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Abstract

Electromechanical valvetrain (EMV) actuators can re-

place the camshaft allowing for electronically controlled

variable valve timing (VVT) on a new generation of en-

gines. Before EMV actuators can be used in production

vehicles two critical problems need to be resolved. First,

impact velocities between the valve, valve seat, and the

actuator itself need to be small to avoid excessive wear on

the system and ensure acceptable levels of noise. Second,

the opening and closing of the valve needs to be both fast

and consistent to avoid collision with the piston and to

reduce variability in trapped mass. This paper presents

an observer based output feedback controller designed to

achieve these goals. Theoretical analysis and experimen-

tal results of the controller are provided. The experimen-

tal results show a factor of six reduction in impact velocity

and consistent and quick valve timing.

1 Introduction

The modern automotive powertrain has seen signi�cant

changes since the �rst Model-T came o� the assembly

line. Where once all operations were controlled through

mechanical linkages, many powertrain systems are now

controlled by electronic means. Typical examples are

the spark timing, fuel injection, and recently, electronic

throttle. The trend to replace mechanical systems with

their digital counterparts has resulted in improved perfor-

mance, fuel economy, and reduced emissions. In the e�ort

to achieve further performance enhancements it has been

proposed to replace one of the last mechanical systems

left in the automotive powertrain, the �xed camshaft.

The conventional camshaft uses a �xed or variable cam

pro�le to achieve a reasonable compromise between idle

speed stability, fuel economy, and torque performance.

Signi�cant improvements in engine performance can be

achieved through individual control of the valve tim-

ing. The electromechanical valvetrain (EMV) actuator

has been selected as a promising solution to achieve vari-

able valve motion and bring camless engines to the mar-

ket. Currently, di�erent versions of the EMV actuator

are under development at several major automotive man-

ufactures. As shown in Figure 1, the actuator consists of

an armature driven between two extreme positions under

the forcing of a set of springs and electromagnets. Ini-

tially the armature is held in one of the extreme positions

by an electromagnet. The voltage across the coil is then

reduced to zero and the armature is released. The springs
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Figure 1: Electromechanical Valvetrain Actuator

drive the armature across the gap which in turn moves the

valve. The armature is then brought to and held in the

other extreme position by the opposite electromagnet.

The EMV actuator su�ers from large impact velocities

between the valve, valve seat, and the actuator itself dur-

ing operation. These large impact velocities result in

unacceptable noise and wear on the system. The de-

sired impact velocity is 0.05 m/s. This velocity needs

to be achieved with consistent transition times of approx-

imately 4 ms. Consistent and quick transition times are

necessary to avoid collisions with the piston and minimize

variability in trapped mass. In [7] we have demonstrated

the limitations of open loop (feedforward) voltage control

in achieving the above requirements robustly.

This problem has been dubbed \the robust soft landing of

the EMV actuator" and has attracted a lot of attention

during the last three years with over twenty patents is-

sued, and hundreds of others pending, dealing with the

impact issue alone. Many of these clever mechanisms

show promising results, but they typically involve com-

plex con�gurations and expensive components [2]. More-

over, most of these mechanisms achieve low contact ve-

locities by slowing down the transition time. Instead we

have chosen to concentrate on a feedback control solution.

The challenges are:

� Presence of signi�cant nonlinearities in the magnetic

force.
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� Low actuator bandwidth due to the use of inductive

magnetic coils.

� Robustness concerns due to low authority of the

electromagnets at large distances.

Various approaches have been proposed so far. In [3] the

authors use an observer based output feedback to stabi-

lize the system and then an iterative learning controller

(ILC) to achieve the desired performance. The feedback

portion of the controller is not well tuned and instead re-

lies upon the ILC to achieve the desired performance. We

demonstrate here that the performance of the closed loop

system can be improved with the newly designed feedback

presented below. The authors of [5] use a well tuned PD

controller to achieve the desired contact velocity. The

transition times, however, are roughly a factor of three

too large. Both the desired impact velocity and transition

time are achieved in [1]. The performance is achieved by

holding the ratio of the rate of change of current to cur-

rent at a prede�ned constant. While this is e�ective un-

der laboratory conditions, the authors point out potential

problems when the system experiences large disturbances.

