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Abstract

An explicit analytical solution is obtained for the stress field in an accreted triaxial ellipsoid under the influence of self-
gravitation and rotation. Material is assumed to attach to the surface of the accreting body in a stress-free state, after
which it behaves elastically. The results differ significantly from the classical elasticity solutions that are based on the
assumption that the body is fully formed before the loading is applied. These results are relevant to the strengths of
accreted planetary bodies such as comets and asteroids.

The solution allows both the magnitude and direction of the angular velocity to be a general function of the time-like
parameter defining the progress of accretion. Simple closed-form expressions are given for two special cases—the ellipsoid
accreting at constant angular velocity and the sphere accreting with an angular velocity vector that precesses through 90�
during the accretion process. A Mathematica notebook permitting the solution of other problems can be downloaded from
the website http://www-personal.umich.edu/jbarber/ellipsoid.nb.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress field in an object depends on the manner in which it was constructed. For example, the stresses in
a body that has solidified from a melt are influenced by its original liquid state in which the stresses are hydro-
static (Pedroso and Domoto, 1973); calculation of the stresses in dam embankments must account for the fact
that these structures are constructed by placing pre-formed blocks one on top of the other (Clough and Wood-
ward, 1967); stresses in biological tissues are influenced by growth emanating from the material’s bulk (e.g.,
Rodriguez et al., 1994); and stresses in spherulites are influenced by transformational strains during the growth
process (Dryden, 1987; Burns, 1996). In this paper, we shall investigate how the growth process affects the
stress fields of small planetary bodies.
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4.6 Billion years ago, all the mass currently contained within the planets, moons, asteroids, and comets of
the solar system was in the form of dust and gas that orbited the Sun in a large cloud called the solar nebula.
The growth of kilometer sized objects from sub-micron sized dust grains occurred by the collisional and grav-
itational evolution of a swarm of particles. Growth in this manner, or growth by the continual deposition of
material onto an object’s surface, is known as a process of accretion (e.g., Weidenschilling, 2000). The only
forays into calculating the stress fields of accreted planetary bodies were made by Brown and Goodman
(1963) and Kadish et al. (2005). Brown and Goodman (1963) found the stress field of an accreted sphere under
the influence of self-gravitation, and made brief mention of the relationship between their results and the stress
field of the Earth. Kadish et al. (2005) extended Brown and Goodman’s results to include the effect of loading
due to rotation, and applied the results to investigate possible disruption mechanisms of small planetary
bodies. They found that the stress field is significantly influenced by the history of the rotational speed during
the accretion process.

Of course, not all objects of the solar system are spheres and a better approximation is to calculate an ellip-
soidal fit to these objects. In this paper, we extend the solution of Brown and Goodman (1963) and Kadish
et al. (2005) to that of an accreted ellipsoid.

2. Stress field in an accreted body

We consider the accretion of a triaxial ellipsoid whose shape remains constant while its size grows. The
semi-axes of the final ellipsoid after growth is completed are denoted by ai, i = 1, 2, 3 and we define a dimen-
sionless effective radius r as

r �

ffiffiffiffiffi
x2

i

a2
i

s
; ð1Þ

where xi are coordinates of a body-fixed Cartesian coordinate system aligned with the semi-axes of the ellip-
soid and the summation convention is implied. The instantaneous boundary of the body at time t is then de-
fined by r = s(t) where s is called the growth parameter.

The ellipsoid grows from s = 0 to s = 1 due to the accretion of particles in an orbiting dust cloud. These
particles add mass and angular momentum to the accreted body, and hence may change its angular velocity
vector X(s), which therefore becomes a function of the growth parameter s. Dones and Tremaine (1993) dis-
cuss the form that this function may take, based on the accumulation of mass and angular momentum of an
accreting body in a cloud of particles. The accretion process is extremely slow—accretion of a typical asteroid
may take 106 years—so it is reasonable to neglect the inertia forces associated with angular acceleration due to
accretion.

