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Frictionally Excited Thermoelastic 
Instability in Automotive Disk 
Brakes 
Thermoelastic instability in automotive disk brake systems is investigated focusing 
on the effect of a finite disk thickness. A finite layer model with an antisymmetric 
mode of deformation can estimate the onset of instability observed in actual disk 
brake systems. Also some effects of system parameters on stability are found to 
agree well to experimental observations. 

1 Introduction 
Dow and Burton (1972) and Burton et al. (1973) have shown 

that a small sinusoidal perturbation in the otherwise uniform 
contact pressure between two sliding half-planes is unstable if 
the sliding speed exceeds a certain critical value which depends 
upon the wavelength of the perturbation. This instability, which 
results from the interaction of frictional heat generation, ther­
moelastic distortion and elastic contact, is known as frictionally 
excited thermoelastic instability or TEI (Barber, 1967 and 1969). 
It leads generally to the establishment of localized high tem­
perature contact regions known as hot spots. This phenomenon 
is observed in many practical applications, particularly in brakes 
and clutches, where significant frictional heating occurs 
(Swaaij, 1979; Hewitt and Musial, 1979; Kreitlow et al., 1985; 
Abendroth, 1985; Anderson and Knapp, 1989). Severe hot 
spotting may produce harmful surface cracks (Anderson and 
Knapp, 1989) and induce low frequency vibration problems 
(Kreitlow et al., 1985; Thomas, 1988). 

Burton's analysis can be used to obtain an order of mag­
nitude estimate of the speed required to cause TEI, but this 
estimate is found to be considerably higher than the speeds at 
which hot spots are observed experimentally in automotive 
disk brake systems (Kreitlow et al., 1985; Abendroth, 1985; 
Anderson and Knapp, 1989). An important factor in this dis­
crepancy is probably associated with the difference in geometry 
in that the brake disk has a finite thickness and slides against 
two pads, one on each side, in contrast to Burton's system of 
two sliding half-planes with a single interface. In particular, 
we might anticipate that the finite disk dimension will exert a 
stabilizing influence on the longer wavelength perturbations, 
which are those governing the onset of instability. 

In the present paper, we shall examine this hypothesis by 
extending Burton's analysis to the case of a layer sliding be­
tween two half-planes. 

2 The Model 
We represent the brake disk by a layer of thickness 2a and 
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the pads by two half-planes, as shown in Fig. 1. The stationary 
half-planes, 1, are pressed together by a uniform pressure p9 
and the disk, 2, slides between them at constant speed V. 

It might be argued that the representation of finite thickness 
pads by half-planes in this model will introduce errors com­
parable with the effects under investigation, but this will not 
be the case as long as the conductivity of the pad material is 
significantly lower than that for the disk. Burton has shown 
that in such circumstances, the pressure perturbation is almost 
stationary with respect to the good conductor and moves over 
the surface of the poor conductor. The perturbed temperature 
field then penetrates only a small distance below the surface 
of the poor conductor and hence replacement of a finite thick­
ness pad by a half-plane will have little effect on the resulting 
stability behavior. 

In automotive practice, disks are typically of cast iron {K 
= 54 W/m°C) and composition friction materials are used 
for the pad with conductivities generally lower than 57 W/ 
m°C. 

The geometry of the system is symmetrical about the mid-
plane of the layer, but it does not necessarily follow that an 
unstable perturbation will exhibit the same symmetry. How-
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Fig. 1 A layer between two half-planes, pressed by a uniform pressure 
Po 
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ever, as long as the perturbation remains small, linearity is 
preserved and it follows that we can describe an arbitrary 
disturbance as the sum of symmetric and anti-symmetric parts. 
Furthermore, unless two or more unstable perturbations have 
the same exponential growth rate, the stability boundary and 
the growth of the resulting disturbance will be dominated by 
the leading symmetric or anti-symmetric mode. We therefore 
consider the symmetric and antisymmetric problems separately 
and discuss the consequences for the more general problem in 
section 5. 

3 The Symmetric Problem 
Following Dow and Burton (1972) and Burton et al. (1973), 

we examine the conditions under which a spatially sinusoidal 
perturbation in the stress and temperature fields can grow 
exponentially with time, t. Results for a more general form of 
perturbation can then be obtained by superposition, which in 
this instance would be equivalent to Fourier transformation. 

