Modular Logic Controllers for Machining Systems: Formal Representation and Analysis using Petri Nets

Dawn Tilbury

Mechanical Engineering and Applied Mechanics University of Michigan

Acknowledgments

- Joint work with Euisu Park and Pramod Khargonekar of University of Michigan
- Funding provided by NSF/ERC for Reconfigurable Machining Systems at UM
- Industrial partners from Lamb Technicon for motivation, examples, and feedback

Outline

- Motivation: Logic control problem for high-volume machining systems
- Background
- Automatic cycle logic control
- Multi-mode logic control
- Implementation and future work

High-volume machining systems

- Cycle time determined by projected demand
 - 500,000 parts/year
 one part every 20 sec.
 - One operation per station

- Dedicated transfer machine:
 - Fixed material handling, part flow
 - Highly accurate and repeatable operations
 - 10-12 stations, buffer at beginning/end
 - 5,000-10,000 I/O points (sensors/actuators)
 - 10-20 transfer machines per transfer line

Control of machining systems

- Continuous variable control (servo, CNC)
 - Positioning, feed for metal removal, fixturing, and transfer operations: mainly SISO loops
- Discrete-variable (Logic) control (PLC)
 - Sequencing of operations
 - Coordination and synchronization of stations
 - User interface (pushbuttons & display)
 - Fault diagnosis and fault handling
 - Safety: gates and interlocks
 - Machine services: coolant, lubrication

Logic control problems

- Control software is 50% of machining system development time and cost
 - Often written in low-level language (ladder)
 - Specification for automatic cycle: timing bar chart, but only requires 10% of control code
 - No specification for alternate control modes, error handling, diagnostics
- No formal verification before implementation
- Long testing and debugging cycles result

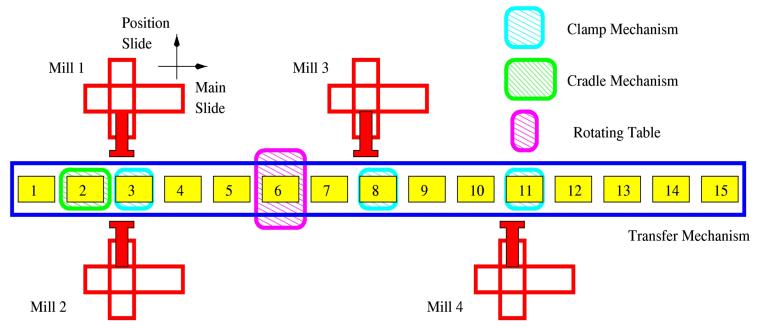
Industry trends

- Faster time to market for new products
 - Must reduce system development time
- Shorter product lifecycles
 - Need to change manufacturing systems to produce new products
- Increased quality
 - Integrate new technologies into existing manufacturing systems

Reconfigurable machining systems

- Modular: easy assembly, potential reuse
- Upgradable: new technology integration
- Convertible: quick changeover to new part

Logic control challenges in RMS


- Modular structure
 - Same granularity as machine modules
 - Ease of configuration/reconfiguration
- Mathematical basis
 - Enable formal verification of correctness
 - High-level abstraction for ease of understanding control system functionality
- Industrial implementation
 - Realistic complexity (thousands of events)
 - Target system: PLC or PC code generation

