
D:\INTERNET\EECS_FTP\UMBMARK.WP6, March 27, 1995

The University of MichiganThe University of Michigan

UMBmark —
A Method for Measuring, Comparing, and Correct-

ing Dead-reckoning Errors in Mobile Robots

by
J. Borenstein  and L. Feng  1 2

with the help of
Professors D. K. Wehe and Y. Koren

and Grad. Students Z. Fan, B. Holt, and B. Costanza

December 1994
Copies of this report are available from the University of Michigan as: Technical Report UM-MEAM-94-22  

Prepared by the University of Michigan
For the Oak Ridge National Lab (ORNL) D&D Program

and the 
United States Department of Energy's

Robotics Technology Development Program 
Within the Environmental Restoration, Decontamination and Dismantlement Project

1) Dr. Johann Borenstein 2) Dr. Liqiang Feng
The University of Michigan The University of Michigan
Department of Mechanical Department of Mechanical 
Engineering and Applied Mechanics Engineering and Applied Mechanics
Mobile Robotics Laboratory Mobile Robotics Laboratory 
1101 Beal Avenue 1101 Beal Avenue
Ann Arbor, MI 48109 Ann Arbor, MI 48109
Ph.: (313) 763-1560 Ph.: (313) 936-9362
Fax: (313) 944-1113 Fax: (313) 763-1260
Email: Johannb@umich.edu Email: Feng@engin.umich.edu

Please direct all inquiries to Johann Borenstein



i

Executive Summary

Dead-reckoning is the most widely used method for determining the momentary position
of a mobile robot. In most practical applications dead-reckoning provides easily accessible
real-time positioning information in-between periodic absolute position measurements. The
frequency at which the (usually costly and/or time-consuming) absolute measurements must
be performed depends to a large degree on the accuracy of the dead-reckoning system. 

This report introduces a method for measuring dead-reckoning errors in mobile robots, and
for expressing these errors quantitatively. When measuring dead-reckoning errors, one must
distinguish between (1) systematic errors, which are caused by kinematic imperfections of the
mobile robot (for example, unequal wheel-diameters), and (2)  non-systematic errors, which
may be caused by wheel-slippage or irregularities of the floor. Systematic errors are a property
of the robot itself, and they stay almost constant over prolonged periods of time, while non-
systematic errors are a function of the properties of the floor.

Our method, called the University of Michigan Benchmark test (UMBmark), is especially
designed to uncover certain systematic errors that are likely to compensate for each other (and
thus, remain undetected) in less rigorous tests. This report explains the rationale for the
carefully designed UMBmark procedure and explains the procedure in detail.  Experimental
test results from different mobile robots are presented and discussed. Our report also proposes
a method called extended UMBmark for measuring non-systematic errors. Although the
measurement of non-systematic errors is less useful because it depends strongly on the floor
characteristics, one can use the extended UMBmark test for comparison of different robots
under similar conditions. This report presents experimental results from six different vehicles
tested for their susceptibility to non-systematic error by means of the extended UMBmark test.
With the quantitative benchmark test proposed here, researchers will be able to compare the
dead-reckoning accuracy of different robots, or they can measure and tune the performance of
a single robot.

Perhaps the foremost contribution of the work described here is a unique and innovative
method for the calibration of mobile robots. This method is called UMBmark calibration
because it is based on measurements from the UMBmark test. Performing an occasional
calibration as proposed here will increase the robot's dead-reckoning accuracy and reduce
operation cost because an accurate mobile robot requires fewer absolute positioning updates.
Many manufacturers or end-users calibrate their robots, usually in a time-consuming and non-
systematic trial and error approach.  By contrast, the UMBmark calibration is systematic and
provides near-optimal results. Our procedure for measuring and correcting systematic dead-
reckoning errors can be performed easily and without complicated equipment. Furthermore,
UMBmark lends itself readily for adaptation as an automated self-calibration procedure.
Experimental results are presented that show a consistent improvement of at least one order of
magnitude in dead-reckoning accuracy (with respect to systematic errors) for a mobile robot
calibrated with the UMBmark calibration.
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1. INTRODUCTION
 

This report introduces a method for measuring the dead-reckoning accuracy in mobile
robots.  Our method, called the University of Michigan Benchmark (UMBmark) test, is
especially designed and optimized for differential drive robots (like the TRC LabMate), but
the method can be used for all robots. In the report we present the results from several
different experiments in which different aspects of the dead-reckoning performance of six
mobile robot (or robot configurations) were tested and compared. The six robots are:

1. TRC LabMate
2. Cybermotion K2A
3. CLAPPER (4-DOF platform)
4. Remotec Andros
5. Remotec Andros with "encoder trailer"
6. TRC LabMate with Smart Encoder Trailer (simulation only)

Before we describe these platforms and the experiments in greater detail, we will discuss
the motivation for trying to improve dead-reckoning accuracy. In Section 2 we define some
important concepts in dead-reckoning and in Section 3 we introduce the UMBmark proce-
dure. Section 4 and 5 presents the experimental results from testing the six robot platforms
with the UMBmark test. Finally, in Section 6 we present a method for calibrating mobile
robots using the UMBmark test.   

1.1 Absolute Positioning Methods

In most mobile robot applications two basic position-estimation methods are employed
together: absolute and relative positioning [Borenstein and Koren, 1987; Hollingum, 1991;
Byrne et al., 1992; Chenavier and Crowley, 1992; Evans, 1994]. Relative positioning is
usually based on dead-reckoning (i.e., monitoring the wheel revolutions to compute the offset
from a known starting position). Dead-reckoning is simple, inexpensive, and easy to accom-
plish in real-time. The disadvantage of dead-reckoning is its unbounded accumulation of
errors. 

Absolute positioning methods usually rely on (a) navigation beacons, (b) active or passive
landmarks, (c) map matching, or (d) satellite-based navigation signals. Each of these absolute
positioning approaches can be implemented by a variety of methods and sensors. Yet, none of
the currently existing systems is particularly elegant. Navigation beacons and landmarks
usually require costly installations and maintenance, while map-matching methods are either
very slow or inaccurate [Cox, 1991], or even unreliable [Congdon et al, 1993]. With any one
of these measurements it is necessary that the work environment either be prepared or be
known and mapped with great precision. Satellite-based navigation (GPS) can be used only
outdoors and has poor accuracy, on the order of 10-30 meters [Byrne, 1993]. Radio
frequency-based systems are very expensive and are susceptible to reflections from metal
objects [Byrne et al., 1992].
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Another approach to the position determination of mobile robots is based on inertial
navigation with gyros and/or accelerometers. Our own experimental results with this ap-
proach, as well as the results published by Barshan and Durrant-Whyte [1993; 1994], indicate
that this approach is not advantageous. Accelerometer data must be integrated twice to yield
position, thereby making these sensors exceedingly sensitive to drift. Another problem is that
accelerations under typical operating conditions can be very small, on the order of 0.01 g.
Yet, fluctuation of this magnitude already occur if the sensor tilts relative to a perfectly
horizontal position by only 0.5, for example when the vehicle drives over uneven floors.o

Gyros can be more accurate (and costly) but they provide information only on the rate of
rotation of a vehicle, so their data must be integrated once. This problem does not exist with
electronic compasses that measure the orientation of the robot relative to the earth's magnetic
field. However, electronic compasses are not recommended for indoor applications, because
of the large distortions of the earth's magnetic field near power lines or steel structures [Byrne
et al., 1992].

1.2 The Importance of Dead-reckoning

Improved dead-reckoning can dramatically reduce the cost for installations of mobile robot
systems because it simplifies the fundamental problem of position determination. 

Evidence for the importance of dead-reckoning accuracy was provided at the 1992 AAAI
Mobile Robot Competition in San Jose, California. Mobile robots from 10 leading universities
and research institutes took part in this competition, which comprised of three different
“typical mobile robot tasks.” The two teams with the first and second place winning entries,
“CARMEL” and “FLAKEY,” ( U of Michigan and Stanford Research Institute, respectively)
summarized their experience and insights from this competition in [Congdon et al., 1993].
Comparing the performance of U of M's CARMEL and SRI's FLAKEY the teams concluded:

“The use of precise dead-reckoning and long-range sensing gave CARMEL a marked advantage...
[over FLAKEY's landmark navigation].”

In spite of the apparent importance of accurate dead-reckoning, little research is directly
aimed at improving the dead-reckoning accuracy of mobile robots. We attribute this observa-
tion to the fact that a large portion of research in mobile robotics is being done by the
Artificial Intelligence (AI) community. AI researchers are traditionally concerned with the
higher-level aspects of robotics. For this reason, AI researchers appear to focus on methods of
feature extraction and map matching [Skewis et al., 1991; Kortenkamp et al. 1992; Rencken,
1994]. These research issues are of great importance for the future development of mobile
robots, but at this time they are either too slow or too inaccurate to replace dead-reckoning
altogether. Even Cox [1991], a proponent of map-matching, says about the virtues of dead-
reckoning accuracy:

“There also appears to be a self sustaining property to this configuration [map-matching
combined with dead-reckoning]: Accurate knowledge of position allows for fast robust matching,
which leads to accurate knowledge of position.”
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Figure 2.1: A typical differential-drive mobile
robot (bottom view).

2. PROPERTIES OF DEAD-RECKONING ERRORS

Figure 2.1 shows a typical differential
drive mobile robot, the LabMate platform
manufactured by [TRC]. In this design incre-
mental encoders are mounted onto the two
drive motors to count the wheel revolutions.
Using simple geometric equations, it is
straight-forward to compute the momentary
position of the vehicle relative to a known
starting position. This computation is called
dead-reckoning. For completeness, we re-
write the well known equations for dead-
reckoning below.

Suppose that at sampling interval I the left
and right wheel encoders show a pulse increment of N  and N , respectively. Suppose furtherL R

that

c  = D /nC  (2.1)m n e

where
c - Conversion factor that translates encoder pulses into linear wheel displacement. m

D - Nominal wheel diameter (in mm).n

C  - Encoder resolution (in pulses per revolution).e

n - Gear ratio of the reduction gear between the motor (where the encoder is attached)
and the drive wheel. 

We can compute the incremental travel distance for the left and right wheel, U   andL, I

U  , according to R, I

U  = c  N (2.2)L/R, I m L/R, I

and the incremental linear displacement of the robot's centerpoint C, denoted U  , accordingi

to

U  = ( U  + U )/2 (2.3)i R,i L,i

Next, we compute the robot's incremental change of orientation  

= ( U  - U )/b (2.4)i R,i L,i

where b is the wheelbase of the vehicle, ideally measured as the distance between the two
contact  points between the wheels and the floor.
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The robot's new relative orientation  can be computed fromi

 =  + (2.5)i i-1 i

and the relative position of the centerpoint is

x  = x  + U  cos (2.6a)i i-1 i i

y  =  y  + U sin (2.6b)i i-1 i i

where
x , y - relative position of the robot's centerpoint c at instant I.i i

As one can see from Eqs. (2.1) - (2.6), dead-reckoning is based on simple equations that
are easily  implement, and that utilize data from inexpensive incremental wheel encoders.
However, dead-reckoning is based on the assumption that wheel revolutions can be translated
into linear displacement relative to the floor. This assumption is only of limited validity. One
extreme example is wheel slippage: If one wheel was to slip on, say, an oil spill, then the
associated encoder would register wheel revolutions even though these revolutions would not
correspond to a linear displacement of the wheel. 

Besides this extreme case of total slippage, there are several other, more subtle reasons for
inaccuracies in the translation of wheel encoder readings into linear motion. All of these error
sources fit into one of two categories: (1) systematic errors and (2) non-systematic errors.

1. Systematic errors
a. Unequal wheel diameters
b. Average of both wheel diameters differs from nominal diameter
c. Misalignment of wheels
d. Uncertainty about the effective wheelbase (due to non-point wheel contact with the floor)
e. Limited encoder resolution
f. Limited encoder sampling rate

2. Non-systematic errors
a. Travel over uneven floors
b. Travel over unexpected objects on the floor
c. Wheel-slippage due to:

slippery floors
over-acceleration
fast turning (skidding) 
external forces (interaction with external bodies)
internal forces (e.g., castor wheels)
non-point wheel contact with the floor
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Systematic errors are particularly grave, because they accumulate constantly. On most
smooth indoor surfaces systematic errors contribute much more to dead-reckoning errors than
non-systematic errors. However, on rough surfaces with significant irregularities, non-
systematic errors may be dominant. 

2.1 Non-Systematic Dead-reckoning Errors

Non systematic dead-reckoning errors are those errors that are caused by interaction of the
robot with  unpredictable features of the environment. For example, irregularities of the floor
surface, such as bumps, cracks, or debris, will cause a wheel to rotate more than predicted by
Eq. (2.2), because the affected wheel travels up or down the irregularity, in addition to the —
expected — horizontal amount of travel. Non-systematic errors are a great problem for actual
applications, because it is impossible to predict  an upper bound for the dead-reckoning error.
Recent work at the University of Michigan [Borenstein, 1994a; 1994b; 1995] showed that by
using redundant encoder data, non-systematic errors can be reduced  by orders of magnitude.

2.2 Systematic dead-reckoning errors

Systematic errors are usually caused by imperfections in the design and mechanical
implementation of a mobile robot. In the course of over 12 years of experimental work with
differential-drive mobile robots we observed that the two most notorious systematic error
sources are unequal wheel diameters and the uncertainty about the effective wheelbase. This
opinion is reflected in the literature, where these two error sources are named most often
[Borenstein and Koren, 1985; 1987; Crowley, 1989; Komoriya and Oyama, 1994; Everett,
1995]. 

a) Unequal wheel diameters. Most mobile robots use rubber tires to improve traction. These
tires are difficult to manufacture to exactly the same diameter. Furthermore, rubber tires
compress differently under asymmetric load distribution. Either one of these effects can
cause substantial dead-reckoning errors.

b) Uncertainty about the wheelbase. The wheelbase is defined as the distance between the
contact points of the two drive wheels of a differential-drive robot and the floor. The
wheelbase must be known in order to compute the number of differential encoder pulses
that correspond to a certain amount of rotation of the vehicle. Uncertainty in the effective
wheelbase is caused by the fact that rubber tires contact the floor not in one point, but
rather in a contact area. The resulting uncertainty about the effective wheelbase can be on
the order of 1% in some commercially available robots.

