Duality in LP, Optimality Conditions

 Katta G. Murty Lecture slidesEvery LP has another LP called its dual, which shares the same data, and is derived through rational economic arguments. In this context the original LP called the primal LP.

Variables in the dual problem are different from those in the primal; each dual variable is associated with a primal constraint, it is the marginal value or Lagrange multiplier corresponding to that constraint.

Example: Primal - Fertilizer Maker's Problem.
FERTILIZER MAKER has daily supply of:

1500 tons of RM 1
1200 tons of RM2
500 tons of RM 3

She wants to use these supplies to maximize net profit.

DETERGENT MAKER wants to buy all of fertilizer maker's supplies at cheapest price for his detergent process. Suppose he offers:

$$
\begin{aligned}
& \$ \pi_{1} / \text { ton for } \mathrm{RM} 1 \\
& \$ \pi_{2} / \text { ton for } \mathrm{RM} 2 \\
& \$ \pi_{3} / \text { ton for } \mathrm{RM} 3
\end{aligned}
$$

These prices are the variables in his problem. Total payment comes to $1500 \pi_{1}+1200 \pi_{2}+500 \pi_{3}$ which he wants to minimize.

FERTILIZER MAKER: won't sell supplies unless detergent maker's prices are competitive with each of hi-ph, lo-ph processes.

Hi-ph process converts a packet of $\{2$ tons $R M 1$, 1 ton $R M 2$, and 1 ton $R M 3\}$ into $\$ 15$ profit. In terms of detergent maker's prices, the same packet yields $\$\left(2 \pi_{1}+\pi_{2}+\pi_{3}\right)$. So, she demands $2 \pi_{1}+\pi_{2}+\pi_{3} \geq 15$ for signing deal.

Similarly, by analyzing lo-ph process, she demands $\pi_{1}+\pi_{2} \geq 10$ to sign deal.

From these economic arguments, we see that detergent maker's problem is:

Dual
Associated primal activity

Minimize $1500 \pi_{1}+1200 \pi_{2}+500 \pi_{3}$
subject to $2 \pi_{1} \quad+\pi_{2} \quad+\pi_{3} \geq 15 \quad$ Hi-ph
$\pi_{1} \quad+\pi_{2} \quad \geq 10 \quad$ lo-ph
$\pi_{1}, \quad \pi_{2}, \quad \pi_{3}, \geq 0$
From arguments, we see that if dual problem has unique opt. sol., it is the marginal value vector for primal.

Summary of Primal, Dual Relations:

1. There is a dual variable associated with each primal constraint, it is the marginal value of the RHS constant in that constraint.
2. There is a dual constraint corresponding to each primal variable.
3. RHS constants in primal (dual) are objective coefficients in dual (primal).
4. If primal is a maximization problem, dual is a minimization problem \& vice versa.
5. The dual of the dual problem is the primal.
6. When optimum solutions exist, optimum objective values in the primal and dual are equal.

Dual of LP in Standard Form:

An LP is in STANDARD FORM if:

- All constraints are equations.
- All variables are required to be ≥ 0.
- Objective function in minimization form.

Here is the general LP in standard form in a detached coefficient tableau:

x_{1}	\ldots	x_{j}	\ldots	x_{n}	$-z$		Dual var.
a_{11}	\ldots	$a_{1 j}$	\ldots	$a_{1 n}$	0	b_{1}	π_{1}
\vdots		\vdots		\vdots	\vdots	\vdots	\vdots
$a_{m 1}$	\ldots	$a_{m j}$	\ldots	$a_{m n}$	0	b_{m}	π_{m}
c_{1}	\ldots	c_{j}	\ldots	c_{n}	1	0	

The Dual is:
$\operatorname{Max} . v(\pi)=b_{1} \pi_{1}+\ldots+b_{m} \pi_{m}$
Primal var.

$$
\begin{array}{cccc}
\text { S. to } \begin{array}{c}
a_{11} \pi_{1}
\end{array}+\ldots+a_{m 1} \pi_{m} & \leq c_{1} & x_{1} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 j} \pi_{1}+\ldots+a_{m j} \pi_{m} & \leq c_{j} & x_{j} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 n} \pi_{1}+\ldots+a_{m n} \pi_{m} & \leq c_{n} & x_{n}
\end{array}
$$

The dual constraint corresponding to primal variable

$$
x_{j} \quad \text { is } \quad a_{1 j} \pi_{1}+\ldots+a_{m j} \pi_{m} \leq c_{j}
$$

The dual slack variable denoted by $\quad \bar{c}_{j}=c_{j}-\left(a_{1 j} \pi_{1}+\ldots+\right.$ $\left.a_{m j} \pi_{m}\right) \quad$ is called reduced or relative cost coefficient of x_{j} WRT π.

Dual Feasibility: The row vector π satisfies all dual constraints, i.e., is dual feasible, iff $\quad \bar{c}_{j} \geq 0$ for all j.

Example:

$$
\begin{gathered}
\text { Minimize } z=3 x_{1}+11 x_{2}-15 x_{3}+10 x_{4}+4 x_{5}+57 x_{6} \\
\text { s. to } x_{1}+2 x_{2}+3 x_{3}-2 x_{4}+x_{5}+16 x_{6}=17 \\
x_{2}-4 x_{3}+x_{4}+x_{5}+x_{6}=2 \\
x_{3}-2 x_{4}+x_{5}=1 \\
x_{j} \geq 0 \text { for all } j
\end{gathered}
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
1	1	1	1	1	-2	1	0
1	1	1	0	-1	-1	2	0
1	1	0	0	1	1	-1	0
1	0	0	0	-1	2	-2	0
4	2	2	-1	-2	5	2	1
$x_{j} \geq 0 \forall j, \min z$						0	

Opt. conds. for an LP in standard form for a given basic vector are:

1. Primal feasibility: Set nonbasics $=0$.

Solve remaining system of eqs. for basic variables. They must be ≥ 0 in resulting primal basic sol.

