy Z
v2f

vx vy
Cx

v2jx

vx vy
Kð1K2nÞ vjx

vy
Cy

v2jy

vx vy
Kð1K2nÞ

vjy

vx
; ð4:4Þ

syy Z
v2f

vy2
Cx

v2jx

vy2
K2n

vjx

vx
Cy

v2jy

vx2
K2ð1KnÞ

vjy

vy
; ð4:5Þ

szz Z
v2f

vz2
Cx

v2jx

vz2
K2n

vjx

vx
Cy

v2jy

vz2
K2n

vjy

vy
; ð4:6Þ

syz Z
v2f

vy vz
Cx

v2jx

vy vz
Cy

v2jy

vy vz
Kð1K2nÞ

vjy

vz
; ð4:7Þ

szx Z
v2f

vz vx
Cx

v2jx

vz vx
Kð1K2nÞ vjx

vz
Cy

v2jy

vz vx
; ð4:8Þ

(see Barber 2002, ch. 19).
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(a ) Complex variable form

For our purposes, there is considerable advantage in restating the P–N
solution in complex variable terms, using the notation zZxC iy; �zZxKiy and

u Z ux C iuy; QZsxx Csyy; FZsxx C2isxyKsyy; JZ szx C iszy;

as in Green (1949). With this notation, Q is invariant with respect to in-plane
coordinate transformation and F;J transform according to the rules

Fa Z eK2ia F; Ja Z eKia J; ð4:9Þ
where Fa;Ja are defined in a coordinate system rotated anticlockwise through
an angle a with respect to x, y.

In the resulting expressions, f will be left as a scalar potential, but jx ;jy will
be combined as

jZjx C ijy: ð4:10Þ

After routine manipulations, we obtain

2mu Z 2
vf

v�z
Kð3K4nÞjCz

v�j

v�z
C �z

vj

v�z
; ð4:11Þ

2muz Z
vf

vz
C

1

2
�z
vj

vz
Cz

v�j

vz

� �
; ð4:12Þ

QZK
v2f

vz2
K2

vj

vz
C

v�j

v�z

� �
K

1

2
z
v2 �j

vz2
C �z

v2j

vz2

� �
; ð4:13Þ

FZ 4
v2f

v�z
2
K4ð1K2nÞ vj

v�z
C2z

v2 �j

v�z
2
C2�z

v2j

v�z
2
; ð4:14Þ

szz Z
v2f

vz2
K2n

vj

vz
C

v�j

v�z

� �
C

1

2
�z
v2j

vz2
Cz

v2 �j

vz2

� �
; ð4:15Þ

JZ 2
v2f

v�z vz
Kð1K2nÞ vj

vz
Cz

v2 �j

v�z vz
C �z

v2j

v�z vz
; ð4:16Þ

where fðz; �z; zÞ is a real three-dimensional harmonic function and jðz; �z; zÞ is a
complex three-dimensional harmonic function. In other words,

v2f

vz2
C4

v2f

vz v�z
Z 0;

v2j

vz2
C4

v2j

vz v�z
Z 0: ð4:17Þ

(b ) Development of harmonic potentials by integration

The complex variable form is particularly useful in the integration process
(3.2). For example, if we have a function jj satisfying (4.17), we first integrate
with respect to z, obtaining

jjC1 ZjP
jC1 C f ðz; �zÞ; ð4:18Þ
Proc. R. Soc. A (2006)
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where

jP
jC1 Z

ð
jjðz; �z; zÞdz; ð4:19Þ

is any partial integral (not necessarily harmonic) and f is an arbitrary function of
z; �z. Substitution into (4.17) then yields

4
v2f

vz v�z
ZK4

v2jP
jC1

vz v�z
K

v2jP
jC1

vz2
: ð4:20Þ

The right-hand side of this equation is necessarily independent of z, since the
z-derivative of jP

zC1 is jj from (4.19) and this satisfies (4.17) ex hyp. A suitable
function f can therefore always be obtained by integration with respect to z and �z.