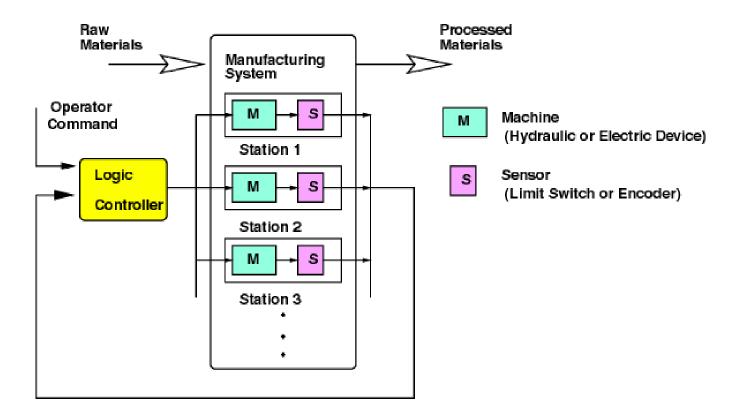
Outline

- Motivation: Logic control problem for high-volume machining systems
- Background
 - Transfer lines and Petri nets
- Automatic cycle logic control
- Multi-mode logic control
- Implementation and future work

Transfer line example

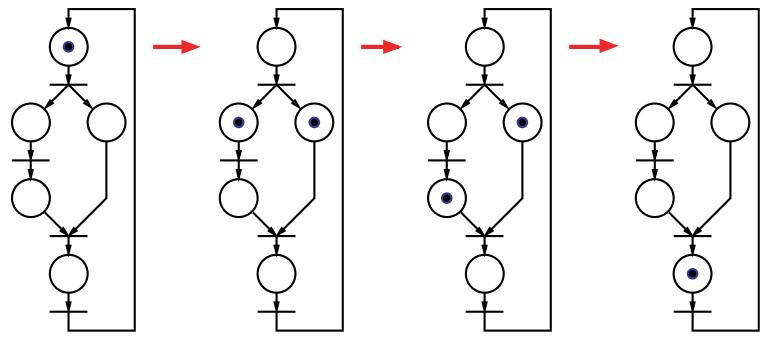
- Modular, standardized machining systems
- Each station self-contained with controls
- Coordination through transfer bar

Control specification


Timing bar chart specifies auto mode

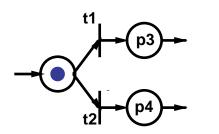
- Developed by machine designers
- Operation sequence
- Causal dependencies
- Home operation
 Mechanical stability
- Hydraulics
- Cycle time

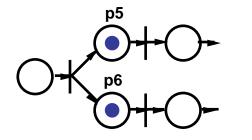
	OPERATION	GPM	SEC	Total; Cycle Time = 22.2 second 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2																							
				1	2	1 3	3	4	5	6	7	<u> </u>	9	•	10	11	12	1	5 14	\$ 1	51	6	17	18	19	20	21
	Raise Transfer (1st Lift)	19.6	Ö.7																								
	Raise Transfer (2nd Lift)	15.4	0.3																								
	Raise Transfer (3rd Lift)	22.2	0.3		4																						
Transfer Bar	Raise Transfer (4th Lift)	63.1	0.3			_			_																		
Module	Advance Transfer	Servo	2.5							_																	
	Lower Transfer (1st Lower)	50.0	0.5			łŧ																					
	Lower Transfer (2nd Lower)	29.6	0.3			ų,																					
	Lower Transfer (3rd Lower)	20.5	0.3			П																					
	Lower Transfer (4th Lower)	36.5	0.5		1	i.																					
	Return Transfer	Servo	2.5			11					÷																
						11					ŧ								A.								
Cradle	Advance Cradle (Machining Positie	on2.9	1.0			İ.													÷								
Module	Return Cradle (Transfer Position		1.0			Ħ					!								÷								
					-	Ħ					÷								÷								
					÷	H					i								÷								_
	Advance Clamp	4.9	1.5		÷	ti													Ť								
Clamp 1 Module	Read Part Seated Air Checks		0.5		÷	ti													÷								
module	Return Clamp	6.5	1.5		÷.	ti							1						÷								
	Return Clamp	0.0	1.9			÷					÷		t						ł								
						÷					÷								ł								
	Rapid Advance Positioning Slide	- 2.4	0.6			H					÷		<u> </u>						÷								
Mill 1		2.1				H					÷		-		-				÷								
Module	Decel		0.9 9.7			÷					÷																_
-	Feed Main Slide Rapid Return Positioning Slide	Servo				÷					÷																
	• •	1.3	0.6			i'					÷								÷								
	Reset Main Slide	Servo	9.0			÷					Î								į_								
						H					÷								į.								
						H								_					÷					_			
	Lower Rotate	6.3	2.8			1									_				1								
Rotating Table	Advance Grippers	2.2	1.0			Į.													1					1	_		
Module	Raise Rotate	4.7	2.85																		1			1			
	Return Rails	8.3	0.5																L		i			-			
	Advance Rotate 270 Deg.	1.7	2.0																					+	-		
	Return Grippers	3.9	1.0																1		i						
	Return Rotate 270 Deg.	1.0	2.0																E		i						
1	Advance Rails	2.3	2.0						_			-			-		_							_		_	