 
In conventional mobile robots systematic errors can be reduced to some degree by careful

mechanical design of the vehicle and by vehicle-specific calibration. In this paper we
introduce new methods for finding and implementing such calibration factors.
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2.3 Definition of systematic dead-reckoning errors

Systematic errors, as explained above, are vehicle-specific and don't usually change during
a run (although different load distributions can change some systematic errors quantitatively).
Thus, dead-reckoning can be improved generally (and in our experience, significantly) by
measuring the individual contribution of the most dominant errors sources, and then counter-
acting their effect in software. 

As mentioned before, the two dominant systematic dead-reckoning error sources are
unequal wheel diameters and the uncertainty about the wheelbase. We will denote these
errors E  and E , respectively. It is important to note that E  has an effect only when turning,d b b

while E  affects only straight line motion. E  and E  are dimensionless values, expressed asd d b

fractions of the nominal value. 

Specifically, we define 

E  = D /D  (2.7)d R L

where D  and D  are the actual wheel diameters. R L

The nominal ratio between the wheel diameters is of course 1.00. We also define 

E  = b /b (2.8)b actual nominal

where b is the wheelbase of the vehicle.

At this time we have defined only the wheelbase error, E , and the ratio between actualb

wheel diameters, E , as relevant factors. However, if the average of the two actual wheeld

diameters, denoted D , differs from the nominal wheel diameter, denoted D , then the vehiclea n

will experience an additional dead-reckoning error, which we call the scaling error E . Es s

affects straight-line motion and, according to Appendix A, pure turning motion. However,
even though E  can be a significant error, E  is exceedingly easy to measure with just ans s

ordinary tape measure. For this reason we will assume that E  has been measured ands

corrected in software before any of the procedures described in this paper is performed.
Consequently we don't consider E  a dominant error, because even with a cheap tape measures

E  can be measured and corrected with an accuracy of 0.3-0.5% of full scale. For complete-s

ness, Appendix B describes a simple procedure for doing so and explains why the accuracy of
a tape measure is sufficient for the task.
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Figure 3.1: The unidirectional square path
experiment.
a. The nominal path.
b. Either one of the two significant errors E  orb

E  can cause the same final position error. d

3. MEASURING DEAD-RECKONING ERRORS

In this section we investigate two methods for isolating and measuring systematic dead-
reckoning errors. We discuss two test sequences (benchmark tests), which allow the experi-
menter to draw conclusions about the overall dead-reckoning accuracy of the robot, and to
compare the performance of different mobile robots from different manufacturers.

The first benchmark test is called the "uni-directional square path" test. This test, or some
variations of this test, have been  mentioned
in the literature [Cybermotion, 1987;
Komoriya and Oyama, 1994], but we will
show that this test is unsuitable for differen-
tial drive vehicles. To overcome the short-
comings of the uni-directional square path
test, we introduce in Section 3.2 the "bi-di-
rectional square path test," called
"UMBmark." In Section 3.3 we discuss the
(limited) applicability of the UMBmark test
to the measurement of non-systematic er-
rors. Section 3.4 summarizes the UMBmark
procedure.

3.1 The uni-directional square
path as a benchmark test

Figure 3.1a shows a 4×4 m uni-direc-
tional square path. The robot starts out at a
position x , y , , which is labeled START.0 0 0

The starting area should be located near the
corner of two perpendicular walls. The walls
serve as a fixed reference before and after
the run: measuring the distance between
three specific points on the robot and the
walls allows accurate determination of the
robot's absolute position and orientation. 

The robot is programmed to traverse the
four legs of the square path. The path will
return the vehicle to the starting area, but,
because of dead-reckoning and controller
errors, not precisely to the starting  position.
Since this test aims at determining dead-
reckoning errors and not controller errors,
the vehicle does not need to be programmed
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to return to its starting position precisely — returning approximately to the starting area is
sufficient. Upon completion of the square path, the experimenter again measures the absolute
position of the vehicle, using the fixed walls as a reference. These absolute measurements are
then compared to the position and orientation of the vehicle as computed from dead-reckon-
ing data. The result is a set of return position errors caused by dead-reckoning and denoted

x, y, and .

x = x  - x  abs calc

y = y  - y  (3.1)abs calc

 =  -  abs calc

where
 x, y,  — Position and orientation errors due to dead-reckoning.
 x , y ,  — Absolute position and orientation of the robot.abs abs abs

x , y , —   Position and orientation of the robot as computed from dead-reckoning.calc calc calc

The path shown in Fig. 3.1a comprises of four straight line segments and four pure
rotations about the robot's centerpoint, at the corners of the square. The robot's end position
shown in Fig. 3.1a visualizes the dead-reckoning error.

While analyzing the results of this experiment, the experimenter may draw two different
conclusions: (1) The dead-reckoning error is the result of unequal wheel diameters, E , asd

shown by the slightly curved trajectory in Fig. 3.1b (dotted line); or, (2) the dead-reckoning
error is the result of uncertainty about the wheelbase, E . In the example of  Fig. 3,1b, Eb b

caused the robot to turn 87 instead of the desired 90  (dashed trajectory in Fig. 3.1b).o o

As one can see in Fig. 3.1b, either one of these two cases could yield approximately the
same position error. The fact that two different error-mechanisms might result in the same
overall error may lead an experimenter toward a serious mistake: correcting only one of the
two error sources in software. This mistake is so serious because it will yield apparently
"excellent" results, as shown in the example in Fig. 3.2. In this example, we assume that the
experimenter began "improving" performance by adjusting the wheelbase b in the control
software. According to Eq. (2.4), the experimenter needs only to increase the value of b to
make the robot turn more in each nominal  90 turn. In doing so, the experimenter will soono

have adjusted b to the "ideal" value that will cause the robot to turn 93, thereby effectivelyo

compensating for the 3  orientation error introduced by each slightly curved (but nominallyo

straight) leg of the square path. 
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Figure 3.2: The effect of the two dominant systematic
dead-reckoning errors E  and E  . Note how both errorsb d

may cancel each other out when the test is performed in
only one direction.

We should note that another
popular test path, the "figure-8"
path [Tsumura  et al., 1981;
Borenstein and Koren, 1985; Cox
1991] can be shown to have the
same shortcomings as the uni-
directional square path.

3.2 The bi-directional
square path experi-
ment: "UMBmark"

The detailed example of the
preceding section illustrates that
the uni-directional square path
experiment is unsuitable for test-
ing dead-reckoning performance,
because it can easily conceal two
mutually compensating dead-
reckoning errors. To overcome
this problem, we introduce the
Bi-directional Square Path ex-
periment, called University of
Michigan Benchmark
(UMBmark). UMBmark requires
that the square path experiment is performed in both clockwise and counter-clockwise
direction. Figure 3.3 shows that the concealed dual-error from the example in Fig. 3.2
becomes clearly visible when the square path is performed in the opposite direction. This is so
because the two dominant systematic errors, which may compensate for each other when run
in only one direction, add up to each other and increase the overall error when run in the
opposite direction.
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In informal tests with two other LabMate robots at our lab we have observed (but not1

methodically noted) greater systematic dead-reckoning errors than those in Fig. 3.4. These
may be due to less balanced load-distributions in those earlier tests.
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Figure 3.3: The effect of the two dominant
systematic dead-reckoning errors E  and E  : Whenb d

the square path is performed in the opposite
direction one may find that the errors add up.

The result of the Bi-directional
Square Path experiment might look
similar to the one shown in Fig. 3.4,
which shows actual results with an off-
the-shelf LabMate robot carrying an
evenly distributed load. In this experi-
ment the robot was programmed to fol-
low a 4×4 m square path, starting at
(0,0). The stopping positions for five
runs each in clockwise (cw) and
counter-clockwise (ccw) directions are
shown in Fig. 3.4. Note that Fig. 3.4 is
an enlarged view of the target area. The
results of Fig. 3.4 can be interpreted as
follows:

a. The stopping positions after cw and
ccw runs are clustered in two dis-
tinct areas. 

b. The distribution within the cw and
ccw clusters are the result of non-
systematic errors, as mentioned in
Section 2.2. However, Fig. 3.4
shows that in an uncalibrated vehi-
cle, traveling over a reasonably smooth concrete floor, the contribution of systematic errors
to the total dead-reckoning error is notably larger than the contribution of non-systematic1

errors. 
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Figure 3.4: Typical results from running UMBmark
(a square path run in both cw and ccw directions)
with an uncalibrated vehicle.

(3.2)

(3.3)

After conducting the
UMBmark experiment, one may
wish to derive a single numeric
value that expresses the dead-
reckoning accuracy (with respect
to systematic errors) of the tested
vehicle. In order to minimize the
effect of non-systematic errors, we
suggest to consider the center of
gravity of each cluster as repre-
sentative for the dead-reckoning
errors in cw and ccw directions. 

The coordinates of the two centers
of gravity are computed from the
results of (3.1) as

where n = 5 is the number of runs in each direction.

The absolute offsets of the two centers of gravity from the origin are denoted r  andc.g., cw

r  (see Fig. 3.4) and are given byc.g., ccw

Finally, we define the larger value among r  and r  as the measure of dead-c.g., cw c.g., cw

reckoning accuracy for systematic errors 

E  = max(r  ; r ) (3.4)max,syst c.g.,cw c.g.,ccw

The reason for not using the average of the two centers of gravity r  and r  is thatc.g.,cw c.g.,ccw

for practical applications, one needs to worry about the largest possible dead-reckoning error.
Note that the final orientation error  is not considered explicitly in the expression for
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E . This is so because all systematic orientation errors are implied by the final positionmax,syst

errors. In other words, since the square path has fixed-length sides, systematic orientation
errors translate directly into position errors (as will be shown by Eq. (6.10) and (6.18) in
Section 6).

3.4 Measuring Non-systematic Errors

Some limited information about a vehicle’s susceptibility to non-systematic errors can be
derived from the spread of the return position errors that was shown in Fig. 3.4, above. When
running the UMBmark procedure on smooth floors (e.g., a concrete floor without noticeable
bumps or cracks), an indication of the magnitude of the non-systematic errors can be obtained
from computing the estimated standard deviation, . We will list  in Section 4 (Experiments)
along with other experimental results, but only with the disclaimer that all runs were per-
formed on the same floor, which was fairly smooth and guaranteed free of large irregularities. 

We caution that there is only limited value to knowing , since  reflects only on the
interaction between the vehicle and a certain floor. Furthermore, it can be shown that from
comparing the  from two different robots (even if they traveled on the same floor), one
cannot necessarily conclude that the robots with the larger  showed higher susceptibility to
non-systematic errors.  

In real applications it is imperative that the largest possible disturbance be determined and
used in testing. For example, the  of the test in Fig. 3.4 gives no indication at all as to what
error one should expect if one wheel of the robot inadvertently traversed a large bump or
crack in the floor.  

For the above reasons it is difficult (perhaps impossible) to design a generally applicable
quantitative test procedure for non-systematic errors. However, we would like to propose an
easily reproducible test that would allow to compare the susceptibility to non-systematic
errors between different vehicles.  This test, here called the extended UMBmark, uses the
same bi-directional square path as UMBmark, but, in addition, introduces artificial bumps.
Artificial bumps are introduced by means of a common, round, electrical household-type
cable (such as the ones used with 15 Amp. 6-outlet power strips). Such a cable has a diameter
of about 9-10 mm. It’s rounded shape and plastic coating allow even smaller robots to
traverse it without too much physical impact. In the proposed  extended UMBmark test the
cable is placed 10 times under one of the robot’s wheels, during motion. In order to provide
better repeatability for this test, and to avoid mutually compensating errors, we suggest that
these 10 bumps be introduced as evenly as possible. The bumps should also be introduced
during the first straight segment of the square path, and always under the wheel that faces the
inside of the square. It can be shown [Borenstein, 1994b] that the most noticeable effect of
each bump is a fixed orientation error in the direction of the wheel that encountered the bump.
In the TRC LabMate, for example, the orientation error resulting from a bump of height  h=
10 mm is roughly  = 0.44  [Borenstein, 1994b]. o
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In November 1994 Brad Holt from the University of
Michigan's Mobile Robotics Lab talked to John Kennerly at
ORNL about the expected floor characteristics at potential
D&D application sites. The following are Brad Holt's notes
from this conversation:

The floors are cement with an epoxy-coated surface
that is "like an old car finish."

There are expansion joints along the column lines,
(approximately 30×30 feet) and can be as deep as 1/4 inch. 
Nonstandard cracks are rare and would be "hairline."

The buildings are uninhabited, but are regularly
surveyed and maintained. The odds of encountering chunks
of debris such as wrenches or wires or even papers would
be very rare if at all.  In heavy rains, however, the roofs
can leak, leaving puddles that are cleaned up after the
storm passes.  The floors are no longer swept regularly.

In general, the floors are "very clean", and "look
good," and were I to view them, I would not know that they
were unused, or not swept daily.

The specific buildings referred to were K31 and K33.
K25 is "dirty," K27 and 29 are better, but are smaller and
have a higher frequency of stairs, columns, and other
obstacles.

Sidebar 1: Notes on expected floor
characteristics at potential application sites. 