In this paper we present an observer based output feed-

back controller to stabilize the system and provide signif-

icant performance improvements. This controller will be

integrated with a cycle-to-cycle learning scheme in future

work.

2 Control Architecture

We have designed and implemented a feedback controller

based on sensing the position of the armature extension

as shown in Fig. 1. The controller and observer output

injection gains are based on linear control design method-

ologies. Linearizing the nonlinear model presented in [6]

at two di�erent equilibrium points we are able to approxi-

mate the nonlinear dynamics over the entire range of mo-

tion (Section 4). To overcome the inherent lag of the

current caused by the inductance of the magnetic coils,

it is necessary to increase the current while the armature

is away from the contact position. However, closed loop

control during this period has to be carefully designed

to aviod unnecessarily large control signals, as the elec-

tromagnetic force has weak authority at large distances.

For this reason the authors in [3] use an open loop preset

voltage to avoid actuator saturation. This is not a robust

approach due to varying disturbances on the valve caused

by gas forces. To overcome this limitation the authors of

[3] use the ILC to adjust the preset voltage from cycle to

cycle.

Improved performance during a single cycle can be

achieved by designing two controllers with two di�erent

objectives, switching between them at appropriate arma-

ture positions. The weighting matrix in the LQR opti-

mization is chosen to penalize deviations from the nom-

inal catching current much more than deviations in po-

sition or velocity. The closed loop controller is thus de-

signed to bring the current to the nominal catching value

while adjusting the voltage input depending on both the

velocity and position, allowing for more robust control,

while avoiding actuator saturation. When the armature

is near the contact position the controller switches to a

second feedback where the weighting matrices have been

chosen to ensure the armature contact with the coil, i.e.

regulation at the extreme position. The second feedback

is designed using a reduced order model, derived from

singular perturbations, to allow better controller gain se-

lection. The controller design is presented in Section 5.

In Section 6, we also decompose the weakly observable

system and use an extended Kalman �lter for its observ-

able states and an open loop estimator for the weakly

observable state based on the nonlinear model designed

in [6]. Numerical and experimental results are shown in

Section 7.

3 Nonlinear Model

The complete nonlinear state space equations describing

the model are presented in [7]. The system consists of four

states, namely, armature position (z in mm), armature ve-

locity (v in m/s), upper coil current (iu, in A) and lower

coil current (il, in A). Due to the use of a reverse polarity

voltage to achieve fast release, described in [7], the releas-

ing coil has little in
uence over the armature motion. It

can therefore be assumed that the magnetic force drops to

zero instantly when the armature is released. Thus, only

a three state model is used for controller design: arma-

ture position (y), armature velocity (v), and the catching

coil current (i). The input is the catching voltage Vc in

Volts. To simplify computations the armature position

z is measured from the catching coil (distance) instead

of its equilibrium point as in [6, 7]. Thus, the armature

moves from z=8 mm to z=0 mm, The valve opening and

closing directions are treated as identical here, thus, the

z axis is 
ipped when changing between valve closing and

opening.

The one-sided nonlinear state space equations derived in

[6] are

di

dt
=

Vc � ri+ �1 (z; i) v

�2 (z)
(1)

dz

dt
= 1000v (2)

dv

dt
=

1

m
(�Fmag (z; i) + ks (4� z)� bv) (3)

where

�1 =
2kai

(kb + z)
2
; �2 =

2ka

1000 (kb + z)
; (4)

and Fmag =
kai

2

(kb + z)
2
: (5)

For convenience, the overall system is written compactly

as
dx

dt
= f (x; Vc) , where, x =

�
i z v

�T
: (6)

The system parameters used in equations (1) through (5)

are de�ned as the resistance r in 
, the system mass m

in kg, the spring sti�ness ks in N/mm, the damping b

in Ns/m. The magnetic system constants ka and kb are

identi�ed in [6]. Fmag is the magnetic force, �1v is the

back emf, and �2 is the coil inductance.