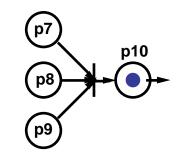

Logic control block diagram

- Inputs: sensors and operator commands
- Outputs: servo or hydraulic devices

Formal representation of control

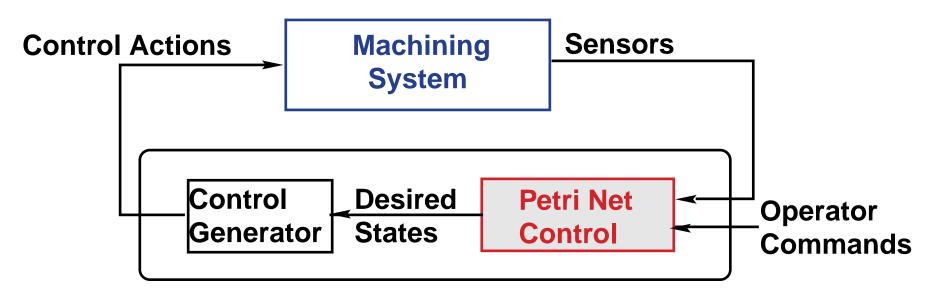

- Petri net: Bipartite graph
 - Places (states) model operations: active or idle
 - Token (dot) marks active state
 - Transitions model events: from sensors or operator commands




Advantages of Petri net models

- Large base of existing theory
- Verification of key properties of control
- Hierarchical structures for complexity management
- Implementation in PLC
 - SFC = IEC standard programming language
 - One-one translation from Petri net to SFC

Petri net model capabilities

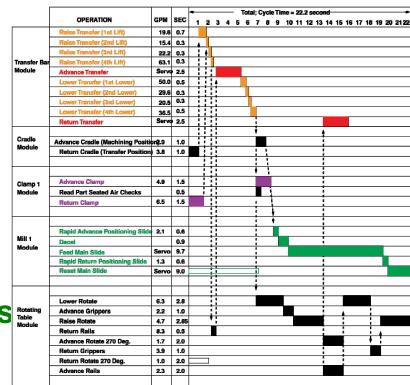

- Causal dependency
 - p1 occurs before p2
- Conflict
 - Only one of p3, p4 can occur
 - Transition conditions t1, t2 must be mutually exclusive
- Concurrency
 - p5, p6 active simultaneously
- Synchronization
 - p10 cannot begin until p7,p8,p9 have finished

Petri net properties for logic control

- Live: every transition can eventually occur
 - No deadlocks
 - All operations and events can happen
- Safe: No more than one token per place
 - Ongoing operations are not requested
 - Boolean state representation (active, inactive)
- **Reversible:** Initial state always reachable
 - Guarantees cyclic behavior of system