Example: Take basic vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in above problem.
2. Dual feasibility: Compute dual basic sol. \& check dual feasibility.

To get dual basic sol. solve system of dual constraints corresponding to basic variables as a system of eqs.

Compute all $\bar{c}_{j}=$ slack in dual constraint of nonbasic var. x_{j}. If all these $\bar{c}_{j} \geq 0$, the basic vector is dual feasible.

Optimal basic vector: if it is both primal and dual feasible.

Primal sol. corresponding to optimal basic vector is Opt. BFS.

If optimal BFS nondegenerate, dual opt. sol. unique, it is

marginal value vector.

If optimal BFS degenerate, dual may have many opt. sols., \& marginal values do not exist.

Example above.

Example: Dual of the balanced transportation prob-

lem:

Consider transporting iron ore from mines 1,2 to plants 1, 2, 3 with following data ($c_{i j}=$ cost (cents/ton) to ship ore from mine i to plant j

	Plant $j=1$	Plant 2	Plant3	Availability a_{i}
Mine $i=1$	$c_{11}=11$	8	2	800
Mine 2	7	5	4	300
Requirement b_{j}	400	500	200	

Let $\quad x_{i j}=$ tons ore shipped from mine i to plant j. Model is:

x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	x_{23}	$-z$	RHS	Dual var.
1	1	1	0	0	0	0	800	u_{1}
0	0	0	1	1	1	0	300	u_{2}
1	0	0	1	0	0	0	400	v_{1}
0	1	0	0	1	0	0	500	v_{2}
0	0	1	0	0	1	0	200	v_{3}
11	8	2	7	5	4	1	0	
$x_{i j} \geq 0 \forall i, j, \min z$								

The dual of this problem is:

In the same way for the general balanced transportation problem with m sources, n sinks, and
$a_{i}=$ units available at i th source
$b_{j}=$ units required at j th sink
$c_{i j}=\$$ s/unit to ship from source i to $\operatorname{sink} j$,
the dual problem with dual variables
u_{i} associated with source i
v_{j} associated with $\operatorname{sink} j$
is: $\max \quad \sum_{i=1}^{m} a_{i} u_{i}+\sum_{j=1}^{n} b_{j} v_{j}$
s. to $u_{i}+v_{j} \leq c_{i j} \quad$ (dual constraint associated with $x_{i j}$)
$i=1$ to $m, j=1$ to n.

HW problems: 8.1: Consider LP;

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$-z$	
0	1	1	-1	1	2	0	5
1	1	2	1	2	-1	0	7
2	1	-1	2	0	1	0	3
3	1	-1	6	-2	7	1	0
$x_{j} \geq 0 \forall j, \min z$							

Write the dual problem, showing the association of each dual constraint to its associated primal var.

The opt. canonical tableau for this problem is given below. Use info. in it to compute an opt. dual sol. \& determine marginal value vector if it exists.

BV	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$-z$	
x_{2}	0	1	$-1 / 3$	$-4 / 3$	0	$11 / 3$	0	3
x_{1}	1	0	$-1 / 3$	$5 / 3$	0	$-4 / 3$	0	0
x_{5}	0	0	$4 / 3$	$1 / 3$	1	$-5 / 3$	0	2
$-z$	0	0	3	3	0	4	1	1

8.2 Consider the LP

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	$-z$	
1	0	0	-1	1	2	-1	0	4
-1	1	0	2	-2	2	-1	0	1
3	-1	1	1	$9 / 2$	3	3	0	9
2	-1	2	7	6	4	10	1	0
$x_{j} \geq 0 \forall j, \min z$								

Compute the primal and dual basic solutions corresponding to the basic vectors $\left(x_{1}, x_{2}, x_{3}\right),\left(x_{4}, x_{2}, x_{3}\right)$, $\left(x_{5}, x_{2}, x_{3}\right),\left(x_{6}, x_{2}, x_{3}\right)$ and determine which of these basic vectors are: primal feasible or infeasible; dual feasible or infeasible; nondegenerate or degenerate; optimal or nonoptimal.
8.3: For the following problem in standard form, write the dual, and compute the primal and dual basic solutions corresponding to the basic vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by backsubstitution, \& see if you can identify an opt. sol.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	$-z$	
1	2	1	1	1	-2	0	0	11
0	1	2	1	9	0	-3	0	11
0	0	1	2	-7	4	1	0	11
0	0	0	1	4	2	2	0	4
-1	-4	-4	2	-7	15	14	1	0
$x_{j} \geq 0 \forall j, \min z$								

8.4: For following LP write the dual \& check whether $\left(x_{1}, x_{2}, x_{3}\right)$ is an optimum basic vector.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$-z$	
1	1	1	1	-1	-3	0	12
1	2	-1	-3	1	-1	0	13
0	0	1	-1	-3	1	0	3
3	1	10	5	-16	10	1	0
$x_{j} \geq 0 \forall j, \min z$							

8.5: Write the dual of the following balanced transportation problem.

	Sink $j=1$	Sink 2	Sink 3	Availability a_{i}
Source $i=1$	$c_{11}=10$	6	8	100
Source 2	15	14	15	100
Requirement b_{j}	33	150	17	

A basic vector for this problem is $\left(x_{12}, x_{13}, x_{21}, x_{22}\right)$. Compute the primal basic solution corresponding to this basic vector by back substitution.

Compute the dual basic solution corresponding to this basic vector by assuming that $v_{3}=$ dual var.
associated with $\operatorname{sink} 3$ is 0 .

