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(i.e., a node where the tractions are strictly within the cone) depends on the initial conditions and/or the
previous history of loading. If the long-term loading is periodic in time, we anticipate that the system will
eventually approach a steady periodic cycle.

Here we prove that if the elastic system is ‘uncoupled’, meaning that changes in slip displacements
alone have no effect on the instantaneous normal contact reactions, the time-varying terms in this steady
cycle are independent of initial conditions. In particular, we establish the existence of a unique ‘perma-
nent stick zone’ 7 comprising the set of all nodes that do not slip after some finite number of cycles. We
also prove that the tractions and slip velocities at all nodes not contained in 7 approach unique periodic
functions of time, whereas the (time-invariant) slip displacements in 7 may depend on initial conditions.

Typical examples of uncoupled systems include those where the contact surface is a plane of symme-
try, or where the contacting bodies can be approximated locally as half spaces and Dundurs’ mismatch
parameter f — 0. An important consequence of these results is that systems of this kind will exhibit
damping characteristics that are independent of initial conditions. Also, the energy dissipated at each
slipping node in the steady state is independent of initial conditions, so wear patterns and the incidence
of fretting fatigue failure should also be so independent.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering systems are frequently assembled from compo-
nents that are held in conjunction by contact and friction forces.
Examples include bolted joints (Berczynski and Gutowski, 2006;
Law et al., 2006), blade root contacts in jet engines (Murthy
et al., 2004) and shrink fit assemblies (Booker et al., 2004). These
assemblies are generally designed with a sufficient normal contact
force to prevent slip, but because of the deformability of the com-
ponents, regions of microslip can develop. This is particularly prob-
lematic in situations where the loading is periodic (vibratory),
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since the corresponding periodic reversed microslip can then lead
to a local fretting fatigue failure (Nowell et al., 2006).

Since fretting fatigue is an irreversible process, it is reasonable
to expect that its severity will correlate with the rate of frictional
energy dissipation at the interface (Davies et al., 2012). However,
the problem of determining this dissipation is complicated by the
fact that frictional slip is a history-dependent process, so that the
instantaneous state generally depends on the loading history
and/or the initial conditions. For example, in a bolted joint, the
energy dissipation (which also correlates with the effective hyster-
etic damping associated with the joint) can change significantly if
the joint is disassembled and then reassembled, presumably
because the bolt-tightening protocol was inadvertently changed
(Segalman, 2013). However, in some circumstances, notably in
quasi-Hertzian contact between similar materials, fretting fatigue
experimental data is found to be extremely repeatable (Hills
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et al., in press), suggesting that in this system at least, the frictional
energy dissipation is independent of initial conditions or assembly
protocol.

In some cases, frictional systems subjected to periodic loading
‘shake down’ to a steady state that involves no slip, and for many
years it was believed that a frictional ‘Melan’s theorem (Melan,
1936) applied, that might be stated as “If a set of time-independent
tangential displacements at the interface can be identified such that
the corresponding residual stresses when superposed on the time-
varying stresses due to the applied loads cause the interface tractions
to satisfy the conditions for frictional stick throughout the contact
area at all times, then the system will eventually shake down to a
state involving no slip, though not necessarily to the state so identi-
fied.” However, recently Klarbring et al. (2007) it has been estab-
lished that such a result is rigorously true if and only if the
frictional system is ‘uncoupled’, meaning that slip at the interface
has no effect on the normal tractions. It was later conjectured
(Barber, 2011) that this result might be a special case of a more
general theorem to the effect that in the steady state, the energy
dissipation in friction, or more specifically, the tractions and slip
velocity distributions in regions that are slipping, should be inde-
pendent of the initial conditions for uncoupled systems. In this
paper, we shall give a rigorous proof of such a theorem. The fric-
tional Melan theorem (Klarbring et al., 2007) can then be seen as
the special case where the slip velocity in the steady state is
everywhere zero.