(c ) Relation to spherical harmonics

A special category of harmonic function which will feature extensively in the
subsequent solution process is that in which the lowest-order (two-dimensional)
potential corresponds to a power of z. If we define the function

cm
0 ðz; �z; zÞZ zm; ð4:21Þ

and apply the integration (4.18)–(4.20) procedure several times, we shall
generate the sequence of functions,

cm
1 ðz; �z; zÞZ zzm; ð4:22Þ

cm
2 ðz; �z; zÞZ

z2zm

2!
C

zmC1�z

ðK4ÞðmC1Þ ; ð4:23Þ

cm
3 ðz; �z; zÞZ

z3zm

3!
C

zzmC1�z

ðK4ÞðmC1Þ ; ð4:24Þ

cm
4 ðz; �z; zÞZ

z4zm

4!
C

z2zmC1�z

ðK4ÞðmC1Þð2!ÞC
zmC2�z

2

ðK4Þ2ðmC1ÞðmC2Þð2Þ
; ð4:25Þ

which are three-dimensionally harmonic and which satisfy the recurrence
relations

cm
nC1ðz; �z; zÞZ

ð
cm
n ðz; �z; zÞdz; cmC1

n ðz; �z; zÞZ ðmC1Þ
ð
cm
n ðz; �z; zÞdz: ð4:26Þ

These functions can be expressed in terms of spherical harmonics in the form

cm
n ðz; �z; zÞZ

ðK2Þmm!RmCnPm
mCnðz=RÞ

ðnC2mÞ! z�z
� �m=2

; ð4:27Þ

where

RZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2Cz�z

p
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Cy2 Cz2

q
; ð4:28Þ

is the distance from the origin and Pm
n ðxÞ is the Legendre function (see Barber

2002, §22.4). A few low-order potentials that we shall need later are

c0
0 Z 1; c0

1 Z z; c0
2 Z

z2

2
K

z�z

4
; c0

3 Z
z3

6
K

zz�z

4
; ð4:29Þ
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c1
0 Z z; c1

1 Z zz; c1
2 Z

z2z

2
K

z2�z

8
; c1

3 Z
z3z

6
K

zz2�z

8
; ð4:30Þ

c2
0 Z z2; c2

1 Z zz2; c2
2 Z

z2z2

2
K

z3�z

12
; c2

3 Z
z3z2

6
K

zz3�z

12
: ð4:31Þ

5. The two-dimensional problem

To start the recursive process, we need to obtain the general solution to the
problem P0, in which the lateral tractions are zero, for the specific cross-section
U. Physically, this corresponds to the problem in which the bar is loaded only by
general (and as yet unspecified) force and moment resultants Fð0Þ;Mð0Þ at the
end zZ0. This is of course a classical two-dimensional elasticity problem, but we
need here to cast the solution in a form consistent with the P–N solution of §4 in
order to facilitate the three-dimensional solution procedure.
(a ) Pure bending and axial force

Of the six force and moment resultants, three (Fz ;Mx ;My) correspond to the
problems of axial loading and pure bending and have the exact elementary
solution,

szz ZA0zC �A0
�zCB0; ð5:1Þ

where A0 is a complex constant related to MxC iMy and B0 is a real constant
related to Fz . All the remaining stress components are zero ðQZFZJZ0Þ. It
follows that no tractions are implied on the surface G for any cross-section U, and
hence that this solution is independent of U. It is readily verified by substitution
in (4.11)–(4.16) that this elementary stress field is generated by the choice of
potentials

fZ
ð1K2nÞ
2ð1Kn2Þ ðA0c

1
2C �A0�c

1
2ÞC

B0c
0
2

ð1CnÞ ; ð5:2Þ

jZ
�A0c

0
2

ð1Kn2ÞK
ð1K2nÞA0c

2
0

8ð1Kn2Þ K
B0c

1
0

4ð1CnÞ : ð5:3Þ

(b ) Shear, torsion and push

The remaining three resultants (Fx ;Fy;Mz) correspond to the transmission of
a torque and a shear force along the bar and involve non-zero values of J. They
therefore require the solution of an antiplane problem in order to render the
lateral surfaces traction-free and the solution depends on the cross-section U.
Various methods exist for the solution of this problem, the most popular
involving the use of the Prandtl stress function (Barber 2002, ch. 16 and 17).