In [6, 7] the magnetic subsystem is characterized by two

distinct behaviors depending on the 
ux-current relation-

ship. The boundary of the two regions is de�ned by the
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saturation current ix which is a function of the air-gap

distance. When the coil current is less than a saturation

level (i < ix); current and the magnetic 
ux are linearly

related. This de�nes the \linear region" where equations

(4) to (5) are valid. If the coil current is greater than the

saturation level (i > ix) then the magnetic subsystem is

described by another set of equations and this de�nes the

saturation region.

Figure 2 shows the magnetic force as a function of posi-

tion for several values of current. The spring force is also

plotted in Figure 2. The discontinuity in the slope of the

other three force curves is a result of the saturation re-

gion, as the authors of [6] only ensured C
o continuity of

their equations.

The equilibrium position is the point of intersection be-

tween the magnetic and spring force for some constant

current. Analysis of the system equations demonstrates

that all the equilibria near z = 0 are unstable, whereas,

the equilibria near the middle position are stable. A per-

turbation from this equilibrium which decreases z will ac-

celerate the armature toward the coil seat because the

magnetic force increases parabolically while the spring

force increases linearly. This acceleration can result in

high contact velocities if the current is not rapidly ad-

justed to a lower value. On the other hand, a perturba-

tion which increases z will reduce the magnetic force and

the spring will therefore push the armature toward the

middle position.

The controller goal is to drive the armature to the catch-

ing coil. The equilibrium point is given by ze = 0, ve = 0,

and ie. The equilibrium current, ie, is de�ned as the cur-

rent that gives rise to a magnetic force that exactly cancels

the spring force at z = 0 (i.e. Fmag = 4ks). Note here

that due to the normal force acting on the armature dur-

ing contact from the rigid boundary of the catching coil

any current greater than ie is also an equilibrium point.

The smallest force curve is the magnetic force correspond-

ing to ie.

From this �gure we can see that linearizing the system

at ie will cause the linear model to be highly unstable as

the magnetic force drops o� to much less than the spring

force for just a small deviation in position. A higher value

of equilibrium current will result in a linear open loop

unstable system that is (i) a better approximation of the

nonlinear system behavior, and (ii) a safer equilibrium

point since it can account for small normal contact forces

during potential bouncing.

4 Linear Model

It is desired to apply closed loop control for the majority

of the armature motion, thus, a second linearization is

required to approximate the armature motion away from

the contact position. Linearizing near the middle position

provides an accurate linear model for this purpose. For

reference later, we will henceforth refer to the two linear

models as

� near model, which is valid for z 2 (0; 1) mm.

� far model, which is valid elsewhere.

Figure 3 shows the simulation results and comparisons of
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Figure 2: Magnetic Force as a Function of Position for Sev-

eral Values of Current
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Figure 3: Comparison of the Linear and Nonlinear Models

the stabilized closed loop system of the two linear models

versus the closed loop system of the nonlinear model. The

same controller is employed for these simulation. Note

here that the open loop near model is unstable, thus this

comparison is by necessity closed loop. The current re-

sponse is not plotted for the near model because the state

has been removed via a model reduction derived through

singular perturbations. The closed loop controller and the

model reduction will be explained later in Section 5.1.

It is important to realize that even though the open loop

near model has unstable dynamical behavior the arma-

ture motion is always bounded between the two electro-

magnets. Additionally, if a constant voltage greater than

some value Vcmin is applied, the armature will always

come to rest against the electromagnet and the current

will converge to i = Vc

r
. The previous result holds true

for any initial conditions.

