
8.1

Duality in LP, Optimality Conditions
Katta G. Murty Lecture slides

Every LP has another LP called its dual, which shares the same

data, and is derived through rational economic arguments. In

this context the original LP called the primal LP.

Variables in the dual problem are different from those in the

primal; each dual variable is associated with a primal constraint,

it is the marginal value or Lagrange multiplier corresponding to

that constraint.

Example: Primal − Fertilizer Maker’s Problem.
FERTILIZER MAKER has daily supply of:

1500 tons of RM 1

1200 tons of RM2

500 tons of RM 3

She wants to use these supplies to maximize net profit.

DETERGENTMAKER wants to buy all of fertilizer maker’s

supplies at cheapest price for his detergent process. Suppose he

offers:
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$ π1/ton for RM1

$ π2/ton for RM2

$ π3/ton for RM3

These prices are the variables in his problem. Total payment

comes to 1500π1 + 1200π2 + 500π3 which he wants to minimize.

FERTILIZER MAKER: won’t sell supplies unless detergent

maker’s prices are competitive with each of hi-ph, lo-ph processes.

Hi-ph process converts a packet of {2 tons RM1, 1 ton RM2,
and 1 ton RM3} into $15 profit. In terms of detergent maker’s
prices, the same packet yields $(2π1 + π2 + π3). So, she demands

2π1 + π2 + π3 ≥ 15 for signing deal.
Similarly, by analyzing lo-ph process, she demands π1+π2 ≥ 10

to sign deal.

From these economic arguments, we see that detergent maker’s

problem is:
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Dual Associated

primal

activity

Minimize 1500π1 +1200π2 +500π3

subject to 2π1 +π2 +π3 ≥ 15 Hi-ph

π1 +π2 ≥ 10 lo-ph

π1, π2, π3, ≥ 0

From arguments, we see that if dual problem has unique opt.

sol., it is the marginal value vector for primal.

Summary of Primal, Dual Relations:

1. There is a dual variable associated with each primal con-

straint, it is the marginal value of the RHS constant in that

constraint.

2. There is a dual constraint corresponding to each primal vari-

able.

3. RHS constants in primal (dual) are objective coefficients in

dual (primal).
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4. If primal is a maximization problem, dual is a minimization

problem & vice versa.

5. The dual of the dual problem is the primal.

6. When optimum solutions exist, optimum objective values in

the primal and dual are equal.
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Dual of LP in Standard Form:

An LP is in STANDARD FORM if:

• All constraints are equations.

• All variables are required to be ≥ 0.

• Objective function in minimization form.

Here is the general LP in standard form in a detached coefficient

tableau:

x1 . . . xj . . . xn −z Dual var.

a11 . . . a1j . . . a1n 0 b1 π1

... ... ... ... ... ...

am1 . . . amj . . . amn 0 bm πm

c1 . . . cj . . . cn 1 0

xj ≥ 0 for all j, min. z
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The Dual is:

Max. v(π) = b1π1 + . . . + bmπm Primal var.

S. to a11π1 + . . . + am1πm ≤ c1 x1

... ... ... ...

a1jπ1 + . . . + amjπm ≤ cj xj

... ... ... ...

a1nπ1 + . . . + amnπm ≤ cn xn

The dual constraint corresponding to primal variable

xj is a1jπ1 + . . . + amjπm ≤ cj

The dual slack variable denoted by c̄j = cj − (a1jπ1 + . . .+
amjπm) is called reduced or relative cost coefficient of xj

WRT π.

Dual Feasibility: The row vector π satisfies all dual con-

straints, i.e., is dual feasible, iff c̄j ≥ 0 for all j.
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Example:

Minimize z = 3x1 + 11x2 − 15x3 + 10x4 + 4x5 + 57x6
s. to x1 + 2x2 + 3x3 − 2x4 + x5 + 16x6 = 17

x2 − 4x3 + x4 + x5 + x6 = 2
x3 − 2x4 + x5 = 1
xj ≥ 0 for all j.

x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 −2 1 0 10

1 1 1 0 −1 −1 2 0 7

1 1 0 0 1 1 −1 0 3

1 0 0 0 −1 2 −2 0 1

4 2 2 −1 −2 5 2 1 0

xj ≥ 0 ∀ j, min z
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Opt. conds. for an LP in standard form for a given

basic vector are:

1. Primal feasibility: Set nonbasics = 0.

Solve remaining system of eqs. for basic variables. They must

be ≥ 0 in resulting primal basic sol.

Example: Take basic vector (x1, x2, x3, x4) in above problem.

2. Dual feasibility: Compute dual basic sol. & check dual

feasibility.

To get dual basic sol. solve system of dual con-

straints corresponding to basic variables as a system

of eqs.