If an ellipsoidal body rotates about a non-principal axis and experiences no external forces, the inertia
forces associated with centripetal acceleration have a non-zero torque resultant about a perpendicular axis,
causing the axis of rotation to precess or ‘nutate’. In a frame of reference fixed in the body, the instantaneous
axis of rotation traces out a cone centered on the major principal axis. The resulting body forces and the oscil-
lating elastic stress field that they generate were given by Sharma et al. (2005), who used their results to esti-
mate the rate at which the nutation would become damped out, causing the axis of rotation to approach the
major principal axis.

In the present paper, we shall restrict attention to cases where the accelerations due to the time derivative _X
of the angular velocity vector can be neglected in comparison with the centripetal accelerations. This will be a
reasonable approximation if the nutation period is long relative to that of diurnal rotation, which requires
either that the ellipticity of the body be not too large, or that the axis of rotation be at (in which case there
is no nutation) or near to a principal axis.1

1 It is perhaps worth noting that if these conditions are not met and there is rapid nutation and associated periodically varying
accelerations, the effect of the accretion process would be to develop a spatially periodic residual stress field. However, because the
accretion process is so slow, the spatial wavelength of this field would be relatively short and may in fact be smaller than the size of the
typical accreted particle.
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With this simplification, the body force vector f can be derived from a body force potential

V ðsÞ ¼ V 0 þ V iðsÞx2
i ð2Þ

by f = �$V, where

V 0 ¼ �pq2Ga1a2a3K0

V iðsÞ ¼ pq2Ga1a2a3Ki �
1

2
q XkðsÞXkðsÞ � X2

i ðsÞ
� � ð3Þ

and

K0 ¼
Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 þ uÞða2
2 þ uÞða2

3 þ uÞ
p

Ki ¼
Z 1

0

du

ða2
i þ uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 þ uÞða2
2 þ uÞða2

3 þ uÞ
p

(Chandrasekhar, 1969), where q is the density of the material and G = 66.7 · 10�12 Nm2/kg2 is the universal
gravitational constant.

The general quadratic form (2) can also be used to describe ‘tidal forces’ due the gravitational attraction of
the accreting body to another massive body, subject to the restrictions that (i) the massive body is a homoge-
neous sphere (or its inhomogeneity is spherically symmetric), (ii) a semi-axis of the accreting body is always
pointed towards the attracting body’s center of mass, and (iii) the distance between the bodies is constant (i.e.,
the orbit is circular) and sufficiently large for the attractive body force to be approximated as a second-order
Taylor series expansion about the accreting body’s center of mass (Chandrasekhar, 1969).

We assume that the accreting particles are much smaller than the growing ellipsoid so that the latter can at
all times be treated as a continuum, that the growth parameter is a continuous, monotonically increasing func-
tion s(t) of time, and that the impact of the accreting particles is ‘‘soft’’ so that collisional and other dynamical
effects can be ignored. If it is also assumed that the material behaves elastically once it has accreted, then only
the time derivative _r of the total stress field is required to satisfy the compatibility equations (e.g., Kadish
et al., 2005). Integrating _r with respect to time, we deduce that the most general stress field of an accreting
elastic body takes the form

r ¼ rcðx1; x2; x3; tÞ þ roðx1; x2; x3Þ; ð4Þ

where the time-varying term rc(x1, x2, x3, t) is required to satisfy the equations of elasticity (equilibrium and
compatibility), but the ‘‘initial stress’’ term ro(x1, x2, x3) is only required to satisfy the equilibrium condition.
Notice that the incompatible part of the stress field must be time independent, since if it were not, the time
derivative _r would also be incompatible. The decomposition of Eq. (4) is not unique, since a term that is both
compatible and independent of time could be included in either rc or ro.

To explain the physical basis of the residual stress term ro, consider a body that is deformed elastically by
some system of external loads and suppose that a thin unstretched layer of the same material is attached while
the original body is still deformed. If the loads are now removed, the composite body will remain in a state of
residual stress. In fact, Brown and Goodman (1963) developed their solution precisely in this manner, by con-
sidering the effect of attaching a small but finite unstressed layer and then proceeding to the limit as the thick-
ness of this layer tends to zero. The present solution is mathematically equivalent to their procedure.