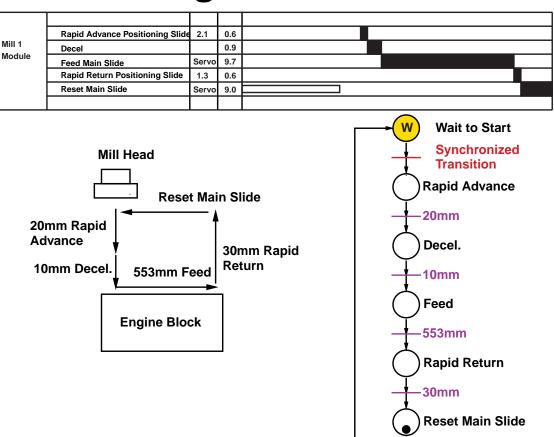
Supervisory control problem

- Petri net control models desired closedloop behavior of system
- Control actions generated based on desired state


Outline

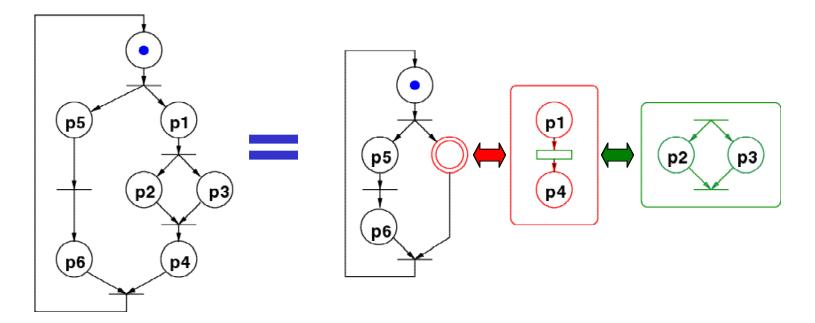
- Motivation: Logic control problem for high-volume machining systems
- Background
- Automatic cycle logic control
- Multi-mode logic control
- Implementation and future work

Auto mode

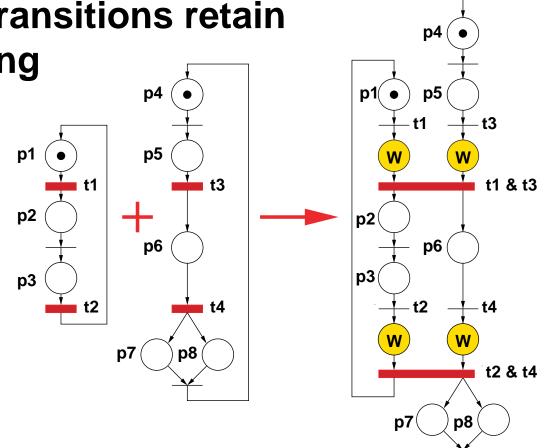

Normal operation cycle

- Unclamp parts
- Raise transfer
- Advance transfer
- Lower transfer
- Clamp parts
- Cycle machining stations
- Return transfer
- Overlapping to minimize cycle time
- Fault diagnosis and fault stop

Timing bar chart -> Petri net


- Each mechanical module gives one directed circuit
- Add wait states before synchronized transitions to model operation termination

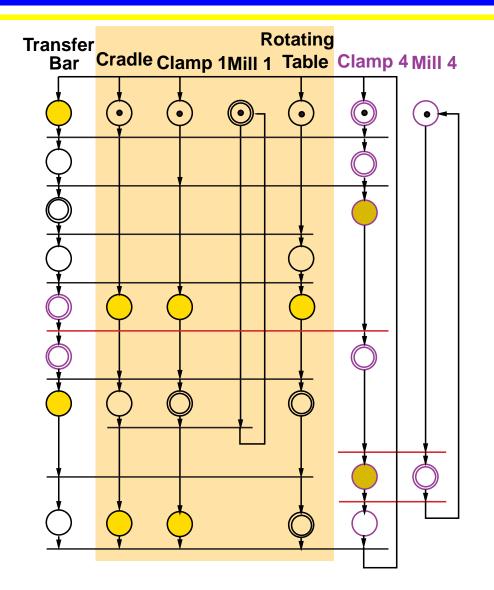
553mm


Hierarchical representation

- Reduce complexity of Petri net by combining sets of places/transitions
- Preserves liveness, safeness, reversibility