Central to the proof is the concept of a permanent stick zone
comprising the set 7 of all nodes (or points in the contact area)
that do not slip during the steady state. We shall prove that this
set is independent of the initial conditions. As in Klarbring et al.
(2007), we shall identify a norm representing a measure of the dif-
ference between two distinct solutions of the evolutionary equa-
tions for the same time-varying loads, but different initial
conditions. We shall show that this norm decreases monotonically
to zero if 7 = ¢ and to a (generally) non-zero positive constant if
T # . In the latter case, we shall show that the slip velocities and
tangential tractions outside 7 are unique, though the tangential
tractions within 7 may depend on the initial conditions.

2. Quasistatic evolution problems and rate problems
2.1. Notation and definitions

We consider a frictional discrete linearly elastic system with
two or three spatial dimensions and with N contact nodes. The
subsequent presentation covers the three-dimensional case, but
the modifications needed for two dimensions are trivial. Some
of the nodes are fixed so that the stiffness matrix of the system
is positive definite. The system is subjected to time-dependent
external forces and we assume that the inertial forces can be
neglected. The contact nodes may be in contact with flat obstacles
under Coulomb friction. The quasi-static problem then is to
determine the time-dependent displacements and reaction forces.
In a standard way one may reduce the problem to the contact
nodes and write

Ku=f+r (2.1)

where r is a vector of nodal reactions and the reduced stiffness
matrix K acts on the displacement contact vector u. The vector f
is the reduced external force field (—f is the force vector that would
be needed to keep the contact node vector equal to zero when
applying the external forces). Let us introduce the notation

(5) - (3) - (2)

and

x=(; ‘;‘)

Notice that K is the reduced stiffness matrix for the system and
hence must be symmetric and positive definite. It follows that
A, C must also be symmetric and positive definite. We also make
the assumption that the normals of the obstacles are directed so
that the reaction forces have non-negative normal components,
ie., such that p; = 0 and so that w; = 0.

We next make the very special assumption that there is no
coupling between tangential and normal forces and displacements,
i.e., that the matrix B = 0.

Then the vectors of normal and tangential nodal contact forces,
p. q respectively, can be written

(1 {o) o e}

where w is a vector of nodal normal displacements (separations)
and g%, p* are the contact tractions that would be produced if
the nodes were all welded in contact with »; =0, w; = 0. This
may be rewritten

(2.2)

q=q" +Av
p=p"+Cw

(2.3)

Here p*(t) and q“(t) are given external forces, p(t), w(t), and
q(t), v(t) is the solution of QE.

We now have the following formulations of the so called evolu-
tion and rate problems.

The quasi-static evolution problem QE:

Assume that we are given an initial state u(0), f(0), r(0) satis-
fying Ku(0) = f(0) + r(0) and

w;(0) =0, p;(0) =0. w;(0)p;(0)=0 (2.4)
if w;(0)=0 then 0<|q(0)|< up;(0) (contact) (2.5)
if w;(0)>0 then gq,0)=0, and

pi(0) =0 (non-contact) (2.6)

Then, for a given external force field f(t) for t = 0, find u(t) and r(t)
such that

wi(t) = 0, pi(t) = 0, wi(t)pi(t) =0 (2.7)

if wi(t)=0 then 0 <|q(t)|< ppi(t) (contact) (2.8)

if w(t)>0 then gq(t)=0, and

pi(t) =0 (non-contact) (2.9)

and so that

if wi(t)=0 and 0<|q(t) |= wp;(t). then w(t)=—1q(t)

where (2.10)

/i =0, (2.11)

(4i(t). q;(t)) .

S L wpi(t) = 0 2.12
Mo (212)

with equality in at least one of (2.11) and (2.12) and

if wi(t)=0 and O0<|qlt)|< pp;(t), then #(t)=0 (2.13)

The quasi-static rate problem, QR:

With fixed t and for given f(t), u(t) and r(t) satisfying (2.1),
(2.7)-(2.9) and for a given derivative f(t), find u(t) and r(t) such
that Kii(t) = f(t) + #(t), and (2.10)-(2.13) are satisfied.
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2.2. Decoupling of the evolution problem

Consider the following subproblem: For a given function p*(t),
find p(t), w(t) such that p(t) = p*(t) + Cw(t) and so that (2.7) is
satisfied.