The half-planes and the layer are generally of dissimilar 
materials, appropriate properties being distinguished by the 
suffix 1 for the half-planes and 2 for the layer. We assume 
that the perturbation has an absolute velocity c in the x-
direction and relative velocity c-, with respect to body /. It 
follows that c = C\ = V + c2 and that the sliding velocity V 
can be written 

V= c, - c2 (1) 
We introduce the coordinate system (x, y) moving with the 

perturbed field, so that the perturbation in contact pressure 
can be written as 

p(x,t) =px exp(bt)cos(mx) (2) 

The associated perturbation in frictional heat generated is then 
given by 

Qna = Qy\~Qy2=fVPi exp(bt)cos{mx) (3) 

where / is the coefficient of friction and qyi is the heat flux in 
the ^-direction at the interface in body /. 

We also introduce local coordinate systems (xn y,), sta­
tionary in the upper half-plane and the disk respectively, 
through the relations 

X = X\ -C\t 

= X2~ C2t 

(4) 

(5) 

y=y\ 

=y2-a 

(6) 

(7) 

3.1 Temperature Field. The temperature field in each 
body.must satisfy the transient heat conduction equation 

(8) 
d2T; d2Tj 

dxj + dyj ' 

1_37} 

where 

ki = Jk. 
PiCpi 

(9) 

is the thermal diffusivity and Kn ph cpi are, respectively, the 
thermal conductivity, density, and specific heat of the material. 

A suitable form of temperature perturbation can be written 
in the form 

T,= (R{fiiy^txpibt+jm(*,-at))) (10) 

where j = \A-T and the (generally complex) functionary,) 
has to be chosen to satisfy (8). Note that in the following 
analysis we shall assume that the exponential growth rate b is 
real. Substituting (10) into (8) and solving the resulting ordinary 
differential equation, we obtain 

fi(yi) =F, e x p ( - \ y i ) + Gt exp(X,o',) 

where 

X;=£;+A = 
kit ' k, ' 

(11) 

(12) 

Fj, Gj are arbitrary complex constants and the square root is 
defined such that £,- > 0. Thus we have 

7} = (R ( (Fi e x p ( - \ y i ) + G, exp(X,y,))exp(bt +jm(x,-qt)} 

(13) 

The temperature perturbation in body 1 must decay away from 
the interface, i.e., Tx — 0 asy t — oo, from which we conclude 
that Gj = 0 and hence 

r1 = (R{F ,exp(^ -X 1 ^ 1 +y/w(x , -c 1 / ) ) ) 

Also, from the symmetry of the problem, we have 

dT2 
Qyi= -K2 

dyi 
= 0 

(14) 

(15) 
y2 = 0 

N o m e n c l a t u r e 

A 

a 
b 

c = 

Ci = 

CP 

E 
I 
j 

K 
K* 

k 
k* 

dimensionless half layer thick- / = 
ness ip = 
half layer thickness m = 
exponential growth rate 
dimensionless exponential p = 
growth rate qnst = 
absolute velocity of perturba­
tion 
relative velocity of perturbation 
with respect to body i 
dimensionless relative velocity 
of perturbation with respect to 
body i 
specific heat 
elastic modulus 
coefficient of friction 

thermal conductivity 
ratio of thermal conductivities y = 
thermal diffusivity 
ratio of thermal diffusivities 

Qy 
(R 
T 
t 
u 
V 

y* 

x 

Xi 

wavelength 
pad length 
spatial frequency of sinusoidal 
perturbation 
pressure perturbation 
perturbation in frictional heat 
heat flux in the ^-direction 
real part of complex function 
temperature perturbation 
time 
displacement 
sliding velocity 
dimensionless sliding velocity 
coordinate in sliding direction 
moving with the perturbed 
field 
local coordinate in x-direction 
stationary in body / 
coordinate in direction of disk 
thickness moving with the per­
turbed field 

y\ 

a 

* 
a 

1 
X 

X* 
/* 
V 

{ 
P 
a 
4> 
+ 
01 

= local coordinate in ^-direction 
stationary in body / 

= coefficient of thermal expan­
sion 

= dimensionless coefficient of 
thermal expansion 

= imaginary part of X 
= separation constant 
= dimensionless X 
= shear modulus 
= Poisson's ratio 
= real part of X 
= density 
= stress 
= isothermal potential A 
= thermoelastic potential 
= isothermal potential D 