2.1. Time-varying stress field

The time-varying compatible stress field rc is conveniently expressed in terms of three scalar potential func-
tions u, x, w through the equations
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rc
11 ¼

mV
ð1� mÞ þ

o2u
ox2

1

þ x3

o2x
ox2

1

� 2m
ox
ox3

þ 2
o2w

ox1ox2

ð5Þ

rc
22 ¼

mV
ð1� mÞ þ

o2u
ox2

2

þ x3

o2x
ox2

2

� 2m
ox
ox3

� 2
o2w

ox1ox2

ð6Þ

rc
33 ¼

mV
ð1� mÞ þ

o2u
ox2

3

þ x3

o2x
ox2

3

� 2ð1� mÞ ox
ox3

ð7Þ

rc
12 ¼

o2u
ox1ox2

þ x3

o2x
ox1ox2

þ o2w
ox2

2

� o2w
ox2

1

ð8Þ

rc
23 ¼

o2u
ox2ox3

þ x3

o2x
ox2ox3

� ð1� 2mÞ ox
ox2

� o2w
ox3ox1

ð9Þ

rc
31 ¼

o2u
ox3ox1

þ x3

o2x
ox3ox1

� ð1� 2mÞ ox
ox1

þ o2w
ox2ox3

: ð10Þ

This solution of the equations of elasticity was first introduced by Boussinesq (1885) and formalized by
Green and Zerna (1968), who described the contributions of the three functions as Solutions A, B, and E,
respectively (see also Barber, 2002, Chapter 19). The equilibrium equations require that u, x, w satisfy the
equations

r2u ¼ ð1� 2mÞV
1� m

; r2x ¼ 0; r2w ¼ 0: ð11Þ

A particular solution to Eq. (11:i) is

up ¼ ð1� 2mÞ
12ð1� mÞ 2V 0xixi þ V iðsÞx4

i

� �
: ð12Þ

Suitable potentials for x, w and for the homogenous solution to Eq. (11:i) are chosen based on the fact that
Eqs. (12, 2) result in stresses that are constant or quadratic in xi when substituted into Eqs. (5)–(10). Hence, we
choose the following forms because they will also yield stresses that are constant and quadratic in the spatial
variables

uh ¼ F iðsÞx2
i þ GijðsÞx2

i x2
j ; x ¼ H0ðsÞx3 þHiðsÞx3x2

i ;

w ¼ L0ðsÞ þ LiðsÞx2
i

� �
x1x2;

ð13Þ

where F i;Gij;Hi;Li are functions of time and hence s. Also, we can set Gij ¼ Gji without loss of generality. The
potentials (13) are required to be harmonic, leading to the conditions

X3

i¼1

F iðsÞ ¼ 0; 2GaaðsÞ þ
X3

i¼1

GiaðsÞ ¼ 0;
X3

i¼1

HiðsÞ þ 2H3ðsÞ ¼ 0;

3
X3

i¼1

LiðsÞ � 2L3ðsÞ ¼ 0;

ð14Þ

where no summation is implied in the term Gaa. From this point on, the functional dependence on s of the
calligraphic symbols F ;G;H;L will be omitted in the interests of brevity.