(3.5)

 
Next, we need to discuss which measur-

able parameter would be the most useful one
for expressing the vehicle’s susceptibility to
non-systematic errors. Consider, for example,
Path A and Path B in Fig. 3.5. If the 10
bumps  required by the extended UMBmark
test were concentrated at the beginning of the
first straight leg (as shown in exaggeration in
Path A), then the return position error would
be very small. Conversely, if the 10 bumps
were concentrated toward the end of the first
straight leg (Path B in Fig. 3.5), then the re-
turn position error would be larger. Because
of this sensitivity of the return position errors
to the exact location of the bumps it is not a
good idea to use  the return position error as
an indicator for a robot’s susceptibility to
non-systematic errors. Instead, we suggest to
use the return orientation error, . Although
it is more difficult to measure small angles,
we found measurement of  to be a more
consistent quantitative indicator for compar-
ing the performance of different robots. Thus,
we measure and express the susceptibility of a vehicle to non-systematic errors in terms of the
its average absolute orientation error defined as

where n = 5 is the number of experiments in cw or ccw direction, superscripts “sys” and
“nonsys” indicate a result obtained from either the regular UMBmark test (for systematic
errors) or from the extended UMBmark test (for non-systematic errors). Note that Eq. (3.5)
improves on the accuracy in identifying non-systematic errors by removing the systematic
bias of the vehicle, given by
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Figure 3.5: The return position of the extended
UMBmark test is sensitive to the exact location where the
10 bumps were placed. The return orientation is not.

(3.6)

Note that the arguments inside
the Sigmas in Eq. (3.5) are abso-
lute values of the bias-free return
orientation errors. This is so be-
cause we want to avoid the case in
which two return orientation errors
of opposite sign cancel each other
out. For example, if in one run 
= 1  and in the next run   = -1 ,o o

then we should not conclude that
 . Using the average

absolute return error as computed
in Eq. (3.5) would correctly com-
pute . By contrast, in
Eq. (3.6) we compute the actual
arithmetic average, because we
want to identify a fixed bias.
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3.5 Summary of the UMBmark Procedure

In summary, the UMBmark procedure is defined as follows:

1. At the beginning of the run, measure the absolute position (and, if measure-
ment of non-systematic errors is planned, orientation) of the vehicle and
initialize the onboard dead-reckoning starting position to that position.

2. Run the vehicle through a 4×4 m square path in cw direction, making sure to
stop after each 4 m straight leg;
make a total of four 90 -turns on the spot;o

run the vehicle slowly to avoid slippage.

3. Upon return to the starting area, measure the absolute position (and, option-
ally, orientation) of the vehicle.

4. Compare the absolute position to the robot's calculated position, based on
dead-reckoning and using Eqs. (1).

5. Repeat steps 1-4 for four more times (i.e., a total of five runs).

6. Repeat steps 1-5 in ccw direction.

7. Use Eqs. (2)  and (3) to express the experimental results quantitatively as the
measure of dead-reckoning accuracy for systematic errors, E . max,syst

8. Optionally, use a plot similar to Fig. 3.4 to represent x  and y  graphically.i i

9. If an estimate for the vehicle’s susceptibility to non-systematic errors is
needed, then perform steps 1-6 again, this time placing a round 10 mm
diameter object (for example, an electrical household cable) under the inside
wheel of the robot. The object must be placed there 10 times, during the first
leg of the square path. 

10. Compute the average absolute orientation error,  according to Eqs.
(5) and (6). 
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4. MEASURING SYSTEMATIC ERRORS — EXPERIMENTS

In this section we present experimental results from testing five different mobile robot
systems with the UMBmark procedure. A sixth system, called the Smart Encoder Trailer
(SET), is currently under development at the University of Michigan. Results from simula-
tions of the SET are included in this chapter. The six tested systems were:

1. TRC LabMate

2. Cybermotion K2A

3. CLAPPER — a unique 4-degree-of-freedom (4-DOF) platform developed at the University
of Michigan [Borenstein, 1994a, 1994b, 1995]. 

4. Remotec Andros

5. Remotec Andros with the Basic Encoder Trailer

6. Smart Encoder Trailer (SET) — Simulation results only
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Tested vehicle Result in [mm]

Platform Name Comment Calibration E  max,syst

1. TRC LabMate none none
(b=340.0,
D /D =1)R L

310 50

2.Cybermotion K2A Slightly worn-out,
in service since
1987

Original, from 
manufacturer 63 60

3. University of Michigan
CLAPPER

4-DOF vehicle,
made from 2 TRCs
with compliant
linkage

yes. manual

22 11

4. Remotec Andros Tracked vehicle none 11,500
(11.5m

)

6,000
(6m)

5. Andros with Basic
Encoder Trailer

Tracked vehicle,
wheeled trailer

Trial and error 74 200

6. Smart Encoder Trailer Simulation results
only

N/A in
simulation 30 5

Table I: Summary of properties and UMBmark results for the six different vehicles tested

Table I below summarizes the properties of the six different vehicles that were tested, and the
following sections discuss each vehicle and result in detail.

4.1 TRC LabMate

The LabMate was tested in its basic configuration, and without any special calibration (i.e.,
using the nominal wheelbase b=340 mm and a wheel diameter ration of D /D  = 1.000). TheR L

LabMate shown in Fig. 4.1 is equipped with ultrasonic sensors that were not used in this
experiment. An onboard 486/50 MHZ PC compatible single board computer controls the
LabMate. On our LabMate platforms we bypass TRC's original onboard control computer
completely. This is done by means of a set of two HCTL 1100 [Hewlett Packard] motion
control chips that connect our 486 computer directly to the motors' PWM amplifiers.
Generally we do this in order to achieve a very fast control loop, one that is not impeded by
the relatively slow serial interface required by the original onboard computer. In the particular
case of the UMBmark experiments described here, the bypass assures that the measurements
are not affected by the manufacturer's dead-reckoning method and, possibly, software-
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Figure 4.1: One of the four TRC LabMates at the
University of Michigan. The system shown here is
equipped with 8 ultrasonic sensors that were not used in
the UMBmark experiment. 

embedded calibration factors. However, we emphasize that our bypass of the original onboard
computer is in no way necessary for performing the UMBmark procedure.

In the 4×4 m square path ex-
periments, the robot traveled at
0.2 m/s during the four 4 m
straight legs of the path and
stopped before turning. During
the four on-the-spot turns the ro-
bot's wheels had a maximum lin-
ear speed of ±0.2 m/s. Figure C-1
(in Appendix C) shows the return
position errors (defined in Sec-
tion 3.1.) for the unmodi-
fied/uncalibrated TRC LabMate. 
In this test E  =  310 mm andmax,sys

 =  50 mm.

4.2 Cybermotion

The Cybermotion K2A platform is a smart implementation of the synchro-drive (see
[Everett, 1995] for a more detailed discussion on synchro-drives). We believe that the
implementation of the synchro-drive on the Cybermotion K2A provides the inherently best
dead-reckoning performance among all commonly used mobile robot drive kinematics. This is
especially true with regard to non-systematic errors. For example, if the K2A encounters a
bump on the ground, then the wheel in contact with the bump would have to turn slightly
more than the other two wheels. However, since all the wheels are powered by the same 
motor and have the same speed, the wheel on the bump will slip (at least, this is more likely
than to assume that both other wheels on the ground will slip). Thus, if slippage occurs in the
wheel that is "off," then the dead-reckoning information from the "correct" wheels remains
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Figure 4.2: CARMEL, the University of Michigan's
oldest mobile robot has been in service since 1987. 
CARMEL is a Cybermotion K2A platform with many
custom additions. In 1992 CARMEL was voted one of
the 100 "Best of What's New" products in Popular
Science.

valid, and only a small error (if at
all) is incurred. 

The Cybermotion K2A plat-
form shown in Fig. 4.2 is called
CARMEL. CARMEL was the
first robot to be placed into ser-
vice at the University of Michi-
gan's Mobile Robotics Lab when
the lab was created in 1987.
Since then, CARMEL has had
many collisions, was disassem-
bled several times, and has sur-
vived generally rough treatment.
For these reasons, one should
regard CARMEL's UMBmark
performance with caution. In our
test, we found E  = 63 mmmax,sys

and  = 60 mm. Although we
have not studied in depth the ki-
nematics of the K2A with regard
to systematic errors, we believe
that it is susceptible to  some of
the same systematic errors as
differential-drive mobile robots. This is evident from the clearly defined separate clusters for
the cw and ccw runs in Fig. C-2 in Appendix C. CARMEL traveled at 0.2 m/s during the four
4 m straight legs of the path and stopped before turning.

4.3 CLAPPER

The Compliant Linkage Autonomous Platform with Position Error Recovery (CLAPPER)
is a 4-Degree-of-Freedom (4DOF) vehicle developed and built at the University of Michigan
[Borenstein, 1994a; 1994b, 1995]. The CLAPPER comprises two off-the-shelf TRC
LabMates (here called "trucks") connected by a so-called compliant linkage (see Fig. 4.3).
The vehicle is instrumented with two rotary absolute encoders that measure the rotation of the
trucks relative to the compliant linkage. And a linear encoder measures the relative distance
between the centerpoints of the two trucks. The unique ability to measure and correct non-
systematic dead-reckoning errors during motion. A more detailed description of the CLAP-
PER is given in Appendix F, where we have included a reprint of reference Borenstein 1994a.
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Figure 4.3: The CLAPPER is a unique 4-DOF mobile
robot developed at the University of Michigan.  The
CLAPPER can measure and correct non-systematic dead-
reckoning errors during motion.

The CLAPPER can also detect
and correct the two dominant sys-
tematic dead-reckoning errors
(i.e., unequal wheel-diameters
and uncertainty about the effec-
tive wheelbase). However, the
CLAPPER also introduces some
new systematic errors related to
its unique configuration (see
more detailed explanation in
[Borenstein, 1994b]. These new
systematic errors were reduced
by extensive trial-and-error cali-
bration before running the
UMBmark test. Figure C-3 in
Appendix C shows the results of
the UMBmark test with the
CLAPPER.  In this test E  =max,sys

22 mm and  = 11 mm . Note
that  = 11 mm is substantially
lower than the results for the other vehicles. This fact demonstrates the successful correction
of non-systematic errors.

We should note that the test condition for the UMBmark test of the CLAPPER differed
somewhat from the exact UMBmark specifications: (a) The test path was of rectangular shape
with 7×4 m dimensions; (b) the vehicle also made some additional maneuvers in order to
approach the stopping position properly (see [Borenstein, 1994b] for details); (c) The
CLAPPER's average speed was 0.45 m/s, and (d) and the vehicle did not come to a complete
halt before turns. These deviations from the UMBmark specifications are of little impact for a
well calibrated system. If these differences had any effect on the CLAPPER's UMBmark
performance it was one of deterioration and of not improvement.

  Digressing for a moment from this section’s focus on systematic errors, we observe from
comparing Figs. C-2 and C-3 that the active error correction of the CLAPPER provides
substantially better correction of non-systematic errors than the passive error correction
inherently present in the K2A's synchro-drive. This observation is also supported by the two
standard deviations,  = 11 mm and  = 60 mm, which provide some indication forCLAPPER K2A

the magnitude of non-systematic errors. However, this comparison is probably slightly biased
in favor of the CLAPPER, because of the less-than-perfect physical condition of our K2A
platform.

4.4 Remotec Andros

The Remotec Andros (the University of Michigan's modified model is shown in Fig. 4.4) is
a uniquely designed tracked vehicle for tele-operation on difficult terrain. The most unique
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Figure 4.4: The University of Michigan's Remotec
Andros is custom equipped with incremental optical
encoders on both drive motors and on the auxiliary track
motors. The original onboard computer and motor
controllers were replaced by a 486-66 MHZ PC-
compatible single board computer and our own HCTL
1100-based motor controllers.

feature of the Andros is the set of two auxiliary tracks that can be raised or lowered individu-
ally. These auxiliary tracks allow the vehicle to climb over large obstacles and move up and
down stairs. When the auxiliary tracks are lifted the vehicle can turn even in tight spots.  

While tracked vehicles allow
operation in rough terrain, a
tracked vehicle is very difficult to
control under computer guidance
and without a human operator.
This is so because the widely used
odometry-based position feedback
cannot be implemented easily on a
tracked vehicle: It is an inherent
property of tracked vehicle steer-
ing that the tracks slip substantially
during turning. Under tele-operator
control, the lack of dead-reckoning
information is not a problem, be-
cause the operator has visual feed-
back. 

In recent years there has been
growing interest, especially in the
DOE Robotics community, in con-
verting the Remotec Andros and
other tracked vehicles to fully au-
tonomous operation. The Univer-
sity of Michigan procured an
Andros in 1993, and, in anticipation of autonomous operation, had the vehicle motors custom-
equipped with incremental encoders. These encoders provide feedback  on track position and
rotational velocity for accurate velocity control. One currently ongoing research effort at our
lab aims at developing a complex slippage model that would allow to correct — to a limited
extend — the huge dead-reckoning errors caused by track slippage during turning (see [Fan et
al., 1995] for more details). 

To assess the extend of dead-reckoning errors in our encoder-equipped Andros we
performed the UMBmark test. However, the nominal test-procedure had to be modified: The
vehicle could not be programmed to perform a square path, because the dead-reckoning errors
were so large that the nominal path could not even be approximated. Instead, we drove the
vehicle by joystick through the 4×4 m path and compared its computed (i.e., using dead-
reckoning) position with the vehicle's actually measured stopping position. Figure C-4 shows
the resulting dead-reckoning errors: Typically, we encountered errors of 10 to 12 meters(!) for
a square path of nominally 16 meters total length. The orientation error was typically on the
order of 120 - 130 !  It is quite clear from these results that odometric dead-reckoning is not ao

viable option with tracked vehicles. One interesting observation is that many of the run ended
with very similar errors, indicating a high repeatability of the error mechanism. However,
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Figure 4.5: This encoder trailer was recently
developed at the University of Michigan for use
with tracked robots. The trailer is here shown
temporarily attached to a TRC LabMate, prior to
its permanent installation on the Remotec Andros.

there were also runs where the final errors differed substantially from the set of "repeatable"
errors. 