For our purposes, the most convenient method is first to generate a particular
solution that is independent of U and then superpose a corrective potential to
render the surface G free of tractions. For the shear problem (Fx ;Fy), the bending
moment must increase linearly with z and an appropriate particular solution is
Proc. R. Soc. A (2006)
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easily obtained by using the recurrence relation (4.26)(i) to generate harmonic
partial integrals of (5.2) and (5.3) as

fðsÞ Z
ð1K2nÞ
2ð1Kn2Þ ðA0c

1
3C �A0�c

1
3ÞC

B0c
0
3

ð1CnÞ ; ð5:4Þ

jðsÞ Z
�A0c

0
3

ð1Kn2ÞK
ð1K2nÞA0c

2
1

8ð1Kn2Þ K
B0c

1
1

4ð1CnÞ : ð5:5Þ

The corresponding non-zero stress components are

szz ZA0zzC �A0z�zCB0z; ð5:6Þ

JZK
A0ð1C2nÞz2

4ð1CnÞ K
�A0z

�z

2ð1CnÞK
B0z

2
; ð5:7Þ

from (5.4), (5.5) and (4.11)–(4.16). This solution is actually rather more general
than is required for the shear problem, since the real constant B0 corresponds to
an axial force Fz that varies linearly with z and these terms are necessarily
cancelled by the corrective solution when the surface G is traction-free. However,
there is some advantage in retaining them here, since we shall be concerned with
more general loading of G. In fact, the terms involving B0 in (5.5) correspond to
what Milne-Thomson (1962) calls the ‘push’ problem.

The torsion problem also involves z-independent non-zero values of the stress
component J, but in this case szzZ0. The appropriate particular solution is

fðtÞ Z 0; jðtÞ ZK
iC0c

1
1

2ð1KnÞ ; ð5:8Þ

and the only non-zero stress component is

JZ iC0z; ð5:9Þ
where C0 is a real constant.
(c ) The corrective antiplane solution

Equations (5.7) and (5.9) define non-zero values of J, and hence imply non-
zero tractions Tz on G, which, however, are independent of z. In the three-
dimensional problem, we may indeed have non-zero tractions Tz , but these will
not generally correspond to those of the particular solution, and it is therefore
necessary to superpose a corrective solution in which the tractions are changed
without affecting the force resultants implied by the constants A0;B0;C0. Thus,
the corrective solution satisfies the conditions

QZFZszz Z 0;
vJ

vz
Z 0; ð5:10Þ

and it is an antiplane solution in the sense of Barber (2002, ch. 15).
A convenient representation in P–N form is obtained by writing

fZ zðhC �hÞKzðzh 0Czh
0Þ

4ð1KnÞ ; jZ
z�h

0

2ð1KnÞ ; ð5:11Þ
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in (4.11)–(4.16), where hðzÞ is a function only of the complex variable z, �hhhð�zÞ
and �h

0 hv�h=v�z. We then obtain

u Z 0; QZFZszz Z 0; ð5:12Þ
2muz Z hC �h; JZ �h

0
: ð5:13Þ

It follows that

szx Z
vhy
vy

; szy ZK
vhy
vx

; ð5:14Þ

where hyZImðhÞ, and hence hy is equivalent to the real Prandtl stress function.
In particular, the traction

Tz Zszn Z
vhy
vt

; ð5:15Þ

where t is a coordinate locally tangential to the boundary G (see Barber 2002,
§16.1). Since these tractions are known everywhere except for the as yet
unknown function hy, we can integrate around G to determine hy at all points on
the boundary. It is then a standard boundary-value problem to determine the
real harmonic function hy in U, and hence the analytic function of which is the
imaginary part. It is important that the integration of (5.15) should yield a
single-valued function of t. This is equivalent to the requirement that the
tractions in the pure antiplane problem should sum to a zero axial force Fz . If the
applied tractions do not meet this condition, Fz will be a linear function of z, and
hence B0 will be non-zero. Thus, the single-valued condition on hy serves to
determine the constant B0.
(d ) The in-plane solution

In higher-order problems, we shall also need to make corrections for zeroth-
order in-plane tractions Tn;Tt, using an appropriate form of the two-dimensional
plane strain equations. If we use the complex form of the P–N solution (4.11)–
(4.16) and define plane harmonic functions through

fZ f ðzÞC f ð�zÞ; jZ gðzÞ; ð5:16Þ
where f, g are functions of the complex variable z, we obtain

2mu ZKð3K4nÞgCz�g 0 C2�f
0
; 2muz Z 0: ð5:17Þ

This is identical to the classical form of the plane strain complex variable
solution, except for the term 2�f

