Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere

E. H. Wilson
NASA/Jet Propulsion Laboratory, Pasadena, California, USA

S. K. Atreya
Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan at Ann Arbor, Ann Arbor, Michigan, USA

Received 16 September 2003; revised 28 November 2003; accepted 12 February 2004; published 4 June 2004.
[1] In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two-stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron-impact, cosmic-ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{HC}_{3} \mathrm{~N}$, and possibly $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of $4200 \mathrm{~cm}^{-3}$ is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini-Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005. INDEX TERMS: 5405 Planetology: Solid Surface Planets: Atmospheres - composition and chemistry; 6280 Planetology: Solar System Objects: Saturnian satellites; 5435 Planetology: Solid Surface Planets: Ionospheres (2459); 0335 Atmospheric Composition and Structure: Ion chemistry of the atmosphere $(2419,2427) ; 0305$ Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); KEYWORDS: Titan, photochemistry, composition, haze, ion chemistry, planetary atmospheres

Citation: Wilson, E. H., and S. K. Atreya (2004), Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere, J. Geophys. Res., 109, E06002, doi:10.1029/2003JE002181.

1. Introduction

[2] Titan, the only satellite in the Solar System with an extensive atmosphere, has been an object of considerable scrutiny for some time. Titan has a largely N_{2} atmosphere (90-98\%) [Lindal et al., 1983; Broadfoot et al., 1981] with methane (2-6\%) [Samuelson et al., 1997; Hanel et al., 1981] being the most abundant minor constituent. Methane is dissociated through the transfer of UV solar radiation, photoelectrons, and magnetospheric electrons, which produce highly reactive radical species. These species along with the nitrogen atoms produced through N_{2} dissociation react to form a bevy of hydrocarbons and nitriles that
characterize Titan's atmosphere. The presence of CO along with the likely influx of micrometeorites into Titan's atmosphere contributes to the collection of oxygen-bearing species that exist in Titan's atmosphere, as well.
[3] A brief historical perspective of relevant observations and previous modeling studies is given first in order to place the present work in proper perspective. The presence of most of the species known to exist in Titan's atmosphere was revealed by the Voyager flybys, which unveiled an object covered with orange-brown hazes. Beneath the haze region the surface was found to have a temperature of 94 K at a pressure of 1.5 bars and a radius of 2575 km [Lindal et al., 1983]. Through these radio occultation measurements, Lindal et al. [1983] were able to infer the temperature profile up to 200 km , which included a tropopause region near 42 km with a temperature of 71 K and a stratospheric