Subscripts 
1 
2 

= half-planes 
= layer 
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which with (13) implies 

F2 = G2 (16) 

Thus, the temperature in body 2 can be written 

T2 = (R[2F2 cosh(\2y2)zxp(bt+jm(x2-c2t))} (17) 

The temperature is required to be continuous at the interface, 
i.e., 

Ti(x,0,t) = T2(x,0,t) (18) 

Expressing (14) and (17) in the (x, y) coordinate system and 
using (18), we obtain 

F1 = 2F2cosh(X2o) (19) 

Thus, we can write the temperature in the (x, y) coordinate 
system in the form 

Tl = (R[TQQxp(bt-\y+jmx)\ (20) 

T2 = (R)T0 r-r— exp(bt+jmx)\ (21) 
( cosh(X2a) ) 

where T0 is an unknown constant. Note that only the heat 
conduction equation contains time-dependent terms and hence 
the subsequent calculations can all be performed in the moving 
coordinate system (x, y). 

3.2 The Heat Generated at the Interface. 
at the interface1 can be written 

Qy,= ~Ki 
37} 

dy 

The heat flux 

(22) 
y=0 

Substituting (20) and (21) into (22) and using (3), we obtain 

fVp\ exp(bt)cos(mx) 

= (RI {A'IX, +K2\2 tanh(X2a) J T0exp(bt+jmx)} (23) 

and hence 

lKi\i+K2\2 tanh(X2a)) T0=fVP[ (24) 

3.3 Thermoelastic Stresses and Displacements. We now 
consider the mechanical boundary conditions of the problem. 
Since the stresses due to the temperature perturbation must 
disappear at a distance far from the interface, we have a bound­
ary condition at infinity such that 

oXxu °x/i> °>^i-*0 y^ oo (25) 

Also, from the symmetry of the problem, we have 

uy2 = Q y=-a (26) 

oXy2 = 0 y=-a (27) 

At the interface, y = 0, we have 

uyi = uy2 (28) 

Oyy\ = ayy2^-p(x,t) (29) 

Oxy\ = Oxyl = ~fP (X,t) (30) 

where the sign in Eq. (30) implies that V > 0. 
A particular solution of the thermoelastic problem corre­

sponding to the temperature field of (20) and (21) can be 
obtained in terms of a strain function ^ (see Barber, 1992, 
Chapter 17). 

2^M, = YjPi (31) 

where 

_2/x,a,(l + i>;) 

1- •Vj 

(32) 

(33) 

and a;, nh v-, are, respectively, the coefficient of thermal ex-

Notice that there is also heat generated at the symmetric interface y = 
but this is automatically accounted for by the symmetry condition (15). 

2o, 

pansion, shear modulus, and Poisson's ratio of the materials. 
Substituting (20) and (21) into (32) we obtain 

faTp 
\]-m' 

exp(bt-\,y+jmx) \ 

--<R 
I32T0 cosh(\2(y + a)) 

\\-~m1 cosh(X2a) 
exp(bt+jmx) [ 

(34) 

(35) 

The corresponding stresses and normal displacements are de­
fined through the relations 

d% 

~dx2' 
aV> (36) _ _ ! # < 

Uyi~2^ dy' °yyi~ dx2' "xyi dxdy 

We next superpose isothermal solutions A and D of Green and 
Zerna (1954, section 5.7) on the particular solution (36) to 
obtain a sufficiently general solution to satisfy the mechanical 
boundary conditions. The corresponding stress and displace­
ment components are 

3c0] J_30i J_ 
2/x, dy 2ml & 

-(3-4c,)a); 