0
, which can be replaced if desired by a new

function of �z. The corresponding stress components are given by

QZK2ðg 0 C �g 0Þ; ð5:18Þ

FZ 2ðz�g 00C2�f
00Þ; ð5:19Þ

szz ZK2nðg 0C �g 0Þ; ð5:20Þ

JZ 0: ð5:21Þ
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In some cases, the plane strain problem is easier to solve in the context of the
real Airy stress function 4, which satisfies the biharmonic equation

V44Z 0: ð5:22Þ
If this is done, a complex variable form of 4ðx; yÞ can be obtained by substituting
xZðzC �zÞ=2; yZKiðzK�zÞ=2, and separating terms to express the real function
4 in the form

4ðz; �zÞZ f1ðzÞC f1ð�zÞC �zf2ðzÞCzf2ð�zÞ; ð5:23Þ
which must be possible in view of (4.17) and (5.22). If this separation is not
obvious, we can construct the function

41 Z

ð
v4

v�z
d�z; ð5:24Þ

where the integration is performed treating z as a constant, so that at most an
arbitrary constant of integration is introduced. With this construction, 41 will
contain only those terms in 4 that depend on �z, and we conclude that

f1ðzÞZ4K41: ð5:25Þ
Once f1 (and hence �f 1) is determined, it is straightforward to find f2 from (5.23).
Comparison of the well-known expressions for the stress components,

sxx Z
v24

vy2
; sxy ZK

v24

vx vy
; syy Z

v24

vx2
; ð5:26Þ

with (5.18) and (5.19) then shows that fZKf1; gZK2f2, and hence

fZKf1ðzÞKf1ð�zÞ; jZK2f2ðzÞ; ð5:27Þ
from (5.16).
6. Solution procedure

We are now in a position to summarize the solution procedure for the three-
dimensional problem Pm. We first differentiate the tractions T m times with
respect to z in order to define the sub-problems Pj , jZð1;mÞ. We shall be
particularly interested in the zeroth-order tractions in each sub-problem, i.e. the
terms in TðjÞ that are independent of z, since these are the only terms that are
active in the incremental solution.

Suppose the potentials fj ;jj corresponding to problem Pj are known. In other
words, if we substitute these potentials into equations (4.11)–(4.16), the resulting
stresses satisfy the boundary conditions on the tractions T ðjÞ on the lateral
surfaces in problem Pj . This solution will also contain two undetermined
constants AjK1;CjK1, representing force and moment resultants on the end zZ0.

To move up to the solution of problem PjC1, we proceed as follows:

(i) We define new potentials by adding in the zeroth-order solution (5.2) and
(5.3) with new constants Aj ;Bj , i.e.

fZfj C
ð1K2nÞ
2ð1Kn2Þ ðAjc

1
2 C �Aj �c

1
2ÞC

Bjc
0
2

ð1CnÞ ; ð6:1Þ
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jZjj C
�Ajc

0
2

ð1Kn2ÞK
ð1K2nÞAjc

2
0

8ð1Kn2Þ K
Bjc

1
0

4ð1CnÞ : ð6:2Þ

(ii) We next integrate f;j with respect to z as in §4b and add in the torsion
solution (5.8), again with a new constant Cj . Note that any terms in these
potentials of the form cm

n integrate simply to cm
nC1 in view of (4.26).

(iii) At this stage, Q;F will generally contain terms up to order jK1 in z and
J will contain terms up to order j. However, all except the zeroth-order
terms will satisfy the boundary conditions on the lateral surfaces, since
both the tractions and the stresses were obtained by one integration with
respect to z from the given solution Pj . To satisfy the boundary conditions
on the zeroth-order terms in T

ðjC1Þ
n ;T

ðjC1Þ
t , we add in the in-plane solution

from §5d and solve an in-plane boundary-value problem exactly as in the
two-dimensional case. Solvability of this in-plane problem requires that
the corrective tractions be self-equilibrated in the plane and this provides
a condition for determining the constants AjK1;CjK1.

(iv) To satisfy the conditions on the zeroth-order term in the out-of-plane
tractions T

ðjC1Þ
z , we add in the antiplane corrective solution from (5.11)

and determine the function hðzÞ, using the procedure outlined in §5c. This
solution is only possible if the tractions associated with h alone are self-
equilibrating, and hence the solution at this stage will also determine the
constant Bj . This completes the solution of problem PjC1, except for the
constants Aj ;Cj .