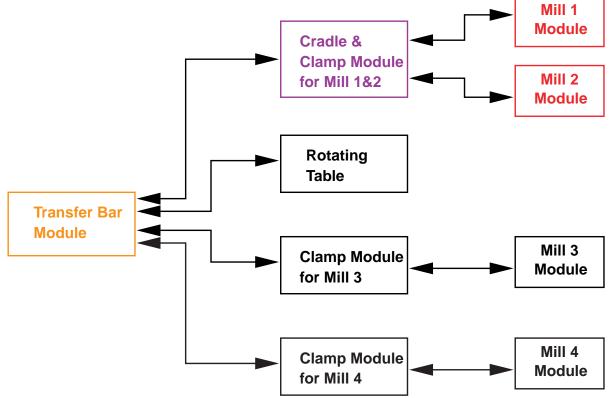
Combining control modules

- Merge synchronized transitions
- Synchronized transitions retain physical meaning
- Add wait states (W) before synchronized transitions to model operation completion


Logic control for automatic cycle

- Directly generated from timing bar chart
- Guaranteed to be live, safe, reversible

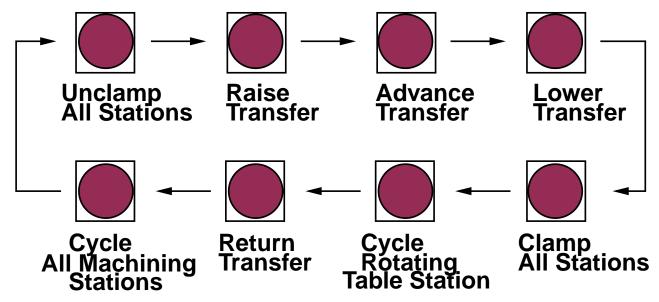
		M SEC	Total; Cycle Time = 22.2 second Total; Cycle Time = 22.2 second 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122	Transfer Bar	Cradle	Clamp	Mill 1	Mill 2
		9.6 0.7		Medule	Madula	Madula	Madula	Madula
		5.4 0.3	<u> </u>	Module	woaue	woaue	woaule	woaue
		2.2 0.3			\frown	\frown	\frown	\frown
Transfer Bar Module		3.1 0.3		(●)<────	(●)<	(●)←	(●)<──	(●)←
woaule		ervo 2.5			ΎΙ	ΎΙ	Υ	ΎΙ
		0.0 0.5		1	Y			
-		9.6 0.3		<u> </u>	⊻			
		0.5 0.3		()	()			
		6.5 0.5 ervo 2.5		- Y	γ			
	Return Transfer S	ervo 2.5		2		Y		
Cradle	Advance Cradle (Machining Position2	9 1.0		_		¥		
Module	Return Cradle (Transfer Position) 3			*				
						\bigvee		
				\bigvee				
Clamp 1	Advance Clamp 4	9 1.5						
Module	Read Part Seated Air Checks	0.5						
	Return Clamp 6	5 1.5						
				3	<u> </u>	V		
				•	v			
Mill 1 Module	Rapid Advance Positionong Slide 2			\frown	\frown			
	Decel	0.9		\bigcirc	\bigcirc			
	r ood man ondo	rvo 9.7		Δ	∳	↓	v	V I
	Rapid Return Positioning Slide 1			-			y l	v l
-	Reset Main Slide Se	rvo 9.0			\frown			
					\bigcirc	\bigcirc	\bigcirc	
ŀ				5			Ť I	Ŭ, I
Rotating Table Module		3 2.8 2 1.0		J			-	
	Return Rails 8 Advance Rotate 270 Deg. 1	3 0.5 7 2.0		6			V	
-		9 1.0		Ο			<u> </u>	
	Return Grippers 3 Return Rotate 270 Deg. 1							
-		3 2.0						
-		5 2.0						
					¥	Y		