920i 
Uyyl-

Jxyl • 

dx dy' 
2 +y^-T-2(i-vi)-r-

dy 

dcoi dxdy dxdy dx 

1 dd>2 1 \ dw2 ) 
2/x2 dy 2/i2( dy ) 

d24>2 
"yy2~ 

"xy2-

d u>2 - , . , db)2 

dx2 + {y + a ) ^ - 2 { { - V 2 ) ^ 

d2<t>2 92o>2 , du2 --^r+(y + a)~-^-(\~2v2)1^ 
dxdy dxdy dx 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

where V <£,-, oi, = 0. Notice that, for the layer, we have chosen 
to preserve the symmetry of the representation by writing the 
solution initially in the (x2< y2) coordinate system and then 
using the relation y2 = y + a. This change of coordinate 
system only affects the terms deriving from solution D — i.e., 
those involving w2. We can then satisfy the symmetry condi­
tions (26, 27) by requiring that 4>2 be an even function and o>2 

an odd function of y2 = (y + a), the appropriate forms being 

(j>2 = Si{A2 cosh{m(y + a))exp(jmx) ] (43) 

co2 = <R(B2 sinh(m(y + a))exp(jmx)) (44) 

To satisfy (25) we choose 4>u o^ such that <j>u oo, — 0 as y — 
oo. Suitable forms are 

4>l = (R{Al exp(-my+jmx)} (45) 

o>i = (R(.B1 exp( -my+jmx)} (46) 

Substituting (34-35) into (36) and (43-46) into (37-42) re­
spectively and superposing corresponding stress and displace­
ment components, we obtain 

«„i = (R 
1 f ^ X , 

2/^1 (X' - m 
exp( -\xy + bt +jmx) 

1 

2/Ki 
mAi exp ( - my +jmx) ] 

2/J.I 
I my + (3 - Av{) }Bt exp ( - my +jmx) (47) 
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HdA)-
2jj.xli2k2a2(l + f2) 

H2(A) = 

(/t2(l - i<i)(^sechM + tanh A) + ^,(1 - i>2)tanh v4)A"2 

VlAt2^2«2(l + Vl) 
| / i2(l-2v1)(^4sech2^+tanh A) - j i , ( l -2v2)tanh yl + ^ ^ s e c h 2 ^ ) ^ 

24)*2> ( 5 5 ) 

(56) 

r r ~\ 
CT^l = ( R m2 L 2 e x P ( _ Xjj> + bt +jmx) \ 

+ w2/l i exp ( — my +jmx) 

+ (ny + 2(1 — I*])) mBx exp ( - wy +jmx) 

axy] = ( R 
C B T X ~) 

y'/M 2 2 exP( XL? + bt +jmx) 
{h\-m ) 

(48) 

and A = ma. 
For given values of V, m and material properties, Eq. (54) 

defines the exponential growth rate b, which appears implicitly 
in X; through Eq. (12). 

3.4 Dimensionless Presentation. We restate the charac-
(48) teristic Eq. (54) in dimensionless form by defining the following 

dimensionless parameters. 

» # i , * h * « I (1 + PI) 

K2 k2 a2(l + v2) 

Uy2=(R 

—jmA\ exp(-my+jmx) 

-j{my + (\-2pl)}mBl exp(-my+jmx) 

1 f/32r0X2 smh(\2(y + a)) *) 
— -2 2 T7;—;— exp(btA-jmx) 

x; 
(49) 

m k2m 

2/Lt2 (\l — in1 cosh(X2ff) 

+ ~— {mA2 smh(m(y + a))exp(jmx)} 
2\i2 

+ -— \(y + a)m cos\\(m(y + a)) - (3 -4v 2 ) s inh(w(7 + a)) ] 
2/x2 

V*=-— = Ci ~c2 
k2m 

b = 
k2m 

(57) 

(58) 

(59) 

(60) 

Substituting the expressions (57-59) into Eq. (54), we have 

Oyyl --<R 
P2T0 cosh(\2(y + a)) 

x B2 exp (jmx) 

exp(bt+jmx) [ 

(50) 

fK*\* + X2* tanh(X2*/l) 1 M ~Jfjj) 

=fH{V* 

\2-m cosh(X2tf) \ 

+ m2A2 cosh(m(y + a))exp(jmx) 

+ i (y + a)m smh(m(y + a)) -2 (1 - v2)cosh(m(y + a))} 

« , A , 2 , , , S t a n n A 

— Msech /I + tanh A) + ——•, 
X , + l X 2

2 - l 

x (X2 tanh(X2/l) - tanh A ] (61) 

ff;0>2: -(R 

xmB2 exp (jmx) 

, B2T0\2 sinh(X2(j> + g)) . ~) 