This recursive procedure can be started at jZ0 by assuming f0Zj0Z0 in
equations (6.1) and (6.2). After repeating the procedure m times, a solution will
be obtained that satisfies the traction conditions T completely and which
contains two free constants Am;Cm. To complete the solution, we once again add
in the zeroth-order solution, as in equations (6.1) and (6.2), using constants
AmC1;BmC1. Finally, we determine the constants Am;Cm;AmC1;BmC1 from the
end conditions (2.2) and (2.3). More specifically, the conditions on Fzð0Þ;Mð0Þ
determine BmC1;Cm, respectively, the conditions on Fxð0Þ;Fyð0Þ determine Am

(which is a complex constant, and hence has two degrees of freedom) and the
conditions on Mxð0Þ;Myð0Þ determine AmC1.
7. Body forces

The method is readily extended to problems involving body forces p that exhibit
polynomial dependence on z and arbitrary dependence on x, y. The simplest way
to do this is first to seek a particular solution of the body force problem, i.e. a
solution that satisfies the governing equations without regard to the boundary
conditions. The stress components will also have polynomial dependence on z and
the boundary conditions can therefore be corrected by superposing the solution
of an appropriate problem of form Pm without body forces. Note that in this case,
the corrective problem involves no body forces, and hence no modification is
required in the above solution procedure. Since body forces most often arise from
gravitational or inertia loading, the particular solution will generally exhibit low-
order polynomial behaviour in all three coordinates.
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Alternatively, if the body-force field is conservative, we can express it in the
form

pZKVV ; ð7:1Þ
where V is a scalar potential. We can then use the P–N representation (4.1) with

V2fZ
ð1K2nÞV
ð1KnÞ ; V2jZ 0; ð7:2Þ

(Barber 2002, §18.5.1). The expressions for the stresses are then modified by the
addition of the term nV=ð1KnÞ into the normal stress components sxx ;syy; szz
only. In particular, F;J are unchanged from (4.14) and (4.16), while Q; szz
become

QZ
2nV

ð1KnÞK
v2f

vz2
K2

vj

vz
C

v�j

v�z

� �
K

1

2
z
v2 �j

vz2
C �z

v2j

vz2

� �
; ð7:3Þ

szz Z
nV

ð1KnÞC
v2f

vz2
K2n

vj

vz
C

v�j

v�z

� �
C

1

2
�z
v2j

vz2
Cz

v2 �j

vz2

� �
: ð7:4Þ

With these modifications, the procedure of §6 can be applied directly to
conservative body-force problems.
8. Example: the cylinder loaded by a linearly increasing
concentrated tangential force

To illustrate the procedure, we consider the example of a solid cylinder of unit
radius, loaded by a concentrated tangential force that is a linear function of z, as
shown in figure 1. The end zZ0 is unloaded, so the six force resultants of
equations (2.2) and (2.3) are all zero. The tractions for this problem are

Tr Z 0; Tq ZF0zdðqÞ; Tz Z 0; ð8:1Þ

where the components are now conveniently defined in cylindrical polar
coordinates ðr; q; zÞ. Comparison with (2.1) shows that this is a problem of
class P3. The sub-problem P2 corresponds to the tractions

Tr Z 0; Tq ZF0dðqÞ; Tz Z 0; ð8:2Þ

and the tractions in P1 are zero.
We start at step (i) with f0Zj0Z0, and after integration and adding the

torsion solution the potentials are

fZ
ð1K2nÞ
2ð1Kn2Þ ðA0c

1
3C �A0�c

1
3ÞC

B0c
0
3

ð1CnÞ ; ð8:3Þ

jZ
�A0c

0
3

ð1Kn2ÞK
ð1K2nÞA0c

2
1

8ð1Kn2Þ K
B0c

1
1

4ð1CnÞK
iC0c

1
1

2ð1KnÞ ; ð8:4Þ
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Figure 1. Cylinder with a linearly varying concentrated tangential force.
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from equations (5.5) and (5.8). The only non-zero stresses at this stage are szz
and