4.5 Remotec Andros with Basic Encoder Trailer

In order to investigate and potentially improve dead-reckoning performance of tracked
vehicles, the University of Michigan has developed a unique attachment for the Remotec
Andros (or any robot with poor dead-reckoning), called the "Basic Encoder Trailer" (BET)
(see [Fan et al., 1995] for more details). The BET differs in function from the "Smart Encoder
Trailer," as will be discussed in Section 2.5 below.

The BET is a small two-wheeled trailer that drags behind the main vehicle (see Fig. 4.5).
Mounted on each wheel is an optical incremental encoder. A rotary joint allows the trailer to
rotate horizontally about a fixed point located behind the pulling vehicle. An optical absolute
encoder measures the angle between the trailer and the main vehicle. The trailer can rotate
around this joint without limitation because of a slip ring that provides the electrical connec-
tions to the wheel encoders. When the Andros travels backward, the BET is designed to
swivel and lead. The BET is also designed to be raised off the floor when the tracked vehicle
drives over obstacles, although this function is not yet implemented on our system. Using the
same dead-reckoning algorithm as is used for differential-drive robots, one can easily
compute the incremental position of the center-point of the trailer. Then, using the angular
measurements of the absolute encoder on the trailer/vehicle joint, one needs to apply only a
simple coordinate transformation to compute the incremental position of the main vehicle.

The rational for using a device like
the BET, despite its obvious disadvan-
tages, is the fact that many DOE applica-
tions might require a tracked vehicle
because of occasional obstacles, but
would offer relatively smooth concrete
floors during most of the robot's travel.
For autonomous operation, a "conven-
tional" tracked robot system would re-
quire nearly continuous absolute posi-
tion updates, to provide control feed-
back. With conventional techniques, this
would require the costly installation and
maintenance of beacon systems in which
several of the beacons can be seen at all
times. We believe that the installation
cost for such a system could be dramati-
cally lower, if dead-reckoning information was available most of the time.
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Figure 4.6: Concept drawing of the
University of Michigan's Smart En-
coder Trailer (SET).

Figure 4.7: Prototype of the University of
Michigan's Smart Encoder Trailer (SET). In the
photo here, the SET is attached to a TRC
LabMate, but the SET's encoders are not
interfaced yet. U of M plans to implement the
IPEC method in early 1995. Then, if successful, U
of M will develop algorithms designed to allow
fully transparent backward travel with a trailer.

The dead-reckoning accuracy of the Andros with BET attached was tested with the help of the
UMBmark test. The results are shown in Fig. C-5. As expected, the average Return Position
Error
was relatively small, on the order of  60-70 mm. However, Fig. C-5 shows an unexpected
large spread of errors, larger than what could be explained as caused by irregularities on the
floor. We will further investigate this matter in the future, but our current assumption is that
electrical noise from the low-cost slip ring causes random distortions of the encoder pulses,
thus resulting in erratic encoder readings.

4.6 The Smart Encoder Trailer

The Smart Encoder Trailer (SET) is an innovative
method for accurate dead-reckoning with obile robots.
This approach is based on a method called Internal
Position Error Correction (IPEC), which was recently
developed at the University of Michigan. This is the
same method as the one used on the CLAPPER (dis-
cussed in Section 4.3, above). The SET is designed to
be attached to an existing mobile robot (see Fig. 4.6),
unlike the CLAPPER, which is a special purpose
custom-built vehicle.

We have just completed the construction of the SET
(see Fig. 4.7), but the system is not func-
tional yet. However, we will present re-
cent simulation results, which, combined
with experimental results from the simi-
larly configured CLAPPER,  strongly sug-
gest the feasibility of the SET implemen-
tation. 

4.6.1 Validity of the SET Simulation

Many experimentalists (including the
authors here) are often critical of simula-
tion results. This is particularly true when
new concepts are tested for which the the-
oretical models used in the simulation
have not been verified experimentally. In
the case of our SET simulation, however,
we are fairly confident in the validity of
our simulation. The reason is as follows:
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The concept and actual design of the SET described here is directly related to the concept and
design of the CLAPPER (see Section 4.3). The CLAPPER is an actually working piece of
hardware that has been tested under realistic (in our lab) and under tougher-than-realistic (on
the lawn in the backyard of our lab) conditions. In addition, a simulation program for the
CLAPPER has been developed, which models the CLAPPER and its method for measuring
and correcting dead-reckoning errors very accurately. We have compared and validated the
accuracy of results from the CLAPPER simulation against results of the actual experiments
with the CLAPPER. 

We are explaining all this because the SET simulation in this report is directly derived
from the  CLAPPER simulation. Comparing Fig. 4.6 with Figure 2 of the CLAPPER paper in
Appendix F, it is quite obvious that the SET is very similar in design yet substantially less
complex. For these reasons we are quite confident in the accuracy of the SET simulation
presented here.

4.6.2 Implementation Details of the SET Simulation

In this section we will briefly present the principle of operation of our error correction
method, called Internal Position Error Correction (IPEC), and its implementation on the
robot/trailer system of Fig. 4.6. We recall that the primary purpose of the SET is to measure
and correct dead-reckoning errors. We further recall that the foremost problem in dead-
reckoning is the orientation error that results from traversing a bump or crack or object on the
floor. 

Figure 4.8 shows a line labeled "direction after traversing the bump," which is the
(unintended) direction of the robot after it cleared a bump. Since this direction differs from
the intended (straight ahead) direction as the result of a dead-reckoning error, the robot still
"believes" it was traveling straight ahead. Consequently, the robot would expect the center of
the trailer to be straight behind, along the dotted line labeled L  in Fig. 4.8. Using dead-e

reckoning data from both the robot and the trailer, the robot can always compute this expected
direction to the center of the trailer, whether both are traveling straight or along a curved path. 
This expected direction can then be compared to the measured direction, which is readily
available from the absolute rotary encoder on the center of the robot. The difference between
the expected direction and the measured direction is the measured orientation error . m m

can then be used (as will be explained below) to correct the computed orientation of the robot,
which was based on dead-reckoning. The orientation error of the trailer can be determined in
a similar way, relative to the center of the robot.

It is evident from Fig. 4.8 that the measured orientation error  is not identical to them

actual orientation error , and one must ask how we can correct the original dead-reckon-a

ing orientation if we don't know the actual error. The answer to this question is that  ism

almost identical to , and that for the kinematic configuration of the robot/trailer systema

this near-identity is guaranteed under all operating conditions (with a few known exceptions).
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Figure 4.8: After traversing a bump, the
resulting change of orientation of the robot 
can be measured relative to the trailer (for
simplicity shown with the absolute encoder
at the robot's center).

Our simulation program accurately models
the kinematic design of a TRC LabMate robot
with an attached SET (see Fig. 4.9). The simu
lation program models a wheelbase error by
giving the simulated TRC an "actual" wheel
base of 337 mm instead of 340 mm, as assumed
by the programs dead-reckoner. Similarly, the
vehicle is simulated to have a wheel diameter
ratio of 0.9985, while the dead-reckoner as
sumes the nominal ratio of 1. For the non-sys
tematic error experiments (see Fig. D-6), the
program also models a series of 10 bumps, each
10 mm high, during the first leg of the square
path prescribed by the UMBmark procedure.
The bump is "applied" to the wheel that faces
the inside of the square path. Furthermore, the
roughness of a concrete floor is simulated by
random bumps, which are "applied" to the drive
wheels approximately every 2 cm. Each wheel
experiences a bump of different height, but
always between 0-1 mm. The heights of each
bump are determined by a random number gen
erator. Although we simulate these small ran
dom bumps, this  part of the simulation program
is not very effective. This is so because the ran
dom bumps average more or less evenly over
the complete run, causing only a minimal
spread of the return error positions. This fact is
not obvious in the SET plot in Fig. D-6, since
the SET would minimize the spread anyway
(because of the IPEC method).
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Figure 4.9: The screen shot here was taken after
an earlier experiment in which the simulated
robot/SET traversed bumps during all 4 legs of the
square path. The double images show the
difference between "actual" and "perceived"
positions of the robot, due to dead-reckoning
errors. (a) IPEC disabled, and (b) IPEC enabled. 
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5. MEASURING NON-SYSTEMATIC ERRORS — EXPERIMENTS

In this section we present results of measurements of non-systematic errors using the
extended UMBmark test (explained in Section 3.4). Table II lists the results for the three
robots that were tested. As explained in Section 3.4, ten 10-mm bumps were introduced
during the first leg of each run. The resulting average return orientation errors,  (5
each in cw and ccw direction) are compared in Table II. 

We recall that according to the explanation in Section 3.4, a vehicle's susceptibility to non-
systematic errors is best expressed in terms of the average return orientation error,

, which can be computed from the raw orientation data of the extended UMBmark
test, using  Eq. (3.5). Note that this computation requires the average of the systematic return
orientation errors,  and  , in order to remove the systematic bias from
the result of the non-systematic error tests, as shown in Eq. (3.5). All of these measurements,
along with the "bottom line" of 0 - 1 mm height result  . X-Y plots of the return
position errors of these experiments — although not very useful as a tool for comparison —
are presented in Figures D-1 through D-6, in Appendix D.

The  results in Table II show that the Cybermotion with its inherently resilient synchro-
drive is only half as sensitive to non-systematic errors than the LabMate. However, the
CLAPPER with active error correction is one order of magnitude less sensitive than the
Cybermotion and 24 times  less sensitive than the LabMate. The simulation results from the
Smart Encoder Trailer (SET) are, as expected, equal in magnitude to the results from the
CLAPPER.
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Table II: Comparing experimental results of non-systematic error measurements with
the help of the extended UMBmark test. A smaller average absolute return orientation
error   in the bottom line indicates better resilience to non-systematic errors.
The CLAPPER’s average absolute retrn orientation error   is 24 times smaller
than that of the LabMate and 11 times smaller than the error of the Cybermotion.

Return Orientation Errors [ ]o

TRC Cyber- U of M Remotec Remotec Smart En-
LabMat motion CLAP- Andros Andros coder

e PER with Basic Trailer
Encoder (SET) Simu-
Trailer lation results

only

0.3 3.8 -0.2 137 -0.31 0.34

-2.0 1.0 -0.1 -125 -0.71 -0.06

cw 1 7.1 7.8 0.1 -0.1 0.4A test with 10
8-9 mm high
bumps is not
applicable to
the Remotec
Andros be-
cause the
grooves on the
vehicle's tracks
are much larger
than 9 mm.
Furthermore,
the dead-reck-
oning errors of
the tracked
vehicle are so
large that dead-
reckoning is
totally unfeasi-
ble. 

cw 2 6.4 4.2 0.1 5.6 0.3

cw 3 5.6 1.7 0.1 -0.3 0.3

cw 4 6.6 4.2 -0.7 5.1 0.3

cw 5 5.9 3.6 0.2 -1.4 0.4

ccw 1 -7.5 -11.4 -0.6 -1.0 0.0

ccw 2 -8.8 -2.5 -0.4 -1.0 0.3

ccw 3 -6.6 -4.6 -0.5 -2.2 0.3

ccw 4 -8.8 -6.3 0.1 -1.7 0.2

ccw 5 -8.7 -2.3 0.2 1.1 0.2

8.35 3.91 0.35 2.53 0.16
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6. CORRECTION OF SYSTEMATIC DEAD-RECKONING ERRORS

One interesting aspect of the error distribution pattern in the UMBmark experiment (see
Fig. 3.4, in Section 3.3, above) is the fact that one can analytically derive correction factors
from the experimental results. Before we do so, let us first define two new error characteristics
that are meaningful only in the context of the Bi-directional Square Path experiment. These
characteristics, called Type A and Type B, represent dead-reckoning errors in orientation.
Type A is defined as an orientation error that reduces (or increases) the total amount of
rotation of the robot during the square path experiment in both cw and ccw direction. By
contrast, Type B is defined as an orientation error that reduces (or increases) the total amount
of rotation of the robot during the square path experiment in one direction, but increases (or
reduces) the amount of rotation when going in the other direction. As examples consider
Figures 6.1 and 6.2, further below. Figure 6.1 shows a case where the robot turns four times
for a nominal amount of 90 per turn. However, because the actual wheelbase of the vehicleo

was larger than the nominal value, the vehicle actually turned only 85 in each corner of theo

square path. In the example of Fig. 6.1 the robot will actually turn only  = 4×85  = 340 ,total
o o

instead of the desired  = 360 . We observe that in both the cw and the ccw experimentnominal
o

the robot ends up turning less than the desired amount , i.e., | | < | | and | | <total, cw nominal total, ccw

| |. Thus, the orientation error is of Type A. In Fig. 6.2  the trajectory of a robot withnominal

unequal wheel diameters is shown. This error expresses itself in a curved path that adds to the
overall orientation at the end of the run in ccw direction, but it reduces the overall rotation in
the ccw direction, i.e., | | > | | but | | < | |. Thus, the orientation error intotal, ccw nominal total, cw nominal

Fig. 6.2 is of Type B. 