^^xi-m2 c o s h e r " ^ " ^ ^ j 
+jm2A2 smh(m(y + a))exp(jmx) 

+j\ (y + a)m cosh(w(>> + a)) - ( 1 ~2v2)smh(m(y + a)) 

3.5 The Stability Boundary. Perturbations will generally 
only be possible for certain eigenvalues of the exponential 
growth rate, b. Stability will be maintained if the growth rates 

(51) of all such perturbations are negative since all initial pertur­
bations will then decay with time. Thus we can find the stability 
boundary by setting the growth rate to zero and hence obtain 
the critical sliding speed which depends upon the wavelength 
of the perturbation. When b = 0, the dimensionless form of 
Eq. (12) reduces to 

h =h +JVi 
where 

x mB2 exp (jmx) (52) 

The interface conditions (28-30) then define four simultaneous 
complex equations for the complex constants, Au A2, Bu B2. 
Finally, noting that the contact traction 

<syy\(x,0,t) = ~p\ exp(bt)cos(mx), (53) 

we can substitute for px in Eq. (24) to obtain the complex 
characteristic equation 

^ X , + X 2 t a n h ( X 2 f l ) j U - ^ ^ 

Vi = 

1 + J l + l p 

i + ;i + .fL 

i + Vl+(C2*) 

fHxVm 
T/2 : 

1 a i ( 1 + y i ) M s e c h l 4 + tanh,4i 

-V i+V' + tar 

(62) 

(63) 

(64) 

(65) 

(66) 

Xi + m a2(\ + v2) 

tanh A 
1 {X2 tanh(X2(3r) - m tanh A} 

where 
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« i 2 - » J i 2 = l ; ? 2 2 - r ; 2
2 = l (67) 
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using (67) can be written 
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* * 
***! + 

g2 sinh(2/l£2)-i)2 sin(2/li)2) 

cosh(2,4£2) + cos(2AriZ) 

Hx( , * £2 sin(2^7)2) + 7)2 sinh(2/lg2) 
+ / — j A 171 H ; ; 

H2(_ cosh(2/l£2) + cos(2/lr)2) 

ffiV* , * , 2 , , „ > t a n n ^ (^4sech A + tanh ,4) H n r -
.$212 

g2 s'm(2A-g2) + rj2 sinh(2/4£2) 

cosh(2/4£2) + cos(2/4ij2) 

**«.+ 

(68) 

g2 sinh(2/lg2) + ?72 sin(2/li)2) 

cosh(2,4£2) - cos(2^4?)2) 

, .Hi ( * * i)2 sinh(2y4g2)-g2 sin(2^7j2)~) 
+ / T - A l)i + ; j 

H2{_ cosh{2A^2)-cos{2Am) J 

/HiK* a , coth yl 
— (-^4cseh A + coth /I) +—»-*-
£l ?2»/2 

7)2 sinh(2.4i;2)-£2 sm(2A-g2) ^ 

cosh(2^^2)-cos(2/4T)2*) j 
(76) 

* b sin(2^7)2) + T)2 s i n h ( X 4 £ 2 ) t f i L » g2 sinh(2^£2)-i)2 sin(X4r)2) 
7,1 cosh(2y4^) + cos(2/lTj2*) H2{_ ' cosh(2/l£2) + cos(2/li)2) 

/ / / ,K* a t)\ 

€ i t t i+D 
(/Isech2 /I 

+ tanh / ! ) + -
t a n h / l U 2 sinh(2A£2)-')2 sin(2yli)2)- tanh A(cosh(2y4 £2) + COS(2/4T)2)) 

£2172 cosh(2^ £2) + cos(Z4 r)2) 
(69) 

* * , - £ 2 sin(X4i)2) + t)2 sinh(2^1g2) , # i ( V * , * , £2* sinh(Z4$2) + *)2* sin(2/lr72) 

cosh(2/l£2)-cos01»j2) Hii cosh(24b)-cos(24rj2) 

/ / / ,K* a iji 

« i t t i+ l ) 

x ( - ^csch2 yl + coth v4) + • 
coth A {£ sinh(2/lg2*) + V2 sin(2Arl2) - coth A(cosh(2A£2) - COS(2/4T)2*)) 

?2l2 cosh(2,4£2) - cos(2ylr)2) 
(77) 

These equations and the relation (59) can be used to eliminate 
c*, c2 and hence determine the dimensionless critical speed 
V\ 

As before, these equations and the relation (59) can be used 
to eliminate c*, c2 and hence determine the dimensionless 
critical speed V*. 

