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The role of hydrocarbons as a possible sink for H + and Ha + ions in the lower 
ionosphere of the outer planets is examined. Calculations indicate that H + and I-Is + 
are efficiently converted to hydrocarbon ions on reaction with methane. The 
terminal ions, CH5 + and C2Hs + are rapidly neutralized in dissociative recombi- 
nation with electrons. Extreme ultraviolet photolysis of hydrocarbons as a poten- 
tial additional source of lower elevation ions is investigated. 

I N T R O D U C T I O N  

McElroy  (1973) first raised the  possi- 
bi l i ty  t h a t  protons  in the  Jov ian  ionos- 
phere  m a y  be efficiently r emoved  a t  lower 
al t i tudes by  react ion wi th  methane.  In  
our  last  paper  on the  model ionospheres of  
Saturn,  Uranus  and Nep tune  (Atreya and 
Donahue,  1975) we ment ioned  t h a t  H + 
and H3 + would rapidly  combine wi th  CH 4 
to  form CH~ + and C2H5 + if  the  react ion 
rates  were comparable  to the  gas kinetic 
rates.  The recent ly  measured  values of 
ra te  constants  for hydroca rbon  reactions 
wi th  H +, H3 +, and  H + (Huntress,  1975) 
confirm our  suspicions. I n  this  follow-up 
note  we present  the  result  of  calculations 
based on a chemical  model  which takes  
into considerat ion such hydrocarbon  reac- 
tions. Results  are first presented  for Sa tu rn  
and  poter~tial ionizat ion processes a t  lower 
e l e v a t i o ~  for bo th  Sa turn  and  Jup i t e r  
are discussed. As we ment ioned  earlier 
(Atreya and  Donahue,  1975) the  methane  
mixing ra t io  on Uranus  and  Nep tune  
is not  f irmly established yet ,  therefore  we 
exclude these planets  f rom our  present  
discussion. The model  calculations, how- 
ever,  are general and can be easily ex tended  
to these o ther  outer  planets.  

MODELS 

We adap t  a medium K (eddy diffusion 
coefficient, K =  2 x 106cm2sec -1) neut ra l  
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model a tmosphere  for Sa tu rn  as we did in 
our  last paper  (Atreya and  Donahue,  
1975). This is done for the  sake of  con- 
sistency and because the  value of  K is 
quite  uncertain.  The  chemical model  is 
presented in Table  I. All react ions o ther  
t h a n  those wi th  the  hydrocarbons  are 
t aken  f rom At reya  and  Donahue  (1975). 
Hinteregger  (1970) solar euv fluxes were 
scaled to the  planet ,  and divided b y  a 
factor  of  two to  construct  diurnal  average 
models. A solar zeni th angle of  60 ° was 
assumed and the  wavelength  in terval  
be tween 0 and 960A was divided into 
grids of  5A size; appropr ia te  cross- 
sections were averaged in the  grid interval .  
References for the  cross-sections are found 
elsewhere (McElroy, 1973). Ion  densities 
calculated under  assumptions of  photo-  
chemical equil ibrium are shown in Fig. 1. 
One notes, as before (Atreya and  Dona- 
hue, 1975), t h a t  H + is the  dominan t  ion 
above 160km. In  this region removal  of  H + 
takes place principal ly b y  electron re- 
combinat ion.  Below 160km, conversion of  
H + to H3 + by  th ree -body  association 
react ion (el0) begins to  be significant. 
Below 140km, me thane  begins to p lay  
a major  role in conver t ing H3 + (and the  
remaining H +) to  the  hydrocarbon  ions. 
There  is a sharp switchover  in role as 
major  and minor  ions from H3 + and H + to  
C2H5 + and CH5 +. C2Hs + and CH5 + are 
rapidly  neutra l ized on dissociative re- 
combinat ion wi th  electrons (r6 and r7). 
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T A B L E  I 