Table 1. List of Neutral and Ionic Compounds Used in the Model

	Neutrals	Ions
H	atomic hydrogen	H^{+}
H_{2}	molecular hydrogen	H_{2}^{+}
C	atomic carbon	H_{3}^{+}
CH	methylidyne	$\mathrm{H}_{2} \mathrm{O}^{+}$
${ }^{1} \mathrm{CH}_{2}$	excited-state methylene	$\mathrm{H}_{3} \mathrm{O}^{+}$
${ }^{3} \mathrm{CH}_{2}$	ground-state methylene	HCO^{+}
CH_{3}	methyl radical	CH_{3}^{+}
CH_{4}	methane	CH_{4}^{+}
C_{2}	molecular carbon	CH_{5}^{+}
$\mathrm{C}_{2} \mathrm{H}$	ethynyl radical	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	acetylene	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{3}$	vinyl radical	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{4}$	ethylene	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	ethyl radical	$\mathrm{C}_{2} \mathrm{H}_{6}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	ethane	$c_{\text {- }} \mathrm{C}_{3} \mathrm{H}_{3}^{+}$
$\mathrm{C}_{3} \mathrm{H}_{2}$	propadienylidene	$\mathrm{C}_{3} \mathrm{H}_{5}^{+}$
$\mathrm{C}_{3} \mathrm{H}_{3}$	propargyl radical	$\mathrm{C}_{4} \mathrm{H}_{2}$
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	methylacetylene	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}$
$\mathrm{CH}_{2} \mathrm{CCH}_{2}$	allene	$\mathrm{C}_{6} \mathrm{H}_{7}$
$\mathrm{C}_{3} \mathrm{H}_{5}$	allyl radical	N^{+}
$\mathrm{C}_{3} \mathrm{H}_{6}$	propylene	N_{2}^{+}
$\mathrm{C}_{3} \mathrm{H}_{7}$	isopropyl radical	NH^{+}
$\mathrm{C}_{3} \mathrm{H}_{8}$	propane	$\mathrm{N}_{2} \mathrm{H}^{+}$
$\mathrm{C}_{4} \mathrm{H}$		NH_{2}
$\mathrm{C}_{4} \mathrm{H}_{2}$	diacetylene	NH_{3}
$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{\text {* }}$	excited-state diacetylene	NH_{4}^{+}
$\mathrm{C}_{4} \mathrm{H}_{3}$		CN^{+}
$\mathrm{C}_{4} \mathrm{H}_{4}$	vinylacetylene	HCN^{+}
$\mathrm{C}_{4} \mathrm{H}_{5}$	1 -butyn-3-yl radical	$\mathrm{H}_{2} \mathrm{CN}^{+}$
$\mathrm{C}_{4} \mathrm{H}_{6}$	1,3-butadiene	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}^{+}$
$\mathrm{C}_{4} \mathrm{H}_{8}$	1-butene	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{\mathbf{+}}^{+}$
$\mathrm{C}_{4} \mathrm{H}_{10}$	n -butane	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}^{+}$
$\mathrm{C}_{6} \mathrm{H}$		$\mathrm{N}_{\mathrm{x}}^{+}$
$\mathrm{C}_{6} \mathrm{H}_{2}$	triacetylene	
$\mathrm{C}_{6} \mathrm{H}_{4}$	benzyne	
$\mathrm{n}^{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{4}$	linear- $\mathrm{C}_{6} \mathrm{H}_{4}$	
$\mathrm{C}_{6} \mathrm{H}_{5}$	phenyl radical	
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{5}$	linear-C6 H_{5}	
$\mathrm{C}_{6} \mathrm{H}_{6}$	benzene	
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{6}$	linear- $\mathrm{C}_{6} \mathrm{H}_{6}$	
$\mathrm{C}_{6} \mathrm{H}_{7}$	cyclized- $\mathrm{C}_{6} \mathrm{H}_{7}$	
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{7}$	linear- $\mathrm{C}_{6} \mathrm{H}_{7}$	
$\mathrm{C}_{8} \mathrm{H}_{2}$	tetraacetylene	
$\mathrm{N}^{4 \mathrm{~s}}$	ground-state atomic nitrogen	
$\mathrm{N}^{2 \mathrm{~d}}$	excited-state atomic nitrogen	
N_{2}	molecular nitrogen	
NH	imidogen	
NH_{2}	amino radical	
NH_{3}	ammonia	
$\mathrm{N}_{2} \mathrm{H}_{2}$	diimide	
$\mathrm{N}_{2} \mathrm{H}_{3}$	hydrazinyl radical	
$\mathrm{N}_{2} \mathrm{H}_{4}$	hydrazine	
CN	cyano radical	
HCN	hydrogen cyanide	
$\mathrm{H}_{2} \mathrm{CN}$	methylene-amidogen radical	
CHCN		
$\mathrm{CH}_{2} \mathrm{CN}$	cyanomethyl radical	
$\mathrm{CH}_{3} \mathrm{CN}$	acetonitrile	
$\mathrm{C}_{2} \mathrm{~N}_{2}$	cyanogen	
$\mathrm{HC}_{2} \mathrm{~N}_{2}$		
$\mathrm{C}_{3} \mathrm{~N}$	cyanoethynyl radical	
$\mathrm{HC}_{3} \mathrm{~N}$	cyanoacetylene	
$\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}$	cyanovinyl radical	
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	acrylonitrile	
$\mathrm{C}_{4} \mathrm{~N}_{2}$	dicyanoacetylene	
$\mathrm{O}^{3 \mathrm{p}}$	ground-state atomic oxygen	
$\mathrm{O}^{\text {1d }}$	excited-state atomic oxygen	
OH	hydroxyl radical	
$\mathrm{H}_{2} \mathrm{O}$	water	
CO	carbon monoxide	
CO_{2}	carbon dioxide	
HCO	formyl radical	
$\mathrm{H}_{2} \mathrm{CO}$	formaldehyde	

Table 1. (continued)