In an actual run Type A and Type B errors will of course occur together. The problem is
therefore  how to distinguish and compute Type A and Type B errors from the measured final
position errors of the robot in the Bi-directional Square Path experiment. We approach this
problem by defining a simplified model for systematic dead-reckoning errors. This model
assumes that

1. E  and E  are the dominant sources of systematic dead-reckoning errors.d b

2. An incorrect wheelbase (E ) causes errors only during turning but not during straight line b

motion.
3. Unequal wheel diameters (E ) cause errors only during straight line motion but not duringd

turning. This assumption is substantiated in Appendix B.
4. E  causes only Type A errors but not Type B errors.b

5. E  causes only Type B errors but not Type A errors.d

6. Because of assumption #1, eliminating E  eliminates the system's Type A error almostb

completely.
7. Because of assumption #1, eliminating E  eliminates the system's Type B error almostd

completely.
8. Orientation errors are the main source of concern because once they are incurred they grow

without bound into lateral position errors [Crowley, 1989; Feng et al.,  1993].
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Because of the close association between E  and Type A errors and between E  and Type Bb d

errors (according to assumptions #6 and #7) we will use the terms E  and Type A, as well asb

the terms E  and Type B, interchangeably. d

6.1 Analysis of Type A and Type B Errors

Having defined a model, we will now analyze the characteristics of the UMBmark
procedure with regard to that model. To simplify the mathematical treatment, we note that the
following approximations are valid for small angles:

Lsin    L
Lsin2  2L (6.1)
Lsin3   3L

Lcos    L
Lcos2  L (6.2)
Lcos3   L

where
L - the length of each side of the square path.

 - any incremental orientation error caused by either E  or E , measured in [rad].d b

For simplicity, we assume that the starting position (x , y ) of the robot is at (0,0). At first0 0

we will analyze and examine the contribution of Type A and Type B errors separately. Then,
we will superimpose both errors to represent the actual conditions.
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Figure 6.1:  Type A errors in ccw and cw direction. Type
A errors are caused almost exclusively by the wheelbase
error E .b

Figure 6.1 shows the contribution of Type A errors. We recall that according to assump-
tions #1 and #4 Type A errors are caused mostly by E . We also recall that Type A errorsb

cause too much or too little turning at the corners of the square path. The (unknown) amount
of erroneous rotation in each nominal 90 turn is denoted as . Because of the approximationso

in Eqs. (6.1) and (6.2),  is measured in [rad]. 

a. For Type A errors in ccw direction:

x  = x  + L (6.3a)1 0

y  = y (6.3b)1 0

x  = x  + Lsin   L +  L (6.4a)2 1

y  = y  + Lcos   L (6.4b)2 1

x  = x  - Lcos2   L (6.5a)3 2

y  = y  + Lsin2   L + 2L (6.5b)3 2

x  = x  - Lsin3    -2L (6.6a)4 3

y  = y  - Lcos3   2L (6.6b)4 3

b. For Type A errors in cw direction:

x  = x  + L (6.7a)1 0

y  = y (6.7b)1 0

x  = x  + Lsin   L +  L (6.8a)2 1

y  = y  - Lcos  -L (6.8b)2 1

x  = x  - Lcos2   L (6.9a)3 2

y  = y  - Lsin2  -L - 2L (6.9b)3 2

x  = x  - Lsin3    -2L (6.10a)4 3

y  = y  + Lcos3  -2L (6.10b)4 3
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Figure 6.1: Type B errors in ccw and cw direction. Type
B errors are caused almost exclusively by unequal wheel
diameters (E ).d

Figure 6.2 shows the contribution of Type B errors. We recall that according to our
assumptions #1 and #5 Type B errors are caused mostly by the ratio between wheel diameters,
E . We also recall that Type B errors cause a slightly curved path instead of a straight oned

during the four straight legs of the square path. Because of the curved motion, the robot will
have gained an incremental orientation error, denoted , at the end of each straight leg. Note
that the auxiliary line c' , which connects the corner points of the actual path, has a slope of1

/2 because it is parallel to the tangent to
the midpoint of arc c . With respect to1

the unknown parameter  (in [rad]), we
obtain:

a. For Type B errors in ccw direction:

x  = x  + Lcos( /2) L (6.11a)1 0

y  = y  + Lsin( /2) L /2 (6.11b)1 0

x  = x  - Lsin(3 /2) L - 3L /2 (6.12a)2 1

y  = y  + Lcos(3 /2) L /2 + L (6.12b)2 1

x  = x  - Lcos(5 /2)  -3L /2 (6.13a)3 2

y  = y  - Lsin(5 /2)  -2L  + L (6.13b)3 2

x  = x  + Lsin(7 /2)  2L  (6.14a)4 3

y  = y  - Lcos(7 /2)   -2L (6.14b)4 3

b. For Type B errors in cw direction:

x  = x  + Lcos( /2) L (6.15a)1 0

y  = y  + Lsin( /2) L /2 (6.15b)1 0

x  = x  + Lsin(3 /2) L +  3L /2(6.16a)2 1

y  = y  - Lcos(3 /2) L /2 - L (6.16b)2 1

x  = x  - Lcos(5 /2) 3L /2 (6.17a)3 2

y  = y  - Lsin(5 /2) -L(2  + 1) (6.17b)3 2

x  = x  - Lsin(7 /2) -2L  (6.18a)4 3

y  = y  + Lcos(7 /2) -2L  (6.18b)4 3
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Figure 6.3: Geometric relations for
finding the radius of curvature.

Figure 6.4: Unequal wheel diameters cause the robot to travel on a curved path of radius R
(curvature is exaggerated for better illustration).

Superimposing Type A and Type B errors for the cw experiment in x-direction yields

x : -2L  - 2L  = -2L(  + ) = x (6.19)cw c.g.,cw

x : -2L  + 2L  = -2L(  - ) = x (6.20)ccw c.g.,ccw

Subtracting  (6.20) from (6.19) yields

-4L  =  x  - x (6.21)c.g.,cw c.g.,ccw

or
 x  - x (180 )c.g.,cw c.g.,ccw

o

 = ———————  —— (6.22a)-4L     

for  in degrees.

Comparing terms in y-direction yields a similar result

 y  + y (180 )c.g.,cw c.g.,ccw
o

 = ———————  —— (6.22b)-4L     

Using simple geometric relations, the radius of
curvature R of the curved path of Fig. 6.2 can be found
from triangle ABM in Fig. 6.3.

L/2R = ———— (6.23)   sin( /2)  

Once the radius R is computed, it is easy to deter-
mine the ratio between the two wheel diameters that
caused the robot to travel on a curved, instead of a
straight path (see Fig. 6.4):

D R + b/2R E  =  — = ——— (6.24)d D R - b/2L
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The ratio of Eq. (6.24) can be used to correct Type B errors as will be explained in Section
6.2.

Similarly,  can be found by adding Eq. (6.19) and Eq. (6.20) 

-4L  = x  + x (6.25)c.g.,cw c.g.,ccw

or 
 x  + x (180 )c.g.,cw c.g.,ccw

o

 = ——————— ——— (6.26a)-4L

solves for  in [degrees].

Again, comparing terms in y-direction yields a similar result for 

 y  - y (180 )c.g.,cw c.g.,ccw
o

 = ———————  —— (6.26b)-4L     

We can now compute the wheelbase error E . Since the wheelbase b is directly propor-b

tional to the actual amount of rotation as shown by Eq. (2.4), we can use the proportion:

 b   bactual nominal—— = ——— (6.27)  90 90  - o o

so that

  90o

 b = ———   b (6.28)actual nominal90  - o

where, per definition of Eq. (2.8)

  90o

E = ——— (6.29)b 90  - o

6.2 Compensation for systematic dead-reckoning errors

Once we know the quantitative values of E  and E , it is easy to compensate for these errorsd b

in software. The correction for the wheelbase error E  is trivial: the wheelbase b is redefinedb

in software according to Eq. (6.28). The correction for the unequal wheel diameters, E , isd

slightly more complex: After performing the UMBmark procedure, we know the actual wheel
diameter ratio E  = D /D  from Eq. (6.24). However, when applying a compensation factor,d R L

we must make sure not to change the average wheel diameter D , since one would then havea

to recalibrate that parameter. D  will remain unchanged if we consider it as a constraint a

D  = (D  + D )/2 (6.30)a R L
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Solving Eqs. (6.24) and (6.30) as a set of two linear equations with two unknowns, D  andR

D , yieldsL

    2D  = ——— D (6.31)L a

E  + 1d

and
  2D  = ———— D (6.32)R a(1/E ) + 1d

We can now define the two correction factors
2c  = ——— (6.33)L E  + 1d

and
  2c  =   ———— (6.34)R (1/E ) + 1d

which can be implemented in the dead-reckoning algorithm by rewriting Eq. (2.2) as

U  = c  c  N (6.35)L/R, I L/R m L/R, I

We have thus corrected both dominant systematic errors. 

6.3 Correction of Systematic Errors

In this section we describe experiments that validate the above described method for
correcting Type A and Type B errors by changing the effective wheelbase b and the effective
wheel-diameter ratio D /D . The experiments were performed with a LabMate robot equippedR L

with an onboard AMPRO 486/50 MHZ PC compatible single-board computer. 

The robot was programmed for both a cw and a ccw 4×4 m square path. To avoid slippage,
the robot was traveling slowly, at a speed of 0.2 m/s during the straight legs of the square
path. At the end of each leg the robot came to a complete stop and rotated on-the-spot through
90 . This means that the robot made a fourth 90 turn after returning to its starting area. Theo o

linear speed of the two drive wheels during turning was approximately 0.2 m/s and -0.2 m/s.
The robot started and stopped near an L-shaped corner and used a so-called “sonar calibra-
tor” [Borenstein 1993] to determine its position and orientation relative to the L-shaped
corner. We will refer to this as the absolute position. The sonar calibrator comprises three
standard POLAROID ultrasonic sensors.  Two sensors were facing the long side of the L-shaped
corner, the third sensor faced the short side. The ultrasonic sensor system allowed measure-
ment of the absolute position of the vehicle to within ±2 millimeters in the x and y directions,
and to about ±0.4  in orientation. o



 Hoping to reduce the effect of non-systematic errors further, we actually computed E  and2
d

E  in two ways: (1) based on the values for x , according to Eqs. (6.22a) and (6.26a); and (2)b c.g.

based on the values for y , according to Eqs. (6.22b) and (6.26b). We then averaged E  andc.g. d,x

E , as well as  E  and E . This measure may not be necessary in general, because thed,y b,x b,y

respective correction values (based on x  or y ) differed by less than 1% in all cases.c.g. c.g.
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At the beginning of each run a sonar measurement was taken to determine the starting
position of the vehicle. The robot then traveled through the programmed path and returned to
the L-shaped corner, where the perceived position (i.e., the position the vehicle "thought" it
had, based on dead-reckoning) was recorded. Then, a second sonar measurement was taken to
determine the absolute position. The difference between the absolute position and the
perceived position is called the return position error ;  is defined by Eqs. (3.1), above. 

The uncalibrated robot (i.e., D /D  = 1.0000 and b = b  = 340.00 mm) made five cwR L nominal

trips and five ccw trips. As expected, the return position errors were clearly grouped in a cw
cluster and a ccw cluster, as was shown in Fig. 5. For each of the two clusters the x and y
components of the respective centers of gravity were computed according to Eq. (3.2). The
resulting x  and y  were used to compute E   according to Eqs. (6.22) - (6.24). Then,c.g. c.g. d

correction factors c  and c  were computed according to Eqs. (6.33) and (6.34) and introducedL R

into the dead-reckoning program. Similarly the corrected wheelbase b  was computednew

according to Eqs. (6.26) - (6.28). 2

At this time the calibration procedure was complete. In order to verify the results we ran
the UMBmark experiment for a second time, this time with the correction factors in place.
Figure 6.5 shows the results of both the uncalibrated runs and the runs with the calibrated
vehicle. 

As explained in Section 3, Eqs. (3.2)  and (3.3) were used to express the experimental
results quantitatively as the measure of dead-reckoning accuracy for systematic errors,
E .  In the example of Fig. 6.5,  E  was 317 mm before compensation and 21 mmmax,syst max,syst

after compensation. This represents a 15-fold improvement. 

In order to assure that the experiment shown in Fig. 6.5 was not an isolated case, we
performed another seven carefully monitored experiments. Table I lists the results from all
eight experiments. We emphasize that Table I lists all experiments we ever made, it is not a
selection of the best runs. We further emphasize that in each experiment we used all runs,
without eliminating "outliers" (with the exception of  four or five runs where the errors
reported by the sonar calibrator were absurdly large, presumably due to a malfunctioning of
the sonar calibrator). 

The seemingly large fluctuations in improvement, especially among experiments #3, #4,
and #5 (which all used the same correction factors) are due to the fact that the centers of
gravity (c.g.s) for the runs after calibration are all very close to the origin (as seen in Fig. 6.5).
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Figure 6.5: Position errors of a TRC LabMate after completing
the UMBmark test (4 x 4 m).
Before calibration: b=340.00 mm, D /D  = 1.00000R L

After calibration: b=336.17 mm, D /D  = 1.00084R L

Thus, the arbitrary spread of return position errors caused by non-systematic error sources has
greater impact on the c.g.s. For example, the c.g. of Experiment 4 is only 17 mm (5/8") closer
to the origin than the c.g. of Experiment #3 — a difference that is easily attributable to the
arbitrary spread of non-systematic errors. 

In principle, it is possible to achieve even better results by performing the compensation
procedure for a second time, "on top of" the first compensation. This is so because a compen-
sated robot can be treated as though it was a "new" uncompensated robot, but with different
initial parameters. Using the standard deviation ( ) of the 5 runs in each direction it is easy to
decide when a second compensation run will be beneficial. The standard deviation of the
return position errors in the UMBmark test was about  = 25 mm. The Standard Error of the
Mean (SEM), defined as SEM = /sqrt(n), was 11.2 mm (n is the number of runs). As a rule-
of-thumb sometimes used in small sample statistics [Walpole and Myers, 1985], one can say
that if E  < 3×SEM it is unlikely (here: 5%) that the result can be improved by a secondmax,syst

compensation. We put this rule-of-thumb to the test in Experiment #7, where E  = 66 mmmax,syst
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was notably worse (the improvement over the uncompensated run was only 6.4-fold) than in
the other experiments. Applying the above rule-of thumb, it is evident that  66 mm > 3×SEM
= 33.6 mm, so that a second compensation run was indicated. After the second compensation,
the vehicle's  error was E  = 20 mm, i.e., a 21-fold reduction relative to the uncompen-max,syst

sated systematic error.