The relations (14) can be used to eliminate the functions F 1;G11;G22;G33;H3;L1 in (5)–(10), giving
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rc
11 ¼ � 2 F 2 þ F 3 þ mH0 � L0 �

ð1þ mÞV 0

6ð1� mÞ

� �
� 2 2G12 þ 2G31 þ mH1 þ 3L2 þ L3 �

V 1ðsÞ
2

� �
x2

1

þ 2 2G12 � mH2 þ 3L2 þ
mV 2ðsÞ

2ð1� mÞ

� �
x2

2 þ 2 2G31 þ ð1þ mÞH1 þ mH2 þ L3 þ
mV 3ðsÞ

2ð1� mÞ

� �
x2

3 ð15Þ

rc
22 ¼ 2 F 2 � mH0 � L0 þ

ð1þ mÞV 0

6ð1� mÞ

� �
þ 2 2G12 � mH1 þ 3L2 þ L3 þ

mV 1ðsÞ
2ð1� mÞ

� �
x2

1

� 2 2G12 þ 2G23 þ mH2 þ 3L2 �
V 2ðsÞ

2

� �
x2

2 þ 2 2G23 þ mH1 þ ð1þ mÞH2 � L3 þ
mV 3ðsÞ

2ð1� mÞ

� �
x2

3 ð16Þ

rc
33 ¼ 2F 3 � 2ð1� mÞH0 þ

ð1þ mÞV 0

3ð1� mÞ þ 2 2G31 � ð1� mÞH1 þ
mV 1ðsÞ

2ð1� mÞ

� �
x2

1

þ 2 2G23 � ð1� mÞH2 þ
mV 2ðsÞ

2ð1� mÞ

� �
x2

2 � 2 2G31 þ 2G23 þ mðH1 þH2Þ �
V 3ðsÞ

2

� �
x2

3 ð17Þ

rc
12 ¼ 2ð4G12 þ 6L2 þ L3Þx1x2 ð18Þ

rc
23 ¼ 2ð4G23 þ 2mH2 � L3Þx2x3 ð19Þ

rc
31 ¼ 2ð4G31 þ 2mH1 þ L3Þx3x1: ð20Þ

This solution satisfies the equations of equilibrium and compatibility for all (x1, x2, x3, s). The remaining un-
known functions will be eliminated using the boundary conditions in Section 2.3.

2.2. Initial stress field

The initial stress field ro is not required to satisfy the equations of compatibility, but must satisfy the equi-
librium equations in the absence of body force (since the body forces were already taken into account in the
term rc). A suitable general form is

ro
11 ¼ f1ðrÞ þ g1iðrÞx2

i ; ro
22 ¼ f2ðrÞ þ g2iðrÞx2

i ; ro
33 ¼ f3ðrÞ þ g3iðrÞx2

i ð21Þ

ro
12 ¼ h12ðrÞx1x2; ro

23 ¼ h23ðrÞx2x3; ro
31 ¼ h31ðrÞx3x1; ð22Þ

where fi, gji, hji are arbitrary functions of r. This form of the initial stress field is chosen because Eq. (4) (the
sum of Eqs. (15)–(20) and Eqs. (21 and 22)) must satisfy homogeneous boundary conditions on the ellipsoid’s
surface r = s. We shall show in Section 2.4 that Eqs. (21 and 22) are sufficiently general to provide a solution
satisfying the stated governing equations and boundary conditions for any history of body force described by
a potential of the form (2).

Substituting Eqs. (21 and 22) into the equilibrium equations and noting that

of ðrÞ
oxi

¼ df
dr

or
oxi

;

we obtain

rf2g11ðrÞ þ h12ðrÞ þ h31ðrÞg þ
f 01ðrÞ

a2
1

þ g011ðrÞx2
1

a2
1

þ g012ðrÞ
a2

1

þ h012ðrÞ
a2

2

	 

x2

2 þ
g013ðrÞ

a2
1

þ h031ðrÞ
a2

3

	 

x2

3 ¼ 0

r 2g22ðrÞ þ h12ðrÞ þ h23ðrÞf g þ f 02ðrÞ
a2

2

þ g021ðrÞ
a2

2

þ h012ðrÞ
a2

1

	 

x2

1 þ
g022ðrÞx2

2

a2
2

þ g023ðrÞ
a2

2

þ h023ðrÞ
a2

3

	 

x2

3 ¼ 0

r 2g33ðrÞ þ h31ðrÞ þ h23ðrÞf g þ f 03ðrÞ
a2

3

þ g031ðrÞ
a2

3

þ h031ðrÞ
a2

1

	 

x2

1 þ
g032ðrÞ

a2
3

þ h023ðrÞ
a2

2

	 

x2

2 þ
g033ðrÞx2

3

a2
3

¼ 0:

These equations can be satisfied by equating the coefficients of the spatial variables x1, x2, x3 to zero in each
equation. This gives 12 first-order ordinary differential equations that can be used to eliminate fi, gji in terms of
the remaining functions hji through the relations
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g11ðrÞ ¼ A11; g12ðrÞ ¼ A12 �
a2

1h12ðrÞ
a2

2

; g13ðrÞ ¼ A13 �
a2

1h31ðrÞ
a2

3

ð23Þ

g21ðrÞ ¼ A21 �
a2

2h12ðrÞ
a2

1

; g22ðrÞ ¼ A22; g23ðrÞ ¼ A23 �
a2

2h23ðrÞ
a2

3

ð24Þ

g31ðrÞ ¼ A31 �
a2

3h31ðrÞ
a2

1

; g32ðrÞ ¼ A32 �
a2

3h23ðrÞ
a2

2

; g33ðrÞ ¼ A33 ð25Þ

f1ðrÞ ¼ �a2
1r2A11 þ B1 þ a2

1

Z s

r
h12ðpÞ þ h31ðpÞf gp dp ð26Þ

f2ðrÞ ¼ �a2
2r2A22 þ B2 þ a2

2

Z s

r
h12ðpÞ þ h23ðpÞf gp dp ð27Þ

f3ðrÞ ¼ �a2
3r2A33 þ B3 þ a2

3

Z s

r
h31ðpÞ þ h23ðpÞf gp dp; ð28Þ

where Aij, Bi are constants of integration and p is a dummy variable of integration.

2.3. Stress boundary conditions

At any given time t, the boundary r = s(t) of the partially accreted body must be traction-free. However, we
also assume that the accretion process occurs in such a manner that each increment of new material is laid
down in a stress-free state. There can be no sudden change in stress state as a particle resting on the surface
becomes a part of the accreting body and hence we must impose the stronger condition that all six stress com-
ponents are instantaneously zero at r = s (Naumov, 1994; Kadish et al., 2005).

To explain this stronger boundary condition, we envisage a situation in which recently accreted particles
near the surface simply rest against each other as in a granular medium, so that particles in the surface layer
transmit negligible forces. However, as more particles accrete, those deeper below the surface will come under
increasing pressure from the weight of those above and sintering and diffusion processes will lead to the devel-
opment of a more cohesive structure (Coble, 1970). The additional equations implied in the stress-free bound-
ary condition will suffice to determine the initial stress field of Section 2.2, since every point in the fully
accreted body was at some point in time located on the boundary of the partially accreted body. This
procedure is similar to that used to determine the residual stress field in a body solidified from a melt (Pedroso
and Domoto, 1973).

To impose the stress-free boundary conditions, the time-varying stress field (15)–(20) is added to the initial
stress field (21 and 22) after using the substitutions (23)–(28). The instantaneous boundary is defined by the
equation r = s and hence

x2
3 ! a2

3 s2 � x2
1=a2

1 � x2
2=a2

2

� �
from (1). This result is used to eliminate x3 in the expressions for the stress components, which then read:

r11¼�2ðF 2þF 3þ mH0�L0Þþ
ð1þ mÞV 0

3ð1� mÞ þB1

� A11�h31ð Þa2
1þ 4G31þ2ð1þ mÞH1þ2mH2þ2L3þA13þ

mV 3ðsÞ
ð1þ mÞ

� �
a2

3

� �
s2

� 2ð2G12þ2G31þ mH1þ3L2þL3Þ�A11�V 1ðsÞ�h31þ
a2

3

a2
1

4G31þ2ð1þ mÞH1þ2mH2þ2L3þ
mV 3ðsÞ
ð1� mÞþA13

� �� �
x2

1

þ 2ð2G12þ3L2� mH2ÞþA12þ
mV 2ðsÞ
ð1� mÞ�

a2
1

a2
2

ðh12þh31Þ�
a2

3

a2
2

4G31þ2ð1þ mÞH1þ2mH2þ2L3þA13þ
mV 3ðsÞ
ð1� mÞ

� �� �
x2

2

ð29Þ
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r22¼ 2ðF 2� mH0�L0ÞþB2þ
ð1þ mÞV 0