Reconfiguration of logic control

- Add a new mill to transfer line
- New logic for mill & clamp
- Modify transfer bar logic to synchronize with clamp
- Shaded logic unchanged

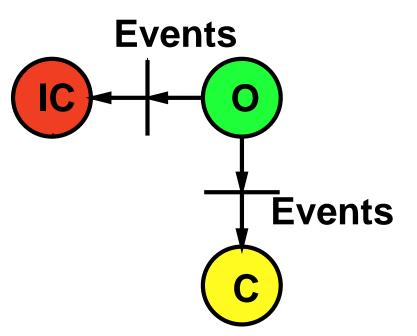
Modular structure of control

- Transfer bar synchronizes all modules
- Limited communication
- Ease of modification

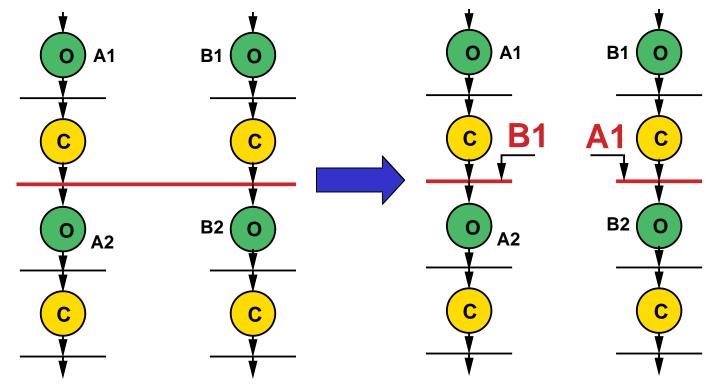


Outline

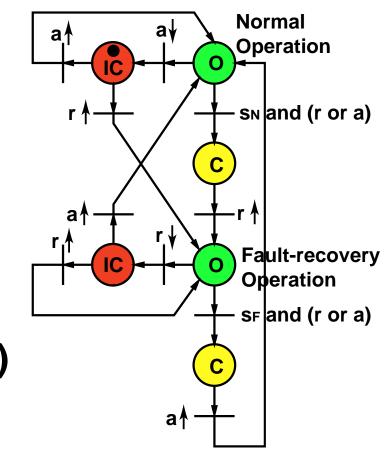
- Motivation: Logic control problem for high-volume machining systems
- Background
- Automatic cycle logic control
- Multi-mode logic control
 - What happens when things go wrong?
- Implementation and future work


Operator interaction with control

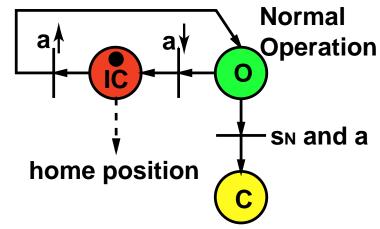
- Manual mode
 - Single station fine operation control
- Hand mode
 - Normal operation cycle without overlapping
 - Reverse sequences possible


Three states for each operation

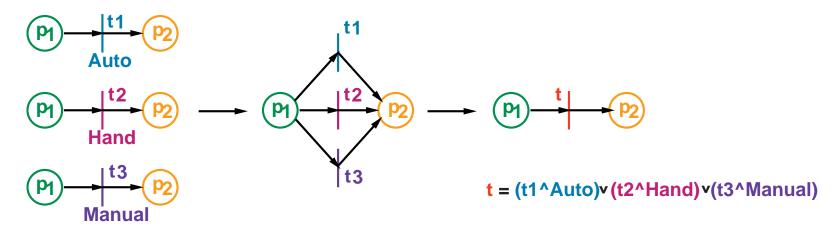
- Operating:
 - Activate actuator
- Completed stop:
 - Deactivate actuator
 - Set internal variable to 1
- Incomplete stop:
 - Deactivate actuator
 - Announce fault
- Sensors trigger transitions between states
- Internal variable used for coordination with other stations