Table III: The Measure of Dead-reckoning Accuracy for Systematic Errors, E ,max,syst

before and after compensation.
Expert- Improve- Comment
ment # ment
and Fig.

 E  before  E  aftermax,syst

compensation compensation
[mm] [mm]

max,syst

E-1 317 21 15-fold Details also shown in Fig. 6.5

E-2 349 32 11-fold

E-3 310 31 10-fold These 3 experiments used the same set of
uncalibrated results and identical correction
factors.E-4 310 14 22-fold

E-5 310 26 12-fold

E-6 403 35 11-fold

E-7 423

after 1st
comp: 66 21-fold
after 2nd
comp: 20

*

In this experiment the diameter of the right
wheel was slightly increased by winding
three loops of masking tape around the
wheel perimeter.

E-8 232 12 19-fold
In this experiment the diameter of the left
wheel was slightly increased by winding
five loops of masking tape around the left
wheel perimeter.

*) Two compensation runs were performed. See explanation in main text.
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7. CONCLUSIONS

This report deals with the measurement and correction of systematic dead-reckoning
errors, and with the measurement and comparison of non-systematic errors in mobile robots.
The contribution of the work described in this report falls into three areas: (1) measurement of
systematic errors, (2) measurement of non-systematic errors, and (3) correction of systematic
errors. We will summarize our conclusions for each one of these areas below.

7.1 Measurement of Systematic Errors

The report identifies specifically the errors due to the wheel diameter ratio, E , and thed

uncertainty about the wheelbase, E  as the foremost source of systematic dead-reckoningb

errors in differential drive mobile robots.  A third — potentially significant — error is the
scaling error, E . E  is the ratio between the average of the actual wheel diameters and thes s

nominal wheel diameter. However, this error is so easy to measure and correct (see
Appendix B) that we have removed it from consideration. 

The focus on E  and E  is based on our error model, which assumes that systematicd b

orientation errors are either of Type A or Type B. Type A errors are directly affected by Eb

and Type B errors are directly affected by E . Other systematic errors may also affect thed

overall Type A and Type B error. However, we do not need to worry about this, because, in
principle, both Type A and Type B errors can be eliminated completely by changing the
effective wheelbase and wheel-diameter ration in software.

Based on this model we define a benchmark test for dead-reckoning accuracy in
differential-drive robots. This test, called UMBmark, assures that different dead-reckoning
errors don't compensate for each other, as may be the case with other dead-reckoning test. The
UMBmark procedure yields a single numeric value, E , that represents a quantitativemax,sys

measure of a vehicle's systematic dead-reckoning errors. This makes UMBmark an effective
tool for evaluating the dead-reckoning performance of a vehicle with different parameters or
for the comparison of dead-reckoning performance between different mobile robots. 

One interesting result from the UMBmark tests is that the Cybermotion K2A (which is a
synchro-drive platform) appears to have similar error characteristics as do differential drive
vehicles. This observation is made evident by the UMBmark test in Fig. C-2. In this result one
can clearly identify  the characteristic cw and ccw clusters of return position errors. The
formation of such clusters points to the existence of underlying error mechanisms that are
subject to classification into Type A and Type B errors. We will further investigate this matter
in future work. It may be possible to derive a calibration procedure that is similar to the one
described in Section 6, but for the Cybermotion platform instead of the LabMate. 
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7.2 Measurement of Non-systematic Errors

To measure non-systematic dead-reckoning errors, we defined a variation of our bench-
mark test, called the extended UMBmark. One interesting insight gained from the work on the
extended UMBmark test is that the average return orientation error is the relevant criterium
for expressing non-systematic errors,  while the return position error is the relevant criterium
for systematic errors.  

The measurement of non-systematic errors by means of the extended UMBmark test is of
interest because it clearly shows the benefits of our previously developed Internal Position
Error Correction (IPEC) method. The results produced by the implementations of the IPEC
method in the CLAPPER and in the (simulated) Smart Encoder Trailer are consistently one
order of magnitude better than the results of "conventional" mobile robots subjected to
substantial floor irregularities. 

7.3 Correction of Non-systematic Errors

Another contribution of this report is the definition of a systematic procedure for measur-
ing and correcting Type A and Type B dead-reckoning errors. The effectiveness of this
procedure and the validity of its underlying model are supported by the experimental results.
The results show that by changing only the effective wheelbase and the effective wheel-
diameter ratio the vehicle's dead-reckoning accuracy (with respect to systematic errors only)
increased by at least one order of magnitude. This improvement was consistent when tested
repeatedly for the same vehicle and when tested on the same vehicle but with artificially
altered wheelbases and wheel-diameter ratios. 

One should note that dead-reckoning calibration factors are used by many researchers.
However, to date such factors were usually found by some form of trial-and-error and some
intuition on the part of the experimenter. This type of approach is very time consuming and
yields inferior results. By contrast, the UMBmark procedure offers a systematic approach that
yields near-optimal results.  The strength of the UMBmark calibration procedure lies in the
fact that even minute mechanical inaccuracies, such as  wheel diameters that differ by as little
as 0.1% can be isolated and identified. Yet, a conventional measuring tape is all that is needed
to conduct the experiment.

A higher level of sophistication can be reached by mounting a sonar calibrator (see
Section 6.3). With the help of the sonar calibrator the UMBmark procedure lends itself to be
implemented as an automated self-calibration procedure. U of M is now beginning to develop
such an automated approach. If successful, this method would require only two human
interventions: (1) manual measurement of the scaling error E  (with an ordinary tape mea-s

sure); and (2) initial placement of the robot in a n L-shaped corner of the testing site. The
robot would then run the fully automated self-calibration routine (UMBmark), compute the
calibration factors, and insert the calibration factors into its dead-reckoning program. This
method should be of interest for all manufacturers of differential-drive autonomous vehicles. 
Similarly, end-users who are concerned with accurate dead-reckoning would want to run the
self-calibration routine periodically to correct for different loads and tire-wear. 
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7.4 Future Work

The work presented in this report offers some highly attractive possibilities for future work.
Encouraged by the results of this report, we can assume that it is possible to reduce the
susceptibility of mobile robot to non-systematic errors by one to two orders of magnitude (as
shown by the CLAPPER and the SET). Based on the results of this report we can further
assume that it is possible to reduce the effect of systematic errors by at least one order of
magnitude (as shown by our results with the UMBmark calibration procedure). Then we can
conclude that all dead-reckoning errors are effectively reduced, thereby potentially yielding a
platform that can navigate accurately over long distances with only sporadic absolute
positioning updates. We must note, though, that these results have been obtained on different
platforms, but have not been integrated yet into one single platform. 

Integration of the above named features is our goal for the near future. The benefits of a
successful integration of our error reducing measures are significant. For example, a conven-
tional vehicle requires an absolute positioning update after 10 m of linear travel. Even then, a
severe disturbance might cause the vehicle to lose track of its position to the extend that it
cannot re-establish its position. By contrast, a vehicle with the dead-reckoning improvements
as we envisage will be able to travel 100 m without absolute position correction. If one finds
this thought unlikely, it is because in the back of our minds is buried the question: "but what if
there is a really big bump...?" This question is justified for conventional mobile robots,
because we have all seen such robots getting lost upon the encounter with a sizable distur-
bance. Yet, we are simply not accustomed to seeing a vehicle navigate that immediately
detects and corrects errors caused by large disturbances. For such a vehicle orientation errors
due to floor irregularities are virtually bounded.  

Based on the results and insights gained from this report, we feel strongly motivated to
pursue  our goal of developing a highly accurate and reliable, yet commercially feasible dead-
reckoning robot. Many colleagues who see a demo of our CLAPPER vehicle are impressed
by the dead-reckoning performance, but wonder about the commercial feasibility of this
complex piece of equipment. Yet, the CLAPPER is not all that complex: it is the combination
of two standard LabMates, connected by a sliding-table (which also serves as the loading
deck). The end-user price of the two LabMates is $10K each, the sliding table and encoders
can easily be integrated by the manufacturer of the LabMates (TRC) for — perhaps —
another $10K. Further required to build the CLAPPER is a linear encoder and two absolute
encoders with rotary bearings and slip-rings for, say, an additional $10K. Thus, one can
reasonably expect that a commerically produced CLAPPER vehicle could sell for $40K. By
comparison, the basic Cybermotion K3A platform costs $50K. One additional advantage of
the CLAPPER, not  mentioned in this report, is the CLAPPER's ability to be recovered from
actuator failure remotely based on its actuator redundancy. 

Because of these potential benefits we will continuing our work with both the CLAPERand 
the SET. Combining the UMBmark calibration (for the reduction of systematic errors) with
our method  for detecting and rejecting non-systematic errors (as implemented in the CLAP-
PER and — hopefully soon — in the Smart Encoder Trailer) promises a new level of
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completely reliable dead-reckoning performance with two-to-three orders of magnitude
improved accuracy!
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Figure A1: When turning through a nominal
90  turn, it is not the "unequal wheel diameter"o

error, but rather the "average actual wheel
diameter" error, that affect the amount of
turning.

Appendix A: The Effect of Unequal Wheel-diameters During Turning

In this Appendix we investigate how unequal wheel diameters affect on-the-spot turning of
a differential-drive mobile robot. Figure A1 shows the two drive wheels of the robot before
and after the nominal 90   turn. Since on-the-spot-turning requires that both wheels rotate ato

the same speed, we can assume that the angular velocity of both wheels is equal. However,
due to the unequal wheel diameters the actual linear velocities of the wheels are proportional
to the actual wheel diameters D  and D . Thus, the instantaneous center of rotation (ICR) 'O'R L

can be found easily as shown in Fig. A1. Note that 'O' does not coincide with the vehicle
centerpoint C. At the completion of this turn point c will have moved to c'. The "on-the-spot"
turn is therefore accompanied by a lateral displacement. However, in the square path
experiment with four "on-the-spot" turns the four resulting lateral displacements balance and
can be ignored.

We now wish to derive a relation be-
tween the actual wheel diameters D  and D ,L R

and the actual angle of rotation . From Fig-
ure A1 we obtain

r DR R— = — (A.1)r DL L

where 
r is the distance from the ICR 'O' to theR/L

right or left wheel.

rewriting Eq. (A.1)  yields

r  =  (D /D ) r  (A.2)R R L L

Under normal driving conditions the ICR is
always on the drive axis (or along its imagi-
nary extension beyond the wheels), so that

r  + r  = b (A.3)R L

Substituting Eq. (A.2) into Eq.  (A.3) and solving for r  yieldsL

  DL r  = ——— b (A.4a)L D  + DR L

Next, we compute the nominal linear travel distance and the nominal number of encoder
pulses that correspond to a 90 turn.o
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U   90n, 90
o

—— = —— (A.6) b 360o

or
 bU  = — (A.7)n,90  4

where the index n indicates a nominal value and U is the length of the arc prescribed by either
one of the wheels (assuming nominal diameters) during turning.

Substituting Eq. (A.7) into Eq. (2.2) we can compute N , the nominal number of encodern,90

pulses required for a 90  turn. o

n Ce N  = ——  b (A.8)n,90 4 Dn

Finally, we derive from the geometric relations in Fig. A1

U   2 rL L— = —— (A.9) 360o

or
360  o

 = —— U (A.10)L2 rL

where U  is the actual distance traveled by the left wheel, which has a diameter D . U  isL L L

not 
known but we know that the left wheel is programmed to accumulate N  pulses, so that Un,90 L

can be computed as follows (again from Eq. (2.2)):

  DLU  = ——  N  (A.11)L n,90 n Ce

Substituting Eq. (A.8) into Eq. (A.11)

   DLU  = ——  b (A.12)L 4 Dn

and substituting Eq. (A.12) in Eq. (A.10) we obtain the actual angle of rotation, :

360 Do
L = —— —  b (A.13)8r DL n

Substituting Eq. (A.4b) yields
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 45  (D  + D )o
R L = —————— (A.14)Dn

To interpret this result more easily, we define the average actual wheel diameter

 (D  + D )R LD  = ———— (A.15)avrg 2

and we rewrite Eq. (A.14) as

D  Davrg n—— = —— (A.16)   90o

Equation (A.16) can be expressed in words as "The average actual wheel diameter relates
to the actual angle of turning as the nominal wheel diameter relates to the nominal angle of
turning."

Three important conclusions can be drawn from Eq. (A.16):

1. The orientation error due to unequal wheel diameters is independent of which wheel is
larger or smaller than the nominal diameter. Therefore, the same error will be experienced
in both cw and ccw turning. The error is thus of Type A.

2. The orientation error depends on the average actual wheel diameter D  = (D +D )/2. avrg L R

If D  > D , then the vehicle will turn more than the nominal amount. avrg n

If D  < D , then the vehicle will turn less.avrg n

3. The orientation error during turning does not depend on the ratio of the actual wheel
diameters, E  = D /D . Rather, E  has a minor effect on the x and y position of centerpointd R L d

C, because the actual center of rotation, C', does not coincide with C, as shown in Fig. A.1.
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Appendix B: Measurement and Correction of the Scaling Error Es

In Section 2.3 we mentioned that the scaling error E  is easily measured with an ordinarys

tape measure. One simple procedure for doing so requires that the robot be programmed  to
go straight for a distance of, say, 3 m. The experimenter marks the robot's starting and
stopping positions on the floor. Using the tape measure, the distance between the two marks
can be measured with an accuracy of typically ±1 mm or 0.03% of full scale. The actual
distance is then compared to the calculated distance, based on the robot's dead-reckoning. Es

is thus defined as

E  = L /L (B.1)s calc actual

Compensation for the linear scaling error is achieved by replacing the original nominal
wheel diameter D  in the dead-reckoning program by the compensated nominal diameter D *:n n

D * = E  D (B.2)n s n

With the simple procedure explained above, the scaling error E  will be  0.03%. Fors

example,  in a 10 m straight run, the position error due to E  will be  3 mm. This is roughlys

one order of  magnitude less than the typical error-spread due to non-systematic errors when
traveling over reasonably smooth concrete floors.
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Figure C-1: Return Position Errors for the TRC LabMate. UMBmark test with 4×4 m bi-directional square path. Smooth concrete
floor, no bumps. 