JZK
A0ð1C2nÞz2

4ð1CnÞ K
�A0z

�z

2ð1CnÞK
B0z

2
C iC0z; ð8:5Þ

from (4.11)–(4.16) or (5.7) and (5.9). On the boundary rZ1, we have

szr C iszq Z eKiqJð1; qÞZK
A0ð1C2nÞeiq

4ð1CnÞ K
�A0 e

Kiq

2ð1CnÞK
B0

2
C iC0; ð8:6Þ

and hence the antiplane traction is

Tz Zszrð1; qÞZK
ð3C2nÞðRefA0gcos qKImfA0gsin qÞ

4ð1CnÞ K
B0

2
C

vhy
vq

; ð8:7Þ

where we have added in the antiplane corrective term from (5.15). This traction
is zero in P1 and the resulting expression leads to an integrable expression for hy
if and only if B0Z0. Elementary calculations then show that the traction-free
boundary condition can be satisfied by writing

h Z
ð3C2nÞA0z

4ð1CnÞ ; ð8:8Þ

and hence

f1 Z
ð1K2nÞ
2ð1Kn2Þ ðA0c

1
3C �A0�c

1
3ÞC

ð3K4nÞð3C2nÞðA0c
1
1 C

�A0�c
1
1Þ

16ð1Kn2Þ ; ð8:9Þ
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j1 Z
�A0c

0
3

ð1Kn2ÞK
ð1K2nÞA0c

2
1

8ð1Kn2Þ K
iC0c

1
1

2ð1KnÞC
ð3C2nÞ �A0c

0
1

8ð1Kn2Þ ; ð8:10Þ

defines the complete solution to P1 in P–N form. This of course represents the
well-known solution for the cylinder loaded at the end by a shear force and a
torque, but we include it here to illustrate the recursive procedure and
particularly the way in which the antiplane solution is incorporated into the
P–N formalism.

The next stage is once more to add in the zeroth-order solution (5.3) with new
constants A1;B1, perform a further integration with respect to z, use equations
(4.18)–(4.20) and (4.26) to determine the function f ðz; �zÞ required for each of the
potentials f;j to be three-dimensionally harmonic and add in the torsion
solution (5.8) with a new constant C1. We obtain

fZ
ð1K2nÞ
2ð1Kn2Þ ðA0c

1
4 C �A0�c

1
4ÞC

ð3K4nÞð3C2nÞðA0c
1
2C

�A0�c
1
2Þ

16ð1Kn2Þ

C
ð1K2nÞ
2ð1Kn2Þ ðA1c

1
3C �A1�c

1
3ÞC

B1c
0
3

ð1CnÞ ;
ð8:11Þ

jZ
�A0c

0
4

ð1Kn2ÞK
ð1K2nÞA0c

2
2

8ð1Kn2Þ K
iC0c

1
2

2ð1KnÞC
ð3C2nÞ �A0c

0
2

8ð1Kn2Þ C
�A1c

0
3

ð1Kn2Þ

K
ð1K2nÞA1c

2
1

8ð1Kn2Þ K
B1c

1
1

4ð1CnÞK
iC1c

1
1

2ð1KnÞ : ð8:12Þ

Substituting this partial solution into equations (4.13) and (4.14), we obtain the
non-zero (but z-independent) in-plane stress components

QZ
½2ð1KnÞz�zKð3C2nÞð3K4nÞ�ðA0zC �A0

�zÞ
16ð1Kn2Þ ; ð8:13Þ

FZ
ð1C4nÞA0z

3

24ð1CnÞ C
½2ð1KnÞz�zKð3C2nÞ� �A0z

16ð1Kn2Þ K
iC0z

2

2
; ð8:14Þ

and the corresponding tractions on the surface rZ1 are

Tr C iTq Z
ðQCF eK2iqÞ

2
ZK

ð19K18nK16n2ÞA0 e
iq

96ð1Kn2Þ K
�A0 e

Kiq

4
K

iC0

4
; ð8:15Þ

using (4.9).
In order to satisfy the traction conditions (8.2)(i,ii), we need to superpose the

solution of an in-plane problem corresponding to the loading of a circular disc by
a concentrated tangential force F0 per unit length, equilibrated by tractions of
the form (8.15). The Airy stress function,

4Z
F0rq cos q

p
ZK

iF0ðzC �zÞðlnðzÞKlnð�zÞÞ
4p

; ð8:16Þ
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represents a force F0 in the y-direction at the origin, so the concentrated force at
the point ð1; 0; zÞ in problem P2 can be described by the function