Internal variables to synchronize

- Synchronization conditions depend on control mode
- Decouple each control module

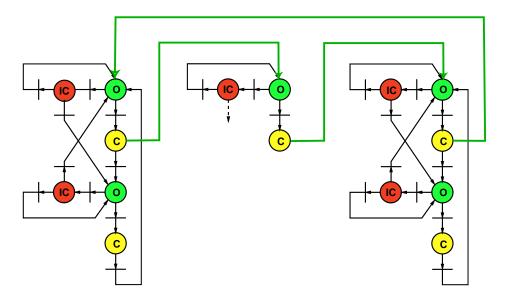

Reversible operation module

- Normal and fault recovery operations
- Fault recovery:
 - Restart from fault position
 - Return to initial position of operation, then restart
- Faults may occur in fault recovery operation
- Transitions triggered by operator commands advance (a) and return (r) in manual mode


Irreversible operation module

- Metal-removal operations (i.e. milling)
- Only contains normal operation block
- Fault recovery:
 - Restart from fault position
 - Return to home position of machining station and restart
- Transitions triggered by operator commands advance (a) and return (r) in manual mode

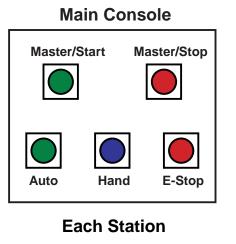
Combining control modes

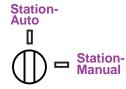

- Same set of states for all modes
- Transition conditions depend on active control mode
- Superposition preserves liveness, safeness, reversibility properties

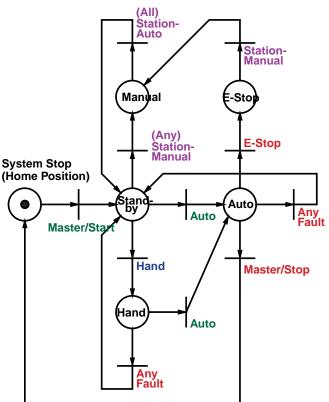
Algorithm to build logic controller

- 1. Assign module for each operation
- 2. Normal operation cycle ordered as in timing bar chart

- Mill example: Advance, Feed, Return


Algorithm to build logic control


- 3. Reverse sequences for repeatable steps in hand mode
- 4. Fault recovery sequences for irreversible operations


Theorem: Station control module constructed according to algorithm is live, safe, and reversible Petri net.

Mode decision control logic

- Mode chosen by operator from input panel
- Mode decision control logic is live, safe, reversible

Modular logic controller

- Operation causality condition to ensure well-ordered set of operations
- Station logic controllers with mode decision control logic

Theorem: Resulting controller is guaranteed to be live, safe, reversible

Outline

- Motivation: Logic control problem for high-volume machining systems
- Background
- Automatic cycle logic control
- Multi-mode logic control
- Implementation and future work
 - To the factory floor

Implementation in PLC

- Sequential function charts (SFC) – IEC 1131-3 standard language – Based on Petri nets
 - One-one translation

Marked Graph	SFC/Grafcet
Simple Place	Simple Step
Initial Place	Initial Step
Simple Transition	Simple Transition
Synchronized	Synchronized Transition
Macro Place	Macro Step

Industrial implementation

- US Patent applied for, 1998
- Current cooperation with Lamb Technicon on Cummins Engine project
- Evaluating implementation needs
 - Machine services
 - Safety and gate interlocks
 - Reusability
 - PLC platform dependence
 - User interface
- Commercialization potential

Future of reconfigurable control

- Unified framework for continuous and discrete control for machining systems
 - Modular structures for reconfigurability
 - Mathematical basis for verification
 - Integrated diagnostics
 - Automatic fault detection and recovery
- Software tools for control design/analysis
 - Interface with mechanical design software
 - Automatic control code generation