APPENDIX C: UMBMARK EXPERIMENTAL RESULTS FOR SYSTEMATIC ERRORS  
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Figure C-2: Return Position Errors for the Cybermotion K2A. UMBmark test with 4×4 m bi-directional square path. Smooth
concrete floor, no bumps.
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Figure C-3: Return Position Errors for the University of Michigan's CLAPPER. UMBmark test with 4×4 m bi-directional square
path. Smooth concrete floor, no bumps.
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Figure C-4: Return Position Errors for the Remotec Andros. UMBmark test with 4×4 m bi-directional square path. Smooth
concrete floor, no bumps. Note that the scale of this plot is 50 times coarser than that of all other plots. The typical return
position error of the tracked Andros vehicle was on the order of 8-10 meters! The average orientation error was 130 !o

Clearly, dead-reckoning with a tracked vehicle is out of the question. 
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Figure C-5: Return Position Errors for the Remotec Andros with Basic Encoder Trailer. UMBmark test with 4×4 m bi-directional
square path. Smooth concrete floor, no bumps. We hypothesize that the large spread of return position errors is a measuring error
caused by wear in the slip-ring mounted on the joint between Andros platform and encoder trailer.
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Figure C-6: Simulation result — return position errors for a TRC Labmate combined with the Smart Encoder Trailer (SET).
UMBmark test with 4×4 m bi-directional square path. Smooth concrete floor, no bumps. Note how the accurately modeled
systematic errors of the LabMate (we modeled the actually measured values from the uncalibrated LabMate in experiment E-2)
are almost completely corrected by the SET (compare to Fig. E-2 with results "before correction"). Also note the (expected)
similarity of the simulated result herewith the actual results from the CLAPPER in Figure C-3.



X [mm]

-300

-250

-200

-150

-100

-50

0

50

100

150

-450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300

10 Bumps, cw

10 Bumps, ccw

C.G., 10 Bumps, cw

C.G., 10 Bumps, ccw

UMB10TRC: With 10 bumps
Modifications: None
Calibration:      yes (trial 'n error)

PAGE 55

Figure D-1: Return Position Errors for the TRC Labmate. Extended UMBmark test with 4×4 m bi-directional square path. 10
bumps, each 10 mm high, were introduced during the first leg.

APPENDIX D: 
EXTENDED UMBMARK EXPERIMENTAL RESULTS FOR NON-SYSTEMATIC ERRORS  
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Figure D-2: Return Position Errors for the Cybermotion K2A. Extended UMBmark test with 4×4 m bi-directional square path. 10
bumps, each 10 mm high, were introduced during the first leg. It is difficult to explain the exceedingly wide spread of the return
position errors in ccw direction.
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Figure D-3: Return Position Errors for the University of Michigan's CLAPPER. Extended UMBmark test with 4×4 m bi-
directional square path. 10 bumps, each 10 mm high, were introduced during the first leg. The CLAPPER is especially designed to
detect and correct non-systematic dead-reckoning errors. The result: a vehicle that is almost completely resilient to errors due to
bumps, cracks, or other irregularities of the floor.
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Figure D-4: This Figure should show the Return Position Errors for the Remotec Andros for the 4×4 m bi-directional
square path test, with 10 bumps. However, this test is not applicable because the tracks of the Andros vehicle have
grooves that are much larger than the 8-9 mm diameter bump used in our tests. The test result would therefore be
essentially identical to the result without bumps, shown in Fig. C-4.
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Figure D-5: Return Position Errors for the Remotec Andros with Basic encoder Trailer attached. This test comprised the nominal
4×4 m bi-directional square path. 10 bumps, each 8-9 mm high, were introduced under the trailer's wheels during the first leg of
the run. 
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Figure D-6: Return Position Errors for a simulation run with the Smart Encoder Trailer (SET). The Extended UMBmark test with
a 4×4 m bi-directional square path was applied, and, in addition, 10 bumps, each 10 mm high, were introduced during the first leg
of the square path. The SET uses the same principle of error correction as the CLAPPER. The simulation program is directly
derived from a similar simulation for the CLAPPER. Results from the CLAPPER simulation were consistently similar to the
actual CLAPPER, increasing our trust in the accuracy of the SET simulation.
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Figure E-1: Experiment E-1 shows how the return position error of the LabMate is reduced dramatically after compensation with
the analytical compensation factors derived in Section 6. Here the improvement is 15-fold (Improvement is measured as the ratio
between the furthest center of gravity (C.G.) of the uncalibrated runs and the furthest C.G. of the runs after calibration).

APPENDIX E: CORRECTION OF SYSTEMATIC ERRORS — EXPERIMENTAL RESULTS
(All experiments in Appendix E were performed with the same TRC LabMate)
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Figure E-2: Experiment E-2 shows another set of runs before and after calibration. Here the improvement is.
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Figure E-3: Experiment E-3 shows yet another set of runs before and after calibration. Here the improvement is 10-fold (the least
successful run in this series of eight experiments).
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Figure E-4: Same set of correction factors used as experiment 3, but new set of "after-calibration runs.".Here the improvement is
21-fold (see text inSection 6.3 for explanation of this seemingly.different result, as compared to experiment E-3
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Figure E-5: Once more, the same set of correction factors as in E-3 and E-4 was used. The improvement this time is 12-fold.
Experiments E-3, E-4, and E-5 reinforce our observation that the UMBmark calibration procedure provides consistently one order
of magnitude improvment in dead-reckoning accuracy (with respect to systematic errors).
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Figure E-6: To test the repeatability of the UMBmark calibration procedure, we ran the procedure again, from the beginning: we
ran UMBmark without any correction, derived the correction factors from the results of the UMBmark run, and ran UMBmark
again with the computed correction factors. Here the improvement in accuracy was 11-fold.
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Figure E-7: In this experiment the diameter of the right wheel was slightly increased by winding three loops of masking tape
around the wheel perimeter. This results effectively in a "different" vehicle.In this experiment, the initial improvement was only 6-
fold. However, applying a simple test (explained in Section 6.3) it is immediately clear that further improvement can be achieved.
Applying the UMBmark calibration procedure for a second time, the overall improvement becomes 21-fold.
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Figure E-8: In this experiment the diameter of the left wheel was slightly increased by winding five loops of masking tape around
the left wheel perimeter. The improvement after applying the UMBmark calibration procedure was 19-fold.
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The CLAPPER: A Dual-drive Mobile Robot With 
Internal Correction of Dead-reckoning Errors
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ABSTRACT

This paper presents a new approach to accu-
rate and reliable dead-reckoning with mobile
robots. The approach makes use of special
properties of our recently developed Multi-
Degree-of-Freedom (MDOF) mobile platform,
in which two differential-drive mobile robots
(called "trucks") are physically connected
through a compliant linkage. Using one linear
and two rotary encoders, the system can mea-
sure the relative distance and bearing between
the two trucks. During operation, both trucks
perform conventional dead-reckoning with their
wheel encoders, but, in addition, use informa-
tion about their relative position to correct
dead-reckoning errors.  

Our system, called Compliant Linkage Au-
tonomous Platform with Position Error Recov-
ery (CLAPPER), requires neither external refer-
ences (such as navigation beacons, artificial
landmarks, known floorplans, or satellite sig-
nals), nor inertial navigation aids (such as ac-
celerometers or gyros). Nonetheless, the experi-
mental results included in this paper show one
to two orders of magnitude better positioning
accuracy than systems based on conventional
dead-reckoning. 

1. INTRODUCTION

In most mobile robot applications two basic
position-estimation methods are employed to-
gether: absolute and relative positioning
[Borenstein and Koren, 1987; Hongo et al,
1987]. Relative positioning is usually based on
dead-reckoning (i.e., monitoring the wheel rev-

olutions to compute the offset from a known
starting position). Dead-reckoning is simple,
inexpensive, and easy to accomplish in real-
time. The disadvantage of dead-reckoning is its
unbounded accumulation of errors. 

Absolute positioning methods usually rely
on (a) navigation beacons, (b) active or passive
landmarks, (c) map matching, or (d) satellite-
based navigation signals. Each of these abso-
lute positioning approaches can be imple-
mented by a variety of methods and sensors.
Yet, none of the currently existing systems is
particularly elegant. Navigation beacons and
landmarks usually require costly installations
and maintenance, while map-matching methods
are either very slow or inaccurate [Cox, 1991],
or even unreliable [Congdon et al, 1993]. With
any one of these measurements it is necessary
that the work environment be either prepared or
be known and mapped with great precision.
Satellite-based navigation can be used only
outdoors and has poor accuracy (on the order of
several meters) when used in real-time, during
motion.

Another approach to the position determina-
tion of mobile robots is based on inertial navi-
gation with gyros and/or accelerometers. Our
own experimental results with this approach, as
well as the results published in a recent paper
by Barshan and Durrant-Whyte [1993], indicate
that this approach is not advantageous. Acceler-
ometer data must be integrated twice to yield
position, thereby making these sensors exceed-
ingly sensitive to drift. Another problem is that
accelerations under typical operating conditions
can be very small, on the order of 0.01 g. Yet,
fluctuation of this magnitude already occur if
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Figure 1: The University of Michigan's
experimental dual differential drive vehicle
with compliant linkage. Figure 2: Essential components of the MDOF

vehicle with compliant linkage.

the sensor deviates from a perfectly horizontal sideways and they can negotiate tight turns
position by only 0.5 , for example when the easily. However, existing MDOF vehicles haveo

vehicle drives over uneven floors. Gyros can be been found difficult to control because of their
more accurate (and costly) but they provide overconstrained nature [Reister, 1991; Killough
information only on the rotation of a vehicle. and Pin, 1992]. These difficulties translate into

This paper introduces a new method for cor- severe wheel slippage or jerky motion under
recting dead-reckoning errors without external certain driving conditions. Because of this ex-
references. This method requires two collabo- cessive wheel-slippage existing MDOF vehi-
rating mobile robots that can accurately mea- cles are not very suitable for mobile robot
sure their relative distance and bearing during applications that rely heavily on dead-reckon-
motion. Our previously developed MDOF vehi- ing. Our MDOF vehicle overcomes these diffi-
cle [Borenstein, 1993; 1994a] meets these re- culties by introducing the compliant linkage
quirements and we were able to implemented design (Fig. 2).  The compliant linkage
and test our error correction method on this accommodates momentary controller errors and
vehicle with only minor modifications. Section thereby successfully eliminates the excessive
2 summarizes the relevant characteristics of our wheel slippage reported by other makers of
MDOF vehicle. Because of the new error cor- MDOF vehicles.
rection capability, we  now call our vehicle the The schematic drawing in Fig. 2 shows the
Compliant Linkage Autonomous Platform with
Position Error Recovery (CLAPPER). Section
3 describes the error correction method in de-
tail, and Section 4 presents experimental re-
sults.

2. THE MDOF COMPLIANT LINKAGE
VEHICLE

In previous research we have developed an
innovative Multi-Degree-of-Freedom (MDOF)
vehicle with compliant linkage (Fig. 1).

The advantage of MDOF vehicles over con-
ventional mobile robots is that they can travel

essential components of the compliant linkage
vehicle. The vehicle comprises of two trucks
(in our prototype, these are commercially avail-
able LabMate robots from TRC [1993]). The
two trucks are connected by the compliant link-
age, which allows force-free relative motion
within its physical range. A linear encoder mea-
sures the momentary distance between the two
trucks, and two absolute rotary encoders mea-
sure the rotation of the trucks relative to the
compliant linkage. Each of the four drive
wheels in the system has a shaft encoder to
allow conventional dead reckoning.

The linear incremental encoder has a resolu-
tion of 0.1 mm, but the actual accuracy of dis-
tance measurements between the two trucks is
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Figure 3: Simplified geometry
of wheel traversing a bump.

only ±5 mm because of mechanical inaccura- robot navigation: (a) systematic errors, which
cies in our prototype vehicle. The resolution of are related to properties of the vehicle, that is,
the rotary absolute encoders is 0.3. We will they are independent of the environment; ando

call these the three "internal" encoders. (b) non-systematic errors, which are usually
The experiments with our MDOF vehicle caused by irregularities or roughness of the

[Borenstein, 1993V1] showed that control er- floor. 
rors are effectively absorbed by the compliant Note that non-systematic errors can neither
linkage, resulting in smooth and precise motion be avoided nor can they be compensated for in
without excessive wheel slippage. In a series of conventional dead-reckoning. By contrast, the
4×4 m square path experiments we found typi- CLAPPER can detect and reduce both system-
cal dead-reckoning errors to be less than 6.5 cm atic and non-systematic errors by one to two
in x and y direction, and orientation errors were orders of magnitude, even with both trucks in
less than ±1   [Borenstein, 1994a]. This dead- motion. o

reckoning accuracy is comparable with that of In this Section we explain our approach for
conventional 2-DOF robots. Of course, these the simple case of straight-forward motion, but
results were obtained on smooth floors without the method works equally well (and without
irregularities, and with well calibrated parame- any modification) for curved trajectories. We
ters to minimize systematic errors. will develop a numeric example throughout this

3. INTERNAL CORRECTION OF 
DEAD-RECKONING ERRORS

At first glance, it may appear impossible to the sake of the numeric example, let us assume
obtain accurate position corrections from a that both trucks are traveling at V = 0.5 m/s,
“floating reference point,” such as another mo- and that the sampling time of the internal en-
bile robot in motion. Yet, our method is de-
signed to overcome this problem: it exploits the
fact that certain dead-reckoning errors develop
slowly while others develop quickly. For exam-
ple, when a robot traverses a bump or crack in
the floor, it will experience an appreciable ori-
entation error within just a few centimeters of
travel (“fast-growing” error). The lateral posi-
tion error, on the other hand, is very small at
first (“slow-growing” error), although it will
grow with distance as a function of the orienta-
tion error. Our method performs relative posi-
tion measurements very frequently, allowing
each truck to detect errors in its orientation
(which can have changed significantly during
one sampling interval), while relying on the
fact that the lateral position error of both trucks
was only small during the same interval. 