Compute all c̄j = slack in dual constraint of nonbasic var. xj.

If all these c̄j ≥ 0, the basic vector is dual feasible.

Optimal basic vector: if it is both primal and dual feasible.

Primal sol. corresponding to optimal basic vector is Opt. BFS.

If optimal BFS nondegenerate, dual opt. sol. unique, it is
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marginal value vector.

If optimal BFS degenerate, dual may have many opt. sols., &

marginal values do not exist.

Example above.

Example: Dual of the balanced transportation prob-

lem:

Consider transporting iron ore from mines 1, 2 to plants 1, 2, 3

with following data (cij = cost (cents/ton) to ship ore from mine

i to plant j

Plant j = 1 Plant 2 Plant3 Availability ai

Mine i = 1 c11 = 11 8 2 800

Mine 2 7 5 4 300

Requirement bj 400 500 200

Let xij = tons ore shipped from mine i to plant j. Model is:
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x11 x12 x13 x21 x22 x23 −z RHS Dual var.

1 1 1 0 0 0 0 800 u1

0 0 0 1 1 1 0 300 u2

1 0 0 1 0 0 0 400 v1

0 1 0 0 1 0 0 500 v2

0 0 1 0 0 1 0 200 v3

11 8 2 7 5 4 1 0

xij ≥ 0 ∀ i, j, min z
The dual of this problem is:
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In the same way for the general balanced transportation prob-

lem with m sources, n sinks, and

ai = units available at ith source

bj = units required at jth sink

cij = $s/unit to ship from source i to sink j,

the dual problem with dual variables

ui associated with source i

vj associated with sink j

is: max
!m
i=1 aiui +

!n
j=1 bjvj

s. to ui + vj ≤ cij (dual constraint associated with xij)

i = 1 to m, j = 1 to n.

HW problems: 8.1: Consider LP;

x1 x2 x3 x4 x5 x6 −z
0 1 1 −1 1 2 0 5
1 1 2 1 2 −1 0 7
2 1 −1 2 0 1 0 3
3 1 −1 6 −2 7 1 0

xj ≥ 0 ∀ j, min z

Write the dual problem, showing the association of each dual constraint to its associated primal
var.

The opt. canonical tableau for this problem is given below. Use info. in it to compute an opt. dual
sol. & determine marginal value vector if it exists.

BV x1 x2 x3 x4 x5 x6 −z
x2 0 1 −1/3 −4/3 0 11/3 0 3
x1 1 0 −1/3 5/3 0 −4/3 0 0
x5 0 0 4/3 1/3 1 −5/3 0 2
−z 0 0 3 3 0 4 1 1

8.2 Consider the LP
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x1 x2 x3 x4 x5 x6 x7 −z
1 0 0 −1 1 2 −1 0 4

−1 1 0 2 −2 2 −1 0 1
3 −1 1 1 9/2 3 3 0 9
2 −1 2 7 6 4 10 1 0

xj ≥ 0 ∀ j, min z

Compute the primal and dual basic solutions corresponding to the basic vectors (x1, x2, x3), (x4, x2, x3),
(x5, x2, x3), (x6, x2, x3) and determine which of these basic vectors are: primal feasible or infeasible;
dual feasible or infeasible; nondegenerate or degenerate; optimal or nonoptimal.

8.3: For the following problem in standard form, write the dual, and compute the primal and dual
basic solutions corresponding to the basic vector (x1, x2, x3, x4) by backsubstitution, & see if you can
identify an opt. sol.

x1 x2 x3 x4 x5 x6 x7 −z
1 2 1 1 1 −2 0 0 11
0 1 2 1 9 0 −3 0 11
0 0 1 2 −7 4 1 0 11
0 0 0 1 4 2 2 0 4

−1 −4 −4 2 −7 15 14 1 0
xj ≥ 0 ∀ j, min z

8.4: For following LP write the dual & check whether (x1, x2, x3) is an optimum basic vector.

x1 x2 x3 x4 x5 x6 −z
1 1 1 1 −1 −3 0 12
1 2 −1 −3 1 −1 0 13
0 0 1 −1 −3 1 0 3
3 1 10 5 −16 10 1 0

xj ≥ 0 ∀ j, min z

8.5: Write the dual of the following balanced transportation problem.

Sink j = 1 Sink 2 Sink 3 Availability ai
Source i = 1 c11 = 10 6 8 100

Source 2 15 14 15 100
Requirement bj 33 150 17

A basic vector for this problem is (x12, x13, x21, x22). Compute the primal basic solution corre-
sponding to this basic vector by back substitution.

Compute the dual basic solution corresponding to this basic vector by assuming that v3 = dual var.

associated with sink 3 is 0.
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