3ð1� mÞ

� ðA22þh23Þa2
2� 4G23þ mH1þ2ð1þ mÞH2�2L3þA23þ

mV 3ðsÞ
ð1� mÞ

� �
a2

3

� �
s2

þ 2ð2G12þ mH1þ3L2þL3ÞþA21þ
mV 1ðsÞ
ð1� mÞ�

a2
2

a2
1

ðh12�h23Þ
�

�a2
3

a2
1

4G23þ2mH1þ2ð1þ mÞH2þ2L3þA23þ
mV 3ðsÞ
ð1� mÞ

� ��
x2

1

�
�

2ð2G12þ2G23þ mH2þ3L2Þ�A22�V 2ðsÞ�h23

�a2
3

a2
2

4G23þ2H2�2L3þ2mH1þ2mH2þA23þ
mV 3ðsÞ
ð1� mÞ

� ��
x2

2 ð30Þ

r33¼ 2ðF 3�ð1� mÞH0ÞþB3þ
ð1þ mÞV 0

3ð1� mÞ �ð4G31þ4G23þ2mH1þ2mH2�V 3ðsÞÞa2
3s2

� 2ð2G31�ð1� mÞH1ÞþA31þ
mV 1ðsÞ
1� m

þa2
3

a2
1

4G31þ4G23þ2mH1þ2mH2�A33�h31�V 3ðsÞð Þ
� �

x2
1

� 2ð2G23�ð1� mÞH2ÞþA32þ
mV 2ðsÞ
ð1� mÞþ

a2
3

a2
2

ð4G31þ4G23þ2mH1þ2mH2�A33�h23�V 3ðsÞÞ
� �

x2
2 ð31Þ

r12 ¼ ½2ð4G12 þ 6L2 þ L3Þ þ h12�x1x2 ð32Þ
r31 ¼ ½2ð4G31 þ L3 þ 2mH1Þ þ h31�x3x1 ð33Þ
r23 ¼ ½2ð4G23 � L3 þ 2mH2Þ þ h23�x2x3 ð34Þ

We recall that the calligraphic symbols F ;G;H;L are functions of time and hence of s, whereas the hij are
functions of the position variable r. However, at the instantaneous boundary r = s, all these expressions
become functions of s and hence each stress component in Eqs. (29)–(34) has the form a polynomial in x1,
x2 with coefficients that are functions of s. By setting each of these coefficients to zero, we obtain 12 linear
algebraic equations for the remaining unknown functions, with s as a parameter. These equations are not lin-
early independent and it proves possible to satisfy them without determining all the unknown functions. This
arises because of the previously noted ambiguity in the decomposition (4) and it can be verified that the
remaining undetermined functions can be given arbitrary values without affecting the expressions for the total
stress components.

2.4. Complete stress field

Once the functions F i;Gij;Hi;Li; hij have been determined, the time-varying stress field rc can be deter-
mined from Eqs. (15)–(20) and the initial stress field ro from (21 and 22), using (23)–(28). The complete stress
field is then recovered by combining these expressions as in (4). Notice that depending on the variation of the
angular velocity X with time, the initial stress and hence the total stress can have fairly general (not necessarily
quadratic) dependence on the spatial coordinates x1, x2, x3.

The stress field can be written as closed-form expressions involving integrals of the components of angular
velocity Vi(s), but because of the number of parameters involved, the resulting expressions are too lengthy to
present here. They are however readily obtained using a symbolic manipulation program such as Mathematica
or Maple and an appropriate code is available for download at the website http://www-personal.umich.edu/
jbarber/ellipsoid.nb. In the following section, we shall present the results of some special cases.