4 The Antisymmetric Problem 

From the antisymmetry of the problem, we have 

T2 = 0 y=-a 

"x2 = 0 y=-a 

(70) 

r (71) 

oyy2 = 0 y=-a (72) 

Following the same steps as the symmetric problem except 
using (70-72) instead of (15) and (26-27), we obtain the com­
plex characteristic equation for antisymmetric problem, which, 
using (57-59) can be written 

5 Results 
Grey cast iron is almost universally used for brake drums 

and disks, but there is considerably more variability in the 
choice of friction materials. Two typical friction materials— 
one asbestos-based (material C) and one semimetallic (material 
D)—are investigated in the present section, though we note 
that semimetallics have now largely replaced asbestos friction 
materials due to environmental concerns. Appropriate material 
properties, reproduced from Day (1988) are given in Table 1. 
Notice in particular that both friction materials have substan­
tially lower thermal conductivity than cast iron, which is ex-

iff*x,*+x2* coth(x2̂ )) (i-J/§) =mv 
A, +1 

(-.4csch ,4 +coth A) +-
coth A 

1 
[X2 coth(A2^4)-cothy4] (73) 

where 

Hi(A) = 

and 

H2(A) = 

2niix2k2at2(\ + v2) 

{/*2(1 - ^X-^lcsch2 A + coth A) + /*,(! - i>2)coth2 A }K2 
(74) 

Ajj.xii2k2a2(\ + v2) 

{p,2{\ - 2e1)( - Resell2 A + coth A)-nx(l- 2c2)coth A-p.x ^4csch2 A )K2 
(75) 

After substituting (62) into Eq. (73) and separating the real 
and imaginary parts, we obtain two real equations, which, 
using (67) can be written 

pected to cause the velocity of the self-excited perturbation to 
be closer to that of the disk than the pad. The difference in 
conductivities is not so large as to permit the simplifying ap-
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Table 1 Material properties 

No. Material 
E 

N / m 2 x l 0 9 a 
"x lO" 

K 
W/m °C 

k 
m 2 / s x l O ~ 

Pad material C 
Pad material D 

Cast iron 

.53 
1 

125 

0.25 
0.25 
0.25 

30 
10 
12 

.5 
5.0 
54 

.269 
3.57 
12.98 

10" 

unstable zone 
for sym. mode 

stable zone 

Symmetric mode 

— Antisymmetric mode 

3 

ma 

Fig. 2 The critical speed of the symmetric and antisymmetric modes 
of deformation for material C 

proximation of the pad material by a thermal insulator (Lee 
and Barber, 1993), but it will restrict the flow of heat into the 
pad and therefore justifies the representation of the pads by 
half-spaces instead of layers. 

We take/ = 0.4 as an appropriate value for the coefficient 
of friction (Day, 1988). 

Symmetric and Antisymmetric Modes. The critical speed 
K—i.e., the sliding speed at which the perturbation first be­
comes unstable—is shown in Fig. 2 as a function of A = ma, 
for a sliding system of cast iron and friction material C. For 
a disk of given thickness, a, the dimensionless parameter A 
varies with the wavenumber m, or inversely with the wavelength 
/, since 

. 2wr , 27r« 
A = ma = —— and hence / = 

/ A 
(78) 

Figure 2 shows that the antisymmetric mode becomes un­
stable at a lower speed than the symmetric mode for all values 
of the wavelength and hence practical instabilities are likely to 
be characterized by antisymmetric deformations. This is indeed 
confirmed by experiment and by service experience (Thoms, 
1988). The antisymmetric mode involves hot spots located al­
ternately on the two sides of the disk in the direction of sliding 
and leads to a circumferentially 'buckled' deformation pattern 
as shown in Fig. 3. 

Qualitatively similar results were obtained with friction ma­
terial D and also for hypothetical friction materials with a wide 
range of thermal properties. 