For each t this problem has the unique solution
w(t) = argmin,, o ((Cw.w)/2 + (p"(t). w)). p(t) = p"(t) + Cw(t).
The solution exists and is unique since C is positive definite and the
domain for wis closed and convex. Consequently, the functions p(t)
and w(t) are known a priori in the evolution and rate problems.
Therefore the evolution problem reduces to the following. For some
initial state »(0), q(0) satisfying (2.4)-(2.6) and for given functions
p(t) and w(t), find q(t), »(t) such that the conditions (2.8)-(2.13) are
satisfied.

We may note that this reduced rate problem is for every t a
Linear complementarity problem, with a system matrix indepen-
dent of the coefficients of frictions. Further this matrix is positive
definite and consequently a so called P-matrix, We conclude that
the rate problem is unique solvable for every t and that we have
an a priori estimate | g(t) |< C|f(t) |, see Cottle et al. (1992) and
Klarbring (1999). Using this one may also prove that the evolution
problem has at least one solution, see Andersson (1999). More
precisely, for a given external force field f(t), with t >0 and
fe L} (0. ) there is a unique solution q of the reduced quasi-
static evolution problem, valid for almost all t and with
qel (0,0c) and |q(t) < C|f(t)|. In the next section we will
show that the solution of the evolution problem is indeed unique.

3. Attractors for the system

Suppose that q'(t), »'(t) and g¢*(t), v?(t) are two solutions
corresponding to initial conditions #'(0). #2(0) respectively. We
define the difference between these solutions such that
q(t) =q*(t) — q'(t) and w(t) = 2?(t) — v'(t) and we also define
the norm of this difference as

|2l = (q(t). v(t) = (Av(t). (1)) (3.1)

which is related to the norm used in the Melan theorem proof
(Klarbring et al., 2007). We then have the following key lemma.

friction cone

/"'
-

— 2 1
ql - q: - q,
friction cone
=
f
l.l
1 : vl =0
y |

Fig. 1. The product (g2(t) q!(t). #2(t) #}(t)).

q;(t)—qi(t)=d; #0
vi(t)

/ constant

ieT

q;(t)

Fig. 2. Orbits g/ *. v/

Lemma 3.1. With the above notation, we have for all i,
(qi(t). 7:(t)) < 0 (3.2)

for almost all t, with equality only if #} (t) = v?(t) = 0 or q;(t) = 0 and
| q} (t) |=| g3(t) |= —p¥(t). In particular, since q(t)=Av(t), and
(Av(t), (1)) = 3(qi(t), (1)) and | w(t)|* = 2(Av(t). #(t)), we
conclude that the energy norm || o(t)| is a decreasing function of t.

The proof follows by simple geometric considerations, see Fig. 1.
In particular, since #] must be directed into the friction cone at
q! and #’ must be directed into the friction cone at g?, we have
(q.#!) = 0and (q;. #?) < 0 and hence (q;(t). #i(t)) < 0.

We next have the following result, see also Fig. 2.

Lemma 3.2. Assume that we are given some external loading, and
that we have two orbits v'(t). q'(t) and v*(t). q*(t), which are such
that for the differences v(t) = v*(t) — v'(t), q(t) = ¢*(t) — q'(t) the
energy norm || (t)|| = (q(t). »(t))"/* is constant. Then g?(t).q" (t) and
v2(t) — v'(t) are constant functions of t. Further, for some set i ¢ T'?
v!(t) and v*(t) are constant if and only if i € T'2.

Proof. By the existence theorem the derivatives #(t) and
q(t)=Awv(t) exist for all teH where Hc(0,00c) and
m(((p, oc) \ H) = 0, m denoting the Lebesgue measure. Further for
all te H we have £(Av(t).o(t)) =2(Av(t). p(t)) =23 ,(q;(t).
?(t)) =0, and by Lemma 3.1 we conclude that for all t € H and
alli.q,(t) =0or (t)= v} (t) =0.