Both the near and far model have the form

d

dt

2
4 �i

�z

�v

3
5 =

2
4 a11 0 a13

0 0 a23

a31 a32 a33

3
5
2
4 �i

�z

�v

3
5

+

2
4 b1

0

0

3
5�Vc
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d

dt
�x = A�x +B�Vc

Note that d�i

dt
does not depend on position. In reality, the

rate of change of current is a function of position due to

the change in inductance and back emf caused by the ar-

mature motion. The fact that d�i

dt
losses the dependence

on position is true for all equilibrium points. Taking the

partial derivative of (1) with respect to position yields

@

@z

di

dt
=

�
v

d

dz
�1

�
�2 � (Vc � ri+ �1v)

@

@z
�2

(�2)
2

(7)

To satisfy equilibrium conditions

� The velocity, v, must be zero
� The Voltage Vc must equal ri

Therefore @

@z

di

dt
= 0 when evaluated at any equilibrium

point. This unfortunate occurrence will only present a

problem for the near model. For large values of z, the

changing inductance and back emf are negligible and are

of no consequence. As z approaches zero, the changing

inductance and back emf are no longer negligible and must

be taken into account.

5 Controller Design

The controller uses the feedback, u = �Ke. Where e is

the error between bx and the desired equilibrium point. bx
is the estimate of the actual state x =

�
i z v

�
deter-

mined by a nonlinear state observer. The gain matrix, K,

is determined by using the optimal Linear Quadratic Reg-

ulator (LQR), with diagonal weighting matrices Q and R.

As seen in Figure 2 the magnetic force is much less than

the spring force for z > 1 mm. Therefore the actuator

has low control authority over the armature motion for

the majority of its travel. Additionally the magnetic coils

are large inductors, resulting in a slow current response.

To overcome these problems the controller is split into two

stages

1. Flux Initialization controller
2. Landing controller

5.1 Stage 1 Controller, Flux Initialization

To overcome the inherent bandwidth limitations of the

system, it is desired to bring the current near a nominal

catching value before the armature approaches the con-

tact position. However, closed loop control during this

time may result in actuator saturation as the magnetic

force has low authority for z > 1 mm.

To avoid this, the authors of [3] use a preset voltage when

the distance is greater than a threshold value. This ap-

proach is not robust as the preset voltage can not vary to

account for gas forces acting on the system. To overcome

this limitation an ILC is used to adjust the preset voltage

from cycle to cycle.

To improve robustness within a cycle, our controller uses

the 
ux initialization stage to apply closed loop control

for z 2 (1; 8) mm. Using the far model, the weighting

matrix is chosen to penalize deviations from the nominal

catching current much more than deviations in position

or velocity. Since the actuator has control authority over

current, actuator saturation is avoided. Additionally, ro-

bustness is improved as the controller can compensate for

variations in both position and velocity.
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Figure 4: di

dt
as a Function of Position for Several Values of

Current

3.1 Stage 2 Controller, Landing

As the armature approaches the contact position, the con-

troller switches to the second stage at z = 1 mm. The

landing controller catches the armature and brings it into

contact with the coil while attempting to minimize the

impact velocity. Control at small distances becomes very

diÆcult due to the rapidly changing current dynamics.

Combining equations (1) and (4) we obtain:

di

dt
= 1000

�
(Vc � ri) (kb + z)

2ka
+

iv

(kb + z)

�
(8)

As kb is very small (kb << 1) and z is approaching zero,

the term kb + z is replaced with the vanishing term " =

kb + z resulting in

"
di

dt
= 1000

�
(Vc � ri) "2

2ka
+ iv

�
(9)

which we recognize as a singularly perturbed system. The

singular perturbation can also be seen by plotting equa-

tion (1) against position. By assuming the velocity pro�le

of an undamped oscillation, this has been done in Figure

4. From Figure 4 it can be seen that di

dt
does indeed ap-

proach �1 as z goes to zero.