IMPORTANT R E A C T I O N S  11~" THE I O N O S P H E R E S  OF THE O U T E R  PLANETS 

R e a c t i o n  
n u m b e r  R e a c t i o n  R a t e  c o n s t a n t  a R e f e r e n c e  

I o n  p r o d u c t i o n :  

p l  H2 -}- hv  --~ H2 + + e 
p2  - ~ H + + H + e  
p3  H 2 + e --> H2 + + 2e 
p 4  -~ H + + H + 2e 
p 5  H + h v  -+ H +  ÷ e  
p6  H ÷ e  -+ H +  + 2e 
p7  H e  -}- hv  --~ H e  + + e 
p8  H e  -}- e --~ H e  + -b 2e 

M e E l r o y  (1973) 

I o n  e x c h a n g e  : 

e l  H2 + + H2 --~ H a  + + H 2 .0  x 10 -9 
e2 H2 + + H --~ H 2 + H + ~ 1 . 0  x 10 -1° 
e3 H e  + -}- H2 --~ H e  + Hz  + ~ ~ 2 0 %  
e4 --~ H e l l  + + H / s u m  1.0 x 10 -13 
e5 --~ H e  + H -}- H + > 8 0 %  
e6 H e  + + CH4-~  C H  + -}- H2 + H + H e  2.4 x 10 - l °  
e7 -+ OH2 + -}- H2 ÷ H e  9.3 x 10 -1° 
e8 -~ CHa + ÷ H + H e  6.3 x 10 -11 
e9 -~ OH4 + -}- H e  3.8 x 10 -11 
elO H + + H 2  + H2 --~ Ha  + + H2 3.2 x 10 -29 

e l i  H + + CH4 --> CI-Ia+ + H2 2.3 x 10 -9 
e l 2  -+ CH4 + + H 1.5 x 10 -9 
e l 3  H e l l  + + H2 --> Ha + + H e  1.85 x 10 -9 

e l 4  H3 + + CH4 -~ CH5 + + H2 2.4 x 10 -9 
e l 5  C H  + + H2 -~ GH2 + + H 1.O × 10 -9 
e l 6  GH2 + + H2 -~ CH3 + + H 7.2 × 10 - l °  
e l 7  CH3 + -}- CH4 -~ C2Hs + + H2 9.5 x 10 - l °  
e l 8  GH4 + + CH4 --~ C H s  + ÷ GH3 1.15 × 10 -9 
e l 9  CH4 + + Hz  --~ CH5 + + H 4.1 x 10 -11 

A t r e y a  a n d  D o n a h u e  
(1975) 

H u n t r e s s  (1975) 

A t r e y a  a n d  D o n a h u e  
(1975) 

H u n t r e s s  (1975) 

A t r e y a  a n d  D o n a h u e  
(1975) 

H u n t r e s s  (1975) 

I o n  r e m o v a l / e l e c t r o n - i o n  r e c o m b i n a t i o n :  

r l  H3 + + e -~ I-I2 + H 3.8 × 10 -7 
r2 H2 + + e --~ H + H <1.0  x 10 - s  
r3 H e l l  + + e  -~ H e  + H ~1 .0  × 10 - s  A t r e y a  a n d  D o n a h u e  

(1975) 
r4  H + + e --~ H -b hv  6.6 × 10 -12 
r5 H e  + -b e -~ H e  ~- by  6.6 × 10 -12 

r6 C H s  + + e --~ } n e u t r a l  p r o d u c t s  1.9 x 10 -6 R e b b e r t  et al. (1973) 
r7 02H5 + + e -+ 1.9 × 10 -6 R e b b e r t  et al. (1973) 

a T h e  r a t e  c o n s t a n t s  a re  in u n i t s  o f  cm3see  -1 fo r  t w o - b o d y  r eac t ions ,  a n d  cm6sec  - t  fo r  t h r e e - b o d y  
r eac t i ons .  
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FIG. 1. A mode l  for  S a t u r n ' s  ionosphere  w i t h  e d d y  diffusion coefficient,  K = 2 x 106cm2sec -1. 