3. Results

The classical solution for the stresses in a rotating ellipsoidal body is that due to Chree (1895), who implic-
itly assumed that the initial stress ro is zero—in other words, if the body were somehow brought to rest and
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gravitational loading ‘turned off’, it would be left in a stress-free state. This is certainly not the case for an
accreted body, as demonstrated by the solution for the sphere (Kadish et al., 2005). Instead, the stress state
is significantly influenced by the history of rotation during the accretion process.

Dones and Tremaine (1993) discussed the way in which the angular velocity might be influenced by the
dynamics of an accreting system of particles and suggested that it may take the power-law form

XðsÞ ¼ Xf sn;

where Xf = X(1) is the angular velocity when growth is complete. They concluded that the value of n would lie
in the range 0 6 n 6 2 and depend on the magnitude of the partially accreted body’s gravitational field relative
to that of the Sun and the velocity dispersion of the accreting particles. When the velocity dispersion is high
and gravitation is strong, n is predicted to approach 2 and the angular velocity increases during growth,
whereas for other combinations of these parameters n is predicted to be zero and the angular velocity is con-
stant. Some results for the sphere with a quadratically varying angular velocity were given by Kadish et al.
(2005).

3.1. Constant angular velocity

For constant angular velocity X about an arbitrary axis, the solution for the stress field simplifies to the
quadratic form

r11 ¼
qðX2

2 þ X2
3Þ

2
� pq2Ga1a2a3K1

� �
a2

1ð1� r2Þ ð35Þ

r22 ¼
qðX2

3 þ X2
1Þ

2
� pq2Ga1a2a3K2

� �
a2

2ð1� r2Þ ð36Þ

r33 ¼
qðX2

1 þ X2
2Þ

2
� pq2Ga1a2a3K3

� �
a2

3ð1� r2Þ ð37Þ

r12 ¼ r23 ¼ r31 ¼ 0: ð38Þ

The off-diagonal stresses are all zero, so the diagonal stresses are also the principal stresses. The stress field
reduces to this simple form because the body force coefficients Vi are not functions of the growth parameter.
Notice that even in this simple case, the stress field is significantly different from that given by Chree (1895).

We notice from Eqs. (35)–(38) that the stresses due to gravitation alone (Xi = 0) are always compressive,
but except in the limiting case of the sphere, they are not everywhere hydrostatic. Thus, gravitational effects
alone could conceivably cause failure through a shear-derived yield criterion such as Mises or Mohr-Coulomb.
The rotation Xi tends to produce superposed tensile stresses and hence to reduce the magnitude of the com-
pressive stress components.

3.1.1. Example

To illustrate the qualitative effects of ellipticity on the resulting stress field, we compare the Mises stress

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3rijrij � riirjjÞ

2

r

in an accreted sphere with that in an accreted ellipsoid with the same mass, density, and angular momentum.
The comparison sphere has a radius of 25 km, density 2500 kg/m3, and angular velocity 2 · 10�4 rad/s, which
is assumed constant throughout the accretion process. These values are arbitrary in the sense that they do not
correspond to any one particular object, but are representative in that they fall within the range of observed
asteroid sizes, densities, and angular velocities (Hilton, 2002; Pravec et al., 2002). The ellipsoid has principal
semi-axis ratios a2/a1 = 1, a3/a1 = 0.6 and rotates about the x3-axis, which is the axis with the maximum
inertia.

Figs. 1(a and b) shows contour plots of Mises stress in the sphere and the ellipsoid, respectively. The stress
in the ellipsoid varies quadratically with r (see Eqs. (35)–(38)) from a maximum of 186.7 kPa at the center to
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zero at the boundary. The stress in the sphere also varies quadratically with r, but the gradation in the contour
plot is insufficiently fine to show this, since the maximum at the center is only 31.25 kPa.