This result does not contradict the reasoning behind the

use of a 
ux initialization stage. The current response

is slow initially, and even though it becomes faster as z

approaches zero, di

dt
is negative. Therefore if the current

is not bought up initially it will be extremely diÆcult to

bring it up later in the transition.

Besides the singular perturbation, equation (9) shows that

as z goes to zero the in
uence of the input Vc becomes very

small. Therefore to drive the armature to the contact

position the system will require large values of Vc. This

problem will be addressed in a later paper through the

use of a nonlinear feedback [4].

Unfortunately from equation (7) we know that current in

the linear model completely loses its dependence on po-

sition, and thus does not capture the singular perturba-

tion. To capture this phenomena in the linear model, we

assume current has reached its quasi-steady state solution
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such that

d�i

dt
= 0 = a11�i+ a13�v + b1�Vc (10)

Resulting in the reduced state space representation

d

dt

�
�z

�v

�
=

�
0 a

�

12

a
�

21
a
�

22

��
�z

�v

�
(11)

+

�
0

b
�

2

�
�Vc (12)

d�x�

dt
= A

��x� +B
��Vc (13)

This new representation is used to design the landing

controller. As the original a11 term is Hurwitz we need

only to design a stabilizing feedback for the reduced order

model.

6 Observer Design

High cost and implementation issues preclude the use of

sensors to measure all three states. Instead, only a po-

sition sensor is used, and an observer is implemented to

estimate velocity and current. Unfortunately, the observ-

ablility matrix�
C
T (CA)T (CA2)T

�T
(14)

where A is from the far model and C =
�
0 1 0

�
, is

ill-conditioned. Therefore one or more states are weakly

observable from the position measurement. From the

physics of the system it is obvious that current is the

weakly observable state. For the majority of the arma-

ture travel the magnetic force, and thus current, has little

in
uence over the armature motion (i.e. the system out-

put). Although this is to be expected for the far model,

it is important to note that using the near model will also

result in an ill-conditioned observablility matrix. At small

distances the magnetic force is in
uenced by changes in

position more than changes in current. Thus the a�ect of

current on the output is still weakly observable.

Only the far model is used to design the observer. Of the

two models, the far model is valid for almost the entire

range of motion. Rather than deal with the diÆculties of

switching between two models, the output injection term

is used to ensure accuracy of the state estimates.

Setting a31 = 0, which is small in comparison to a32 and

a33, removes
d�v

dt
dependence's on current. The new state

space matrix, eA, is given by

eA =

2
4 a11 0 a13

0 0 a23

0 a32 a33

3
5 =

�
Ao A12

0 Ao

�
(15)

The system can now be decomposed into observable and

unobservable parts, Ao and Ao respectively.

Using the nonlinear model presented in [6] a nonlinear

exponential detector is implemented as

dbx
dt

= f (bx; Vc) + L (y � by) ; (16)

where, the function f (bx; Vc) is the same as equation (6)

except that it does not included the saturation dynamics
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Figure 5: Comparison of the Estimated vs. Actual States

because of their lack of C1 continuity. The matrix L is

given by L =
�
0 l1 l2

�T
, where l1 and l2 are chosen

by using a Kalman �lter on Ao and Co =
�
1 0

�
.

A comparison of the actual and estimated states is pre-

sented in Figure 5. The observer does an excellent job

of estimating both position and velocity. The current

estimate matches the actual state closely for the initial

part of the transition, with the error increasing toward

the end. Remember that equation (16) does not include

the saturation region, thus at the end of the transition

when saturation occurs the nonlinear model is not accu-

rate. Additionally the current estimate is running open

loop therefore output injection can not be used to drive

the error to zero. As current is not used in the landing

controller stage this problem is of no consequence.