The  ve r t i ca l  scale gives t h e  h e i g h t  a b o v e  a reference  level  where  t h e  h y d r o g e n  dens i t y  is 1016 mole-  
cules am -3. 

DISCUSSION 
Calculations indicate that  CH 4 provides 

an important sink for H + and H3 + ions 
up to an altitude just above the methane 
turbopause. The important ions in this re- 
gion are C2H5 + and CH5 +. Hydrocarbons 
other than methane are not found to be im- 
portant sinks of H + and H 3+- Strobel (1975) 
pointed out the potential importance of 
euv photolysis of CH 4 which results in CH4 + 
and CH3 + ions below 945•. Our calcu- 
lations reveal tha t  the absorption by H 2 
in this region of the spectrum is so large 
tha t  methane photoionization contributes 
no more than 3% to the electron density. 
Str0bel (personal communication, 1974) 
also estimates an upper limit of 2 × 10 -~7 
cm 2, for the value of photoionization 
cross-section of CH 3, whose measured 
ionization potential is 9.82±0.04 eV 
(Elder et al., 1962). Solar Ly  ~ is expected 
to be the principal ionizing flux for this 
methyl radical. Ionization from radiation 
other than Ly  ~ should be insignificant. 
For Saturn, crude hydrocarbon models 
with K - 2 × 106cmZsec -1 give a value of 
CH 3 much too low for it  to cause any 
visible change in the electron density 
profile due to CH3 + ion production. 
However, for purposes of illustration, we 

show, in Fig. 2, Jupiter 's electron density 
profiles assuming Strobel's (1975) K = 105 
(low K) and K oc 1 / (M)  ~/2 (high K;  
K =  3 × 107 at  the turbopause)hydro-  
carbon models. The discussion of location 
and magnitude of the electron density 
maxima in the low and high K models is 
found elsewhere (Atreya et al., 1974). Here 
we simply wish to illustrate the influence 
of CH3 + production on the ionospheric 
profile based on the chemical model listed 
in Table I. I t  can be seen tha t  the CH3 + 
production peaks at an altitude where CH 3 
maxima occur and where optical depth in 
methane is about 0.3. CH3 + production 
drops off sharply below the maximum 
because of onset of intense absorption of 
radiation in methane. CH3 + ions are 
quickly converted to C2H5 + ions (el7). 
The lower altitude peak in the electron 
density profile corresponds to this CH3 + 
ion production. The major ion here is 
C2H5 +. We emphasize, however, tha t  
CH3 + ion production is purely conjectural 
and no experimental data or conclusive 
theoretical estimates of its ionization 
cross-section and quantum yield are yet  
available. Maximum p[CH3 +] are 1.2cm -3 
sec -1 and 13cm-3sec -~ for K =  105 and 
K oc M -1/2 models, respectively; corres- 
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Fzo. 2. Jupiter's model ionosphere with K = 10ScmZsec -1 and K Qc M -1/2. CH3 + ion production 
rates, p[CHs+], for the two models are given by the upper scale. Height scale is the same as in Fig. 1. 

ponding  Ne a t  these al t i tudes are 103 cm -3 
and  2.8 x 103cm -3. The secondary  ion 
peak due to CH3 + is also dependent  upon  
the  value of  dissociative recombinat ion 
coefficient, rT; a value o f  r 7 twice as large 
as the  one given by  Rebbe r t  et al. (1973) 
will essentially wipe out  this feature. 
I m p r o v e d  measurements  of  r 6 and r 7 are 
urgent ly  needed. 

Discrepancies between the Pioneer 10 
results and a pure photochemical  ionos- 
pheric model involving H, H2, He, and 
hydrocarbons  bu t  neglecting the possible 
role of  metallic ions and wind shear 
sporadic E-like layering exist and  were 
foreseen as possibilities in the paper  b y  
A t r eya  et al. (1974). The mechanisms 
producing large ion peaks below the 
principal F region peak are being investi- 
gated.  
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