4ZK
iF0ðzC �zK2Þðlnð1KzÞKlnð1K�zÞÞ

4p
: ð8:17Þ

Comparing this with (5.23), we see that

f1ðzÞZK
iF0ðzK2Þlnð1KzÞ

4p
; f2ðzÞZK

iF0 lnð1KzÞ
4p

: ð8:18Þ

In view of equations (5.27), we therefore add the corrective terms,

fc Z
iF0½ðzK2Þlnð1KzÞKð�zK2Þlnð1K�zÞ�

4p
; ð8:19Þ

jc Z
iF0 lnð1KzÞ

2p
C iD0c

2
0; ð8:20Þ

to the stress functions of equations (8.11) and (8.12), where D0 is an arbitrary
constant and the additional term iD0c

2
0 corresponds to the Airy function

D0r
3 sin q, which is the only non-trivial degree of freedom in the Michell solution

with the appropriate Fourier dependence. We then repeat the procedure of
equations (8.13)–(8.15) using the modified stress function and enforce the
traction-free condition for qs0 by setting the coefficients of each power of exp
ðiqÞ in the numerator of TrC iTq to zero, with the result

A0 Z
2iF0

p
; C0 ZK

2F0

p
; D0 ZK

F0ð19K18nK16n2Þ
96pð1Kn2Þ : ð8:21Þ

The constants A0;C0 relate to the moment resultants transmitted through the
cross-section, and hence could have been determined without the solution of the
in-plane boundary-value problem. However, in the present procedure, it is not
necessary to use equilibrium arguments. Constants related to transmitted force
resultants are determined as conditions of solvability at a higher stage in the
recursive procedure.

Using (4.16), (8.11), (8.12), (8.19)–(8.21), the antiplane stress components are
given by

JZK
iF0z½ð1C2nÞz2 C4ð1CnÞzK2z�zCð3C2nÞ�

2pð1CnÞ

K
A1ð1C2nÞz2

4ð1CnÞ K
�A1z

�z

2ð1CnÞK
B1z

2
C iC1z:

ð8:22Þ

The first (z-varying) term necessarily corresponds to zero tractions on the surface
rZ1, since it was obtained by integrating stresses which satisfy this condition
using equations (8.7) and (8.8). The remaining (z-independent) terms in (8.22)
are identical in form to those in (8.5), and the traction-free condition can
therefore be satisfied by setting B1Z0 and adding the function zh 0=2ð1KnÞ into
j, where

h Z
ð3C2nÞA1z

4ð1CnÞ : ð8:23Þ
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Thus, the solution to problem P2 is defined by the potentials

fZ
iF0ð1K2nÞðc1

4K�c1
4Þ

pð1Kn2Þ C
iF0ð3K4nÞð3C2nÞðc1

2K�c1
2Þ

8pð1Kn2Þ

C
iF0½ðzK2Þlnð1KzÞKð�zK2Þlnð1K�zÞ�

4p
C

ð1K2nÞ
2ð1Kn2Þ ðA1c

1
3 C �A1�c

1
3Þ; ð8:24Þ

jZ
iF0

4pð1Kn2Þ ½K8c0
4Kð1K2nÞc2

2C4ð1CnÞc1
2Kð3C2nÞc0

2�

C
iF0 lnð1KzÞ

2p
K

iF0ð19K18nK16n2Þc2
0

96pð1Kn2Þ C
�A1c

0
3

ð1Kn2ÞK
ð1K2nÞA1c

2
1

8ð1Kn2Þ

K
iC1c

1
1

2ð1KnÞC
ð3C2nÞA1c

0
1

8ð1Kn2Þ : ð8:25Þ

The final stage of the solution starts with the superposition of the zeroth-order
potentials (5.3) with new constants A2;B2, a further integration with respect to z,
using equations (4.18)–(4.20) and (4.26) to determine the function f ðz; �zÞ
required for each of the potentials f;j to be three-dimensionally harmonic and
the addition of the torsion solution (5.8) with a new constant C2. Substitution
into (4.11)–(4.16) and computation of the in-plane tractions, as in the analysis
leading to equation (8.15), yield

Tr C iTq Z iF0zdðqÞK
ð19K18nK16n2ÞA1 e

iq

96ð1Kn2Þ K
�A1 e

Kiq

4
K

iC1

4
; ð8:26Þ

which satisfies the boundary conditions (8.1)(i,ii) with the trivial choice
A1ZC1Z0. We could, of course, have inferred this from the fact that the in-
plane tractions in P3 have no z-independent terms, and hence the moment
resultants cannot contain quadratic terms in z.