Chree’s calculation for a ‘preformed’ ellipsoid with the same properties and rotation rate are shown in
Fig. 1(c). Comparison of Figs. 1(b and c) shows that Chree’s solution predicts a totally different qualitative
form for the stress field. The maximum occurs at the poles and is 164.9 kPa, while the minimum occurs at
the interior point (x1 = 20.9 km, x3 = 0 km) on the equatorial plane and is 73.7 kPa. The present authors
maintain that Chree’s solution is unrealistic for any practical planetary body, since its predictions differ so
much from the accreted solution and no scientific mechanism can be envisaged by which the body could be
assembled before the body forces were applied.

3.2. Variable angular velocity

To illustrate the range of problems that can be solved with variable angular velocity, while keeping the
expressions for stress components tolerably brief, we consider the special case of a sphere a1 = a2 = a3 = a
which rotates at a constant speed X, but whose axis of rotation precesses uniformly during accretion from
the x3-axis at s = 0 to the x1-axis at s = 1. It then follows that

X1 ¼ X sin
ps
2

� �
; X2 ¼ 0; X3 ¼ X cos

ps
2

� �
:

The final stress field is obtained as

a b

c

Fig. 1. Contour plot of the Mises stress in (a) an accreted sphere, (b) an accreted ellipsoid, and (c) an ellipsoid which is assembled before
the body forces are applied (Chree’s solution).
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r11¼
qX2ð1þ mÞ
4ð7þ5mÞ ða

2�R2Þ�2
a2

p2
þx2

� �
1þ cos

pR
a

� �	 

�2aR

p
sin

pR
a

� �� �
�2pq2Gða2�R2Þ

3

r22¼
qX2

2
ða2�R2Þ�ðx

2
1� x2

3Þð1þ mÞ
ð7þ5mÞ 1þ cos

pR
a

� �	 
� �
�2pq2Gða2�R2Þ

3

r33¼
qX2

4ð7þ5mÞ ð13þ9mÞða2�R2Þþ2
a2

p2
þ x2

2

� �
ð1þ mÞ 1þ cos

pR
a

� �	 

þ2aRð1þ mÞ

p
sin

pR
a

� �� �
�2pq2Gða2�R2Þ

3

r12¼
qX2ð1þ mÞx1x2

ð7þ5mÞ cos2 pR
2a

� �

r23¼�
qX2ð1þ mÞx2x3

ð7þ5mÞ cos2 pR
2a

� �

r31¼ 0

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
is the distance from the origin.

4. Conclusions

The stress field has been derived for an accreted, self-gravitating triaxial ellipsoid whose angular velocity
may vary in a fairly general way during growth. The only restriction imposed is that the nutation period (if
any) be long relative to the period of diurnal rotation. It is assumed growth occurs in such a way that the ellip-
soid’s shape remains constant, that the body can at all time be treated as a continuum, and that all deforma-
tions are infinitesimal and elastic. The most general state of stress is available in closed form, but it is too long
to present explicitly. For the special case where the ellipsoid’s angular velocity is constant (not a function of
time) during growth, the stress field takes the simple form of Eqs. (35)–(38).

The results show that ellipticity has a significant effect on the state of stress compared with an accreted
sphere with similar mass, density, and angular momentum. Also, comparison of the stress field with the clas-
sical solution due to Chree (1895) shows that the accretion process has a major qualitative effect on the stress
field. In particular, Chree’s solution, which assumes that the body was somehow preformed before the body
forces due to gravitation and rotation were applied, predicts different locations for the maximum Mises stress.

To illustrate the application of the method to more complex rotation histories, the solution is given for a
sphere whose angular velocity precesses during the accretion process. The authors anticipate that the astro-
nomical community would like to see the implications of the present theory for a wider range of astronomical
bodies and for this purpose a user-friendly MathematicaTM notebook permitting the solution of other prob-
lems can be downloaded from the website http://www-personal.umich.edu/jbarber/ellipsoid.nb. It is not nec-
essary to understand the mathematical structure of the solution in order to use this resource.
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