5.1 The Effect of Wavelength. If the pad material and 
the disk were really semi-infinite in the direction of sliding, 
perturbations of any wavelength would be possible and the 
system would be unstable if any such perturbation were un­
stable in either the symmetric or antisymmetric mode. If the 
sliding speed were gradually increased from zero, instability 
would therefore first occur at the speed corresponding to the 

Fig. 3 Circumferentially buckled configuration for the disk 

minimum in the antisymmetric curve in Fig. 2. This region of 
the curve is shown on an expanded scale in Fig. 4, which also 
shows the corresponding curve for the semimetallic friction 
material, D. In both cases, the minimum occurs at about A 
= 0.2, indicating that the initial instability will have a wave­
length of / « 30a, from Eq. (78). Notice that / is also the 
anticipated spacing between hot spots on one side of the disk 
in the unstable configuration. 

However, real brake systems have finite dimensions and 
these place restrictions on the permissible wavelength of per­
turbations. In particular, a brake pad of finite length must 
make contact at any given time with a sufficient number of 
hot spots to maintain kinematic support. Of course, the finite 
length of the pad strictly invalidates the present analysis, but 
we might reasonably suppose that the predicted unstable state 
will be a good approximation to the actual system if the pad 
is long enough to contain at least one full sinusoid of the 
perturbation2. This in turn restricts A in Fig. 4 to the range 

2-xa 
-<A<<x (79) 

where lP is the pad length. 
For typical dimensions used in automotive practice, this 

restriction is likely to an active constraint on A and hence on 

2More precisely, a full perturbation analysis for the pad of finite length would 
generate a set of eigenvalues (critical speeds) and corresponding eigenfunctions 
(pressure perturbations) of approximately sinusoidal shape. Since the pressure 
perturbation must be self-equilibrating, the first appropriate sinusoidal form 
involves one complete wavelength. 
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the critical speed. For example, if the disk thickness is 10 mm 
(i.e., the half-thickness a = 5 mm), the preferred wavelength 
is about 150 mm and the corresponding dimensionless critical 
speed is 1759 for friction material C and 4010 for material D. 
These values are equivalent to sliding speeds of 4.6 m/s for 
material C and 10.4 m/s for material D, in dimensional terms. 
However, if the actual pad length is only 100 mm, such a long 
wavelength perturbation cannot be supported. If we assume 
that the longest permissible wavelength is equal to the pad 
length—i.e., / = 100 mm and A = 0.314—only the region to 
the right of the vertical line in Fig. 4 describes physically pos­
sible perturbations. The dimensionless critical speed then cor­
responds to the points C, D in Fig. 4, being increased to 2350 
for material C and 5750 for material D. The corresponding 
dimensional values are 6.1 m/s and 14.9 m/s respectively. 
Thus, the finite length of the pad can have a significant effect 
on the predicted critical speed.3 This effect has also been ob­
served experimentally (Anderson and Knapp, 1989). 

If we assume a realistic ratio of 3 between the radius of the 
frictional contact on the disk and the effective rolling radius 
of the tire, we find that these sliding speeds correspond to road 
speeds of 66 km/hr and 161 km/hr, respectively. It is instruc­
tive to compare these results with the prediction of critical 
speed based on the two half-plane model of sliding. In this 
model, the most unstable perturbation always corresponds to 
the largest permissible wavelength. Using the same assumptions 
as above, the two half-plane model predicts critical road speed 
of 1555 km/hr with friction material C and 34668 km/hr with 
material D indicating that the automotive disk brake system 
should be always stable under highway conditions. However, 
experimental investigations (Kreitlow et al., 1985; Abendroth, 
1985; Anderson and Knapp, 1989) show that hot spots are 
developed at practical operating speeds. The finite disk thick­
ness is clearly an important factor in this discrepancy. 

5.2 The Effect of Friction Material Properties. The com­
position and composite structure of most friction materials 
offers scope for material "design." In other words, modifi­
cations might be made in the constituents or the manufacturing 
method to produce a material whose properties are in some 
sense optimal. Traditionally, this flexibility is used to achieve 

A related restriction on permissible wavelengths is imposed on the disk by 
the requirement that an integral number of complete waves must be accom­
modated in the circumference. However, in the systems investigated here, the 
effects of this restriction are insignificant. 

desirable frictional characteristics such as moderate fade be­
havior with increasing temperature. However, the possibility 
also exists to modify the thermal and/or elastic properties with 
a view to reducing the tendency for thermoelastic instability. 
We therefore consider the effect of these properties on the 
critical sliding speed. 