Next, let E; = {t € H: q;(t) = 0} and F; = {t € H : q;(t) # 0}. We
claim that q;(t) = 0 almost everywhere in E;. In fact, the set of
isolated points in E; is countable, and for the subset E; c E; of non-
isolated points we have m(E; \ E) = 0. Since the points in E; are
non-isolated with respect to E; it follows easily that q(t) = 0 for all
tc E. Letting H;=F,UE, and H =(\H; we also have
m((0,0c) \H") =0.

Now, for t € H', let I(t) = {i: q;(t) = 0} and J(t) = {i : q;(t) # 0}.
Then we have,

q(t)=0. if ielt)
> _Li@(t) = #(t) =0 for je](t)
keJit)

where we have introduced the matrix L=A"'. This is a
homogeneous linear system of equations for the unknowns
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qi(t)., 1< i< N, and since the system matrix is positive definite we
conclude that q(t) =0, for all te H. Since #(t)=Lq(t) we also
conclude that #(t) =0 for all t € H. Consequently q(t) and »(t)
are constant. Further, by Lemma 3.1, if ; = g? — q! # 0 then v?(t)
and »](t) are constant.

We have proved that if 2?(t) and »'(t) are two orbits such that
we have equality in (3.2) for almost all t and all i, then there is a set
of indices 7'2 with the property that vZ(t) and v} (t) are constant if
and only ifke 7'2. h

If, in particular, we have a T-periodic loading, Lemma 3.2 may
be applied to periodic orbits. The following corollary follows
immediately.

Corollary 3.1. If, in Lemma 3.2, one of the orbits, say v'(t) is
T-periodic, then so is v?(t).

Proof. We have »'(t) — #*(t) = ¢ where cis a constant vector. This
proves the statement. h

Further we have the following theorem.

Theorem 3.1. If the external loading is T-periodic, then there exists a
set of indices T < {1,2,...,N} with the following property. For every
T-periodic orbit »(t) we have v?(t) constant if and only if i< 7T.
Moreover, for the case that T = (# there exists at most one such orbit
7 (t).

Proof. By the proof of Lemma 3.2 it first follows that if 2?(t) and
v'(t) are two T-periodic orbits then there is a set of indices 7 12
with the property that #7 (t) and »}(t) are non-constant if and only
ifkeT'

Repeating the argument with for example »} (t) exchanged for a
periodic orbit #}(t), we conclude that 7' = 732, ie, that there
exists a set 7 so that for every periodic orbit 2°(t) we have »}(t)
constant if and only if k € 7.

Finally, if #2(t) and ' (t) are two periodic orbits such that »Z(t)
and v} (t) are non-constant for all k then q; = q7 — g} = 0 for all k,
and therefore wy(t) = vZ(t) — v} (t) =0 for all k, ie., the solutions
are identical. h

The node set 7 in Theorem 3.1 defines the permanent stick
zone, as defined in the Introduction. The theorem establishes that
this zone is the same for all initial conditions. It also establishes
that the steady state is unique if the set 7 is empty, ie., if there
is no permanent stick zone.

We also have the following theorem.

Theorem 3.2. For a T-periodic loading the class of periodic orbits is
non-empty. Further it is convex, in the sense that if v'(t) and v?(t) are
T-periodic orbits, then so is (1 —s)v'(t) +sv?(t), for 0 <s< 1. It is
also closed in the sense that if {¥"(t},_, is a sequence of T-periodic
orbits such that their initial states converge, v"(0) — w, then
v"(t) — v>(t) uniformly in t, where v>(t) is a periodic orbit, with
v>(0) =w.