Using this result, the out-of-plane tractions are then found to be

Tz ZK
F0ð1KnÞlnð2ð1KcosðqÞÞsin q

2p
C

F0ð25C38nC16n2Þsin q

48pð1CnÞ

C
F0nðpKqÞcos q

2p
K

ð3C2nÞðRefA2gcos qKImfA2gsin qÞ
4ð1CnÞ K

B2

2
: ð8:27Þ

Integrating with respect to q to determine the boundary values of the corrective
potential hy shows that a single-valued function is obtained if and only if B2Z0,
and with this choice the required traction-free condition can be restored using the
function

h ZD1z lnð1KzÞCD2 lnð1KzÞCD3 lnð1KzÞ
z

CD4z; ð8:28Þ
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where

D1 ZK
iF0

2p
; D2 Z

iF0ð1KnÞ
p

; D3 ZK
iF0ð1K2nÞ

2p
;

D4 Z
iF0ð49C62nC16n2Þ

48pð1CnÞ C
ð3C2nÞA2

4ð1CnÞ :

ð8:29Þ

The appropriate additional terms in f;j are obtained by substituting (8.28) into
(5.11).

It remains to satisfy the weak traction-free conditions on the end zZ0. The six
force and moment resultants are obtained from (2.2) and (2.3) as

Fxð0ÞC iFyð0ÞZK
iF0ð15C22nÞC12p �A2

48ð1CnÞ ; Fzð0ÞZ 0; ð8:30Þ

Mxð0ÞC iMyð0ÞZ 0; Mzð0ÞZ
F0ð7K6nÞ

12
C

pC2

2
; ð8:31Þ

and hence the weak conditions can be satisfied by the choice

A2 Z
iF0ð15C22nÞ

12p
; C2 ZK

F0ð7K6nÞ
6p

: ð8:32Þ

Note that if the resultants Fz ;Mx ;My had not been found to be zero, it would
have been necessary to add in the zeroth-order potentials (5.2) and (5.3) with
new multipliers A3;B3. The final solution of the example problem is defined by
the potentials

fZ iF0z zK
ð3K4nÞz
8pð1KnÞC

ð1KnÞ
p

K2K
ð1K2nÞð5K4nÞ

8pð1KnÞz

� �
lnð1KzÞ

C
iF0

96pð1Kn2Þ ð96ð1K2nÞc1
5C8ð21K34nÞð1CnÞc1

3

Cð153C61nK226n2K120n3Þc1
1K12ð1K2nÞð1CnÞc0

1Þ;

ð8:33Þ

jZ
iF0z

2p
lnð1KzÞC lnð1K�zÞ

2ð1KnÞ K
ð1K2nÞlnð1K�zÞ

2ð1KnÞ�z2
K

ð1K2nÞ
2ð1KnÞ�z

 !

C
iF0

48pð1Kn2Þ ðK96c0
5K12ð1K2nÞc2

3 C48ð1CnÞc1
3K16ð6C7nÞc0

3

Kð17K30nÞð1CnÞc2
1C4ð7K6nÞð1CnÞc1

1Kð35C67nC30n2Þc0
1Þ; ð8:34Þ

and the stress and displacement components can be recovered by substitution
into equations (4.11)–(4.16).
9. Discussion and conclusions

We have deliberately chosen a fairly straightforward example to illustrate the
method, because, as the reader can see, the algebraic expressions involved
rapidly become rather lengthy. However, it should be emphasized that the
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operations involved are all essentially routine and present no serious challenge to
symbolic processors, such as MATHEMATICA or MAPLE, in cases where closed-form
solutions can be obtained.

The solution procedure intersperses solutions of classical two-dimensional
(plane strain and antiplane) boundary-value problems, with integrations
performed in the P–N formalism. These integrations are all of an extremely
simple nature, and hence solutions can be obtained for any bar for which a
general solution exists to the two-dimensional plane strain and antiplane
problems. In particular, this category includes all bar cross-sections that can be
conformally mapped to the unit circle. The two-dimensional solutions can also be
solved using real stress functions if desired, since these are easily converted to
complex form to permit the necessary P–N integrations. Thus, the proposed
procedure provides a quite general solution to the problem of the prismatic bar
loaded by tractions that permit a polynomial expansion in the axial coordinate z.

The method can easily be extended to include body forces, provided these can
be described by a body-force potential.
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