Before we present the details of our method
we should make a clear distinction between two
types of dead-reckoning errors found in mobile

section, to show why certain assumptions are
valid.
At first, we assume that both trucks are
longitudinally aligned and travel forward. For

coders is T  = 40 ms. Thus, during a samplings

interval both trucks travel a distance
D  = VT  = 20 mm.s s

Next, we consider the geometry of a wheel
of radius R traversing a bump of height h (see
Fig. 3). Making the simplifying assumption that
the wheel was perfectly rigid, the wheel will
traverse the bump by rotating around the point
of contact C until the wheel's center point O is
right above C (at O'). During this motion the
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Figure 4: After traversing a bump, the result-
ing change of orientation of truck A can be
measured relative to truck B.Physical Dimensions

Wheelbase b 340 mm
Wheel radius R 75 mm
Height of bump h 10 mm

Computed Results
Linear error ∆D 2.63 mm
Orientation error ∆θ  (see Fig.a
3) 0.44 o

Lateral error after 10m travel
e (D=10m)  77 mmlat

Table 4: Sample path errors after traversing a
bump

wheel encoder measures a rotation α, which is
interpreted as the linear travel distance D .meas

Yet, the actual travel distance in horizontal
direction is only D . This discrepancy createshor

a linear error ∆D = 2(D  - D ) (not shown inmeas hor

Fig. 3). Note that the factor '2' is used because
the wheel travels up and down the bump. 

For straight-line motion, the low-level con-
troller of a conventional differential-drive mo-
bile robot will try to keep the rotational veloci-
ties of both wheels equal. Thus, the horizontal
distance traveled by the wheel that traversed the
bump (let us assume it is the right wheel, in our
example) will be ∆D less than that of the left
wheel, causing a curved motion to the right, as
shown in Fig. 4. 

Applying simple geometric relations (based
on Figs. 3 and 4, but not derived here in detail),
the numeric sample results shown in Table I are
obtained (all physical dimensions correspond to
the LABMATE robot from TRC). We will use
these sample numbers in the following discus-
sion.

The resulting orientation error ∆θ  (see Fig.a

4) is the most significant error in the system
[Feng et al, 1993], because it will cause an un-
bounded lateral error, e , which grows propor-lat

tionally with distance at a rate of

 e (D) = D·∆D/b = D sin ∆θ (1)lat a

where
D - Distance traveled since clearing the bump
b - wheelbase

For example, Table I shows that the lateral
error of truck A after only 10 m travel would be
e (D=10 m) = 77 mm.lat

The method for detecting dead-reckoning
orientation errors is based on our new concept
of fast-growing and slow-growing dead-reckon-
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ing errors. The CLAPPER performs relative error from the time the bump was first encoun-
position measurements very frequently, allow-
ing each truck to detect fast-growing errors in
its orientation (which can have changed signifi-
cantly during one sampling interval), while
relying on the fact that the lateral position error
of both trucks was only small during the same
interval.

The practical implementation of this ap-
proach works as follows: Figure 4 shows the
direction in which truck A "expected" truck B,
based on the dead-reckoning data from both
trucks. If, however, truck A had traversed a
bump, it would have acquired an orientation
error ∆θ . Comparing the  direction readinga

from absolute encoder A with the "expected"
direction, the system can uncover this orienta-
tion error. Subsequently the internal world
model of truck A can be corrected accordingly.
One problem with this approach is the fact that
even a perfectly accurate measuring system
cannot reveal the actual orientation error ∆θ .a

Rather, because of the lateral offset e  the ori-lat

entation error is measured (incorrectly) as ∆θm.

This allows us to correct the momentary orien-
tation θ (based on dead-reckoning) in the inter-
nal world model of truck A by adding the mea-
sured orientation error ∆θ . The corrected ori-m

entation of truck A is therefore θ  = θ + accuracy of the orientation error measurement,corrected

∆θ . but only by ε = 0.01 , i.e., much less than them

In order to illustrate the validity of our ap- resolution of the internal encoders.
proach we must show that the difference be- This numeric example illustrates how our
tween ∆θ  and ∆θ  is ndeed negligibly smalla m.

under all normal driving condition. To do so,
let us consider the enlarged area of Fig. 4. It is
easy to compute the lateral position error e (D)lat

after traversing the bump, because it increases
at a constant rate as shown in Eq. (1). However,
while traversing the bump the lateral position
error changes as a function of the orientation
error, which, in turn, is a function of the  shape
of the bump. Nonetheless, it can be shown that
the orientation error increases monotonously
while traversing a bump [Borenstein, 1994b].
Thus, any time we sample the orientation error
∆θ , we can be sure it is the largest orientations

tered (i.e.,  ∆θ ∆θ ). This holds true even ifs s,max

the wheel had not  yet cleared the bump at the
end of the sampling interval. 

With this explanation in mind, an upper
bound for the lateral orientation error while tra-
versing a bump can be defined as

e (D )  D  sin(∆θ ) (2)lat s ss

We recall that in our numeric example D  =s

20 mm and ∆θ  = 0.44 . Substituting these val-s
o

ues into Eq. (2) yields e (D ) = 0.15 mm afterlat s

traversing the bump.
Next, we can show that this lateral error has

no significant influence on the accuracy of the
relative orientation measurement between the
two trucks. For example, the CLAPPER main-
tains a distance of L = 1 m between the two
trucks.  One can easily compute from the
geometry of Fig. 4 that the small lateral error
e (D ) = 0.15 mm will reduce the actual orien-lat s

tation error ∆θ  = 0.76  by a
o

ε = sin (e (D )/L) = sin (0.15/1000) =-1 -1
lat s

0.01  o

and result in a measured orientation error 
∆θ  = ∆θ  - ε = 0.76  - 0.01  =0.75 .m a

o o o

Thus, the lateral error e  does reduces thelat

o

approach exploits the concept of slow-growing
and fast-growing dead-reckoning errors: Most
floor irregularities will cause an appreciable,
immediately measurable orientation error (fast-
growing error), while the resulting lateral error
e  remains negligibly small during the sam-lat

pling interval (slow-growing error).
Figure 4 shows the simple case in which

only truck A encountered a bump while truck B
retained its heading. However, even in the
worst case, (i.e., if truck B also encountered a
bump during the same sampling interval), its
lateral error e (D ) would be similarly small.lat s

Neither this lateral error nor the orientation
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Figure 5: CLAPPER stopping positions
after completing the straight-path ex-
periment. 

error of truck B would cause a significant error bounded by the encoder resolution. Our system
in the orientation measurement of truck A rela- is sensitive to systematic measurement errors
tive to B or vice versa. Yet, even in this ex- from the encoders. For example, if rotary en-
treme case, the inaccuracy of the orientation coder A is constantly biased by, say, 0.5, then
error measurement would only be ε = 2×0.01  =o

0.02 , or 0.02/0.76×100 = 2.6%.o

The method described above can detect and
reduce only rotational errors, but not transla-
tional errors. However, rotational errors are
much more severe than translational errors,
because orientation errors cause unbounded
growth of lateral position errors. In the numeric
example above, the translational error resulting
from traversing a bump of height 10 mm was
∆D = 2.63 mm. By comparison, the lateral error
due to the rotational error ∆θ is e  = 77 mmlat

after only 10 m of further travel. 
Another important strength of the CLAP-

PER's error correction system is the fact that
orientation errors do not
accumulate. This is so be-
cause the error correction
(i..e., adding ∆θ  to the inter-m
nal world model of truck A is
done in every sampling inter-
val, Our experiments show
that over-correction or under
correction in one sampling
interval is simply "caught" in
the next interval.  Further-
more, it doesn't matter wheth-
er the discrepancy between
expected and measured rela-
tive direction is the result of
bumps, cracks, or systematic
errors.

In principal the total orien-
tation error of each truck is
bounded by the resolution of
the internal encoders. This is
a major advantage compared
to conventional dead-reckon-
ing, where orientation errors
do accumulate. In practice,
however, our system cannot
guarantee an error to be

o

the error correction function will assume a
steady state in which truck A has a constant
orientation error of 0.5  relative to the compli-o

ant linkage. Such an error would cause slightly
curved motion of the CLAPPER (even on a
perfectly smooth surface). Fortunately this sys-
tematic error can be detected experimentally
and corrected by calibration with excellent re-
sults. 

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the
CLAPPER's error correction method we per-
formed numerous sets of experiments. 

In this paper we pres-
ent the results of the basic
straight-line experiment,
where the CLAPPER was
programmed to travel
straight forward for 18 m,
stop, and return straight-
backward for 18 m, to the
starting position.

In order to automate
the evaluation of the ex-
periments, all experi-
ments started and ended
near an L-shaped refer-
ence corner. Three ultra-
sonic sensors were
mounted on the vehicle,
two sensors were facing
the long side of the L-
shaped corner, the third
sensor faced the short
side. The ultrasonic sen-
sor system allowed
measurement of the abso-
lute position of the vehi-
cle to within ±2 millime-
ters in the x and y direc-
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tions, and to about ±0.25  in orientation. 1.7  in the run without error correction to sys-o

At the beginning of each run a sonar mea- tematic errors. The run with error correction
surement was taken to determine the starting shows how the systematic error is overcome.
position of the vehicle. The vehicle then trav- The more important results are those from runs
eled through the programmed path and returned with disturbances. Here the non-error corrected
to the L-shaped corner, where the perceived runs average -7.7 , out of which -1.7  are the
position (i.e., the position the vehicle "thought" result of the systematic error. The remaining
it had, based on dead-reckoning) was recorded. error average of -6  were caused by applying
Then, a sonar measurement was taken to deter- identical 0.6  disturbances along the return
mine the absolute position. The difference be- path. Also note that the lateral position errors
tween the absolute position and the perceived (without correction) would have been larger if
position was the position error. the disturbances had been applied in the begin-

We performed three runs for each one of the ning of the return path. 
following four conditions: (a) without error We performed many more experiments than
correction, without disturbances; (b) without the ones documented here. In all runs the orien-
error correction, with disturbances; (c) with tation error with the CLAPPER was less than
error correction, without disturbances; and (d) ±1.0  for the 36 m path. The experiment de-
with error correction, with disturbances. scribed in this section, as well as several other

In the runs "without disturbances" one can experiments, are documented in the video
assume disturbance-free motion because our proceedings of this conference
lab has a fairly smooth concrete floor. In the [Borenstein,1994V2].
runs "with disturbances" bumps were created
by placing a 10 mm diameter cable placed un-
der the wheels. We used bumps only on the
return leg of the 2×18 m round-trip and only
under the right-side wheels of the vehicle (to We are currently investigating the possibili-
avoid mutual cancellation of errors). In the runs ties of implementing our error correction
with error correction we used 20 bumps that method in a different kinematic configuration.
were evenly spaced along the 18 m return-path. This configuration comprises only one differen-
Some bumps affected both the front and rear
truck, some affected only one of the two trucks.
In the runs without error correction we used
only 10 bumps, because our cluttered lab could
otherwise not accommodate the large path
deviations. Without error correction, each
bump caused an orientation error of
approximately 0.6 .o

Figure 5 summarizes the results from the
straight-line experiment. shown are the stop-
ping positions and orientations of the vehicle
after completing the 36 m journey back and
forth along the x-axis. Each one of the four
conditions of this experiment was performed
three times. Note that without disturbances, the
ending positions with error correction are only
slightly better than those without correction.
We relate the almost uniform error of approx. -

o

o o

o

o

o

5. ALTERNATIVE 
IMPLEMENTATIONS

tial drive mobile robot, which tows a small
trailer with encoder wheels. Simulation results
for this possible implementation indicate the
feasibility of this approach [Borenstein, 1994c].
From a commercial point of view, the encoder
trailer may be more attractive to manufacturers
of mobile robots and AGVs, because the trailer
can be attached to most existing vehicles.

6. CONCLUSIONS

The method described in this paper is appli-
cable to many other autonomous vehicles. Ve-
hicles used in construction or agricultural appli-
cations, where dead-reckoning has been impos-
sible in the past because of the large amount of
slippage on soft soil, may benefit directly from
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our new method. Furthermore, it may is possi-
ble to expand the growth-rate concept to
tracked vehicles (like tanks or bulldozers) and
possibly even to those watercraft and aircraft
that have significantly different growth-rates in
their positioning errors.

These features are made possible by exploit-
ing the new concept of growth-rate of dead-
reckoning errors that is introduced in this paper
for the first time. The growth-rate concept dis-
tinguishes between certain dead-reckoning er-
rors that develop slowly while other dead-reck-
oning errors develop quickly. Based on this
concept, truck A frequently measures a prop-
erty with slow-growing error characteristics on
reference truck B (thus admitting a small error)
to detect a fast-growing error on truck A (thus
correcting a large error), and vice versa.

In summary, the advantage of the CLAPPER
system are: 
1. The immediate correction of orientation er-

rors, which would otherwise cause unbound-
ed growth of lateral position errors.

2. Prevention of accumulation of orientation
errors, to the limit determined by the calibra-
tion of the internal position measurement
accuracy, and provided that none of the
wheels slipped sideways.
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