We assume throughout this section that the disk is of cast 
iron, with properties as given in Table 1, and that the pad 
length is sufficiently long to support perturbations of the pre­
ferred wavelength, so that the critical speed will be defined by 
the minimum point in curves such as Fig. 2. 

Elastic Modulus. If the friction material has a low elastic 
modulus, we might expect the applied contact load to be ap­
proximately uniformly distributed across the pad, discouraging 
the formation of hot spots. This argument, which is also sup­
ported by experimental observations (Anderson and Knapp, 
1989), motivated the development of low modulus friction 
materials even before the connection between hot spots and 
thermoelastic deformation was discovered. Notice, however, 
that a compliant friction material will generally require a greater 
brake pedal movement to achieve a given braking torque. Typ­
ical friction materials have elastic moduli in the range E = 
0.5 GPa to 10 GPa (Harding and Wintle, 1978). 

The minimum dimensionless critical speed is shown in Fig. 
5 as a function of the reciprocal of the elastic modulus. Results 
are shown for materials in which the remaining thermal and 
mechanical properties are those of materials C and D of Table 
1. In each case, the critical speed is approximately linear with 
1/2?, though the curves do not pass through the origin, instead 
converging on small but finite values as \/E — 0 of 26 for 
material C and 35 for material D. 

Coefficient of Thermal Expansion. Theoretical investi­
gations of thermoelastic instability always show that the ve­
locity of a sinusoidal perturbation is closer to that of the more 
conducting material than to that of the less good conductor. 
In automotive applications, the disk generally has a conduc­
tivity at least one order of magnitude higher than the pad and 
hence the disturbance moves slowly over the disk and rapidly 
over the pad. The effective Peclet number C\/kxm for the pad 
is therefore high, indicating that there will be relatively little 
thermal penetration of zero average thermal disturbances into 
the depth. It follows that the thermal distortion of the pad 
due to the perturbation will be small and hence that the ex­
pansion coefficient of the friction material should have little 
effect on the critical speed. 
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pad temperature may cause problems such as temperature-
induced brake fade or vaporization of the brake fluid. 

7 Conclusions 
Dow and Burton's analysis of frictionally excited thermo-

elastic instability has been extended to the case of a layer of 
finite thickness sliding between two half-planes, in order to 
evaluate the influence of finite disk thickness on the stability 
behavior of an automotive disk brake. The results show that 
with the layer geometry there is a preferred wavelength for 
instability, in contrast to the sliding of two half-spaces, where 
critical speed decreases monotonically with wavelength. The 
onset of instability is always characterized by an antisymmetric 
perturbation, corresponding to a "circumferentially buckled" 
deformation mode and leading to hot spots at alternating lo­
cations on the two sides of the disk. Using material properties 
and dimensions appropriate to current automotive practice, 
the layer model predicts critical speeds of the order of those 
observed in experiments, in contrast to the two half-space 
model that overestimates critical speeds by an order of mag­
nitude. 

This conclusion is supported by the present results, which 
show that the minimum critical speed varies by less than 1 
percent as the ratio of thermal expansion coefficients, a*, is 
varied by a factor of 10 in either direction.4 

Thermal Conductivity. Similar arguments lead us to expect 
that increasing the conductivity of the pad material will increase 
the critical sliding speed. This prediction is confirmed by the 
results shown in Fig. 6, where the minimum Va/k2 is shown 
as a function of the conductivity ratio K*, all other material 
properties being held constant. Experimental observations 
(Anderson and Knapp, 1989) also confirm this prediction, but 
we note that an undesirable practical consequence of increasing 
the pad conductivity is that more of the frictional heat will be 
directed into the pad. Convective cooling of the pad is less 
effective than that of the disk and the consequent rise in mean 

Notice, however, that the argument depends on the disturbance having a 
velocity close to that of the disk. There is experimental evidence of hot spots 
stationary with respect to the pad in automotive systems, which might be as­
sociated with structural warping of the pad or with pressure perturbations varying 
in the radial rather than the circumferential direction. In this case, we should 
anticipate a significant dependence of critical speed on the thermal expansion 
coefficient of the pad material. This question is still under investigation. 
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