Proof. For a given external T-periodic force field f(t) we consider
the set D(0) of all possible initial states, satisfying
Ku(0) = f(0) +r(0) and the equilibrium and friction conditions
(2.4)-(2.6). It is easy to verify that the set D(0) is a closed and con-
vex subset of R*®. Now the solution of the quasi static evolution
problem defines a mapping

D(0) > (u(0),r(0)) # (u(T).r(T)) € D(0)

By Lemma 3.1 this mapping is continuous and therefore Brouwer’s
fixed point theorem implies that there exists at least one fixed

point. Every such fixed points defines a periodic solution of the evo-
lution problem and we have proved the first statement of the theo-
rem. The other statements follow from Theorem 3.1 and Corollary
3.1. The details are omitted. h

We finally give the following theorem stating that for a periodic
loading, every orbit is attracted by a periodic one.

Theorem 3.3. If the external loading is T-periodic, then every orbit is
attracted by some periodic orbit. If, in particular, there exist a periodic
orbit v”(t) with #}(t) non-constant for all nodes k (T = () then all
orbits are attracted by this periodic orbit vP(t).

Proof. Assume that »'(t). q'(t). p(t) is some periodic orbit (by
Theorem 3.2 there exist at least one) and that »(t), q(t). p(t) is
an arbitrary given orbit (for the same loading). Forming
v(t) = v(t) — v'(t), |v(t)| is, by Lemma 3.1 a decreasing function
of t. Then either ||v(t)|| . 0 or ||v(t)| . c > 0.

In the first case we conclude that v(t) = »(t) — »'(t) — 0 as
t — oo, ie., that v'(t) attracts o(t).

In the second case we argue as follows. Since #(t) is bounded,
there exists an increasing sequence of integers {n,},-, such that
v(n,T). p(n,T) and q(n,T) converge, v(n,T) — v, p(n,T) — p>
and q(n,T) — g™ as n, — ~c.Since | q;(t) |< w;p;(t) for all t it follows
that | g |< pp;°. Therefore there exists an orbit 22(t), p(t). q*(t)
with initial values given by #?(0) = v, ¢*(0) = q~.

Now let ||#(n,T)- v~| =¢&, — 0 as n, —oc. We also have
|w(n,T +t) — v%(t)|| < &,. Further

o' () - 22 ()] = (' (t) - #(n, T+ 1)) + (w(n,T +1) — 22 (1))
= (@' (n,T+t)—v(n,T+1t))+ (v(nT+t)— (1))
= || o' (n, T +t)— v(n,T+1t)| — | *(t)— v(n,T+1)|
=c-é

and this is valid for all v, ie., |['(t) — *(t)| = c. We also have that
|2'(t) — 2*(t)| < |2'(0) — | =c. We conclude that ||2'(t) — 2*
(t)|| =c for all t and, by Corollary 3.1, that the orbit 2?(t) is
T-periodic.

We will finally show that w(t) - 2*(t) — 0 as t — oc. Since
|w(t) — v?(t)| is a decreasing function of t it suffices to show that
v(n,T) - ¥*(n,T) = v(n,T) — v%(0) = (n,T) — v — 0. This is true
by the definition of . h

4. Conclusions

We have established that for an uncoupled discrete frictional
elastic system, the response to a given periodic loading will always
tend to a periodic displacement state and this state is unique if the
permanent stick zone 7 is null ie., if all nodes slip at least once
during each cycle.

If the loading is such that 7 # (), then there exists a continuous
range of steady states in which the locked-in slip displacements in
T take different values, the state reached depending on the initial
conditions. However, the difference between any two of these
states is independent of time, showing that the slip velocities
¥(t) are unique in the steady state. Since the tangential tractions
during slip are given by q;(t) = —u;p;(t);(t)/|i(t), these are also
unique, and they must remain so during any period of stick. We
conclude that the steady-state loading history at any nodes i R 7
is independent of initial conditions and hence that the work done
against friction at each node is a unique function of t. This suggests
that fretting damage in uncoupled systems should be independent
of initial conditions.

Finally, the tangential tractions g;(t) in the permanent stick
zone (i € 7) will depend on initial conditions, but their time-deriv-
atives q;(t) will not.
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