7 Results and Validation

The validation of our controller design and methodology

is shown in the following performance criteria

1. Consistency between the linear and nonlinear mod-

els, shown in Figure 3.

2. Consistency between the nonlinear model and ex-

perimental results, shown in Figure 6.

3. Accurate estimation of the unmeasured states,

shown in Figure 5.

4. Repeatable soft landing of the armature, shown in

Figure 7 and Table 1.

A typical soft landing is presented in Figure 7. Com-

pared to the open loop control, presented in Figure 8, the

controller has achieved a signi�cant reduction in the im-

pact velocity. Whereas the open loop impact velocity is

approximately 1 m/s the closed loop impact velocity has

been reduced by a factor of six. The open loop pro�le was

obtained by using a constant voltage input and represents

the best impact velocity we could achieve with this simple

input. Statistical data for the linear closed loop controller

is listed in Table 1.
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Figure 6: Comparison of the Nonlinear Model to Experi-

mental Results

Transition Time Impact Velocity

Mean 3.42 ms 0.16 m/s

� 0.2 ms 0.09 m/s

Max 4.3 ms 0.35 m/s

Min 3.3 ms 0.06 m/s

Table 1: Linear Controller Results
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Figure 7: Typical Experimental Results
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Figure 8: Comparison of the Open Loop vs Closed Loop

Experimental Results

8 Conclusion and Future Work

Camless engine technology has the potential to signi�-

cantly improve the modern engine. While the concept

has existed for several years, the problem of ensuring ac-

curate transitions timing with small impact velocities has

prevented the technology from being implemented. Ad-

vances in control theory and microprocessor technology

have allowed the potential of the system to �nally be re-

alized.

This paper has presented a linear design control method-

ology that reduces the impact velocities between the

valve, valve seat, and the actuator. Experimental results

show the controller achieves a factor of six reduction in

impact velocity and consistent and quick transition times.

Future work will focus on the use of an iterative learning

and nonlinear controller design. The addition of a cycle

to cycle based compensation with an iterative learning

controller should improve performance. As the problem

is highly nonlinear, nonlinear control theory will be used

more extensively in future control design. A nonlinear

controller that addresses the loss of control authority has

already been designed and implemented in hardware. A

detailed analysis and experimental results of the nonlinear

controller will be presented in a later paper [4].

References

[1] Butzmann S., Melbert J., and Koch A., \Sensorless

Control of Electromagnetic Actuators for Variable Valve

Train," SAE Paper No. 2000-01-1225.

[2] Flierl R., and Kluting M., \The Third Generation of

Valvetrains-new Fully Variable Valvetrains for Throttle-

free Load Control," SAE 2000-01-1227

[3] Ho�mann W., Stefanopoulou A., \Iterative Learn-

ing Control of Electromechanical Camless Valve Actua-

tor," Proceedings American Control Conference, pp.2860-

2866, June 2001.

[4] Peterson K., Stefanopoulou A., Wang Y., Megli T.,

Haghgooie M., \Nonlinear Self-Tuning Control for Soft

Landing of an Electromechanical Valve Actuator," to be

presented at the 2002 IFAC on Mechatronics.

[5] Tai C., Stubbs A., Tsao T.C., \Modeling and Con-

troller Design of an Electromagnetic Engine Valve," Pro-

ceedings of American Control Conference, pp. 2890-2895,

June 2001.

[6] Wang Y., Stefanopoulou A., Haghgooie M., Kol-

manovsky I., Hammoud M., \Modeling of an Electrome-

chanical Valve Actuator for a Camless Engine," Proceed-

ings AVEC 2000, 5th Int'l Symposium on Advanced Ve-

hicle Control, no. 93, Aug 2000.

[7] Wang Y., Stefanopoulou A., Peterson K., Megli T.,

Haghgooie M., \Modeling and Control of Electromechan-

ical Valve Actuator," SAE 2002-01-1106

p. 6