	Neutrals	Ions
$\mathrm{CH}_{2} \mathrm{OH}$	hydroxymethyl radical	
$\mathrm{CH}_{3} \mathrm{O}$	methoxy radical	
$\mathrm{CH}_{3} \mathrm{OH}$	methanol	
$\mathrm{CH}_{2} \mathrm{CO}$	ketene	
$\mathrm{CH}_{3} \mathrm{CO}$	acetyl radical	
$\mathrm{CH}_{3} \mathrm{CHO}$	ethylene oxide	
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	oxirane	

inversion layer, increasing temperatures to 170 K at 200 km . Further analysis of Voyager Infrared Spectrometer (IRIS) and Voyager Ultraviolet Spectrometer (UVS) data yielded much of what is known about the distribution of constituents in Titan's atmosphere listed as shown in Table 1. However, Voyager did not uncover much about the middle and upper atmosphere. An exospheric temperature of 186 K was obtained by Smith et al. [1982]. But, beyond some observations of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{2}$ [Smith et al., 1982], little is known about the vertical distribution of Titan's constituents throughout the atmosphere, largely due to the opacity provided by CH_{4} and Titan's hazes. In fact, the hazes themselves remain largely a mystery. Voyager revealed an opaque haze region consisting of a main haze layer around 220 km and a detached haze layer at $300-350 \mathrm{~km}$ [Rages and Pollack, 1983]. However, the precise source of this region and its composition is left to speculation.
[4] In the upper atmosphere the absorption of solar EUV radiation produces an ionosphere that interacts with Saturn's magnetosphere and the solar wind. This interaction is not constant as variations in solar wind pressure cause a compression of the magnetosphere, resulting in Titan being outside of the magnetosphere part of the time. However, upon Voyager 1's arrival, Titan was inside Saturn's magnetosphere, and Voyager observed a Venus-like interaction between Titan and the magnetosphere with no bow shock [Neubauer et al., 1984; McNutt and Richardson, 1988], allowing Titan to mainly interact with precipitating magnetospheric electrons along with photoelectrons produced within Titan's ionosphere. Early analysis revealed a variation in electron peak concentration with derived upper limits of $3000 \mathrm{~cm}^{-3}$ at the evening terminator and $5000 \mathrm{~cm}^{-3}$ at the morning terminator [Lindal et al., 1983]. Bird et al. [1997] reanalyzed Voyager data to obtain an electron peak density of $2400 \pm 1100 \mathrm{~cm}^{-3}$ at $1180 \pm 150 \mathrm{~km}$ at the evening terminator at a solar zenith angle near 90°.
[5] The data presented by the Voyager flybys provided the impetus for the construction of photochemical models that have attempted to investigate how chemical species are distributed in Titan's atmosphere. The first extensive photochemical model after the Voyager flybys was developed by Yung et al. [1984], which made use of a large reaction set and early analyses of Voyager data [Hanel et al., 1981; Maguire et al., 1981; Kunde et al., 1981; Samuelson et al., 1983]. Toublanc et al. [1995] and Lara et al. [1996] took advantage of improved analysis of Voyager observations [Coustenis et al., 1989, 1991] and subsequent ground-based millimeter observations [Tanguy et al., 1990; Hidayat et al., 1997] to infer different profiles of the eddy diffusion coefficient. Toublanc et al. [1995] included a Monte Carlo treatment of the transfer of solar radiation in the atmosphere, while Lara et al. [1996] included physically based water ablation profiles to account for the oxygen source from micrometeor-
ites. Keller et al. [1992] and Fox and Yelle [1997] used neutral photochemical models as a basis for the construction of ionosphere models. Galand et al. [1999] used the Toublanc et al. [1995] photochemical model to investigate diurnal effects on Titan's ionosphere, while Banaszkiewicz et al. [2000] combined the Lara et al. [1996] model with an investigation of charged particle chemistry to construct a coupled model of Titan's atmosphere and ionosphere.
[6] Despite these investigations many questions regarding Titan chemistry still remain unanswered. Photochemical models have been unable to simultaneously fit the vertical profiles of observed species. Furthermore, although many microphysical models have been developed [e.g., Rannou et al., 1995], the chemical sources of Titan's haze layer are still quite unknown.
[7] The low temperatures which characterize outer planetary atmospheres, and Titan, in particular, have prompted many measurements of reaction rates and cross sections at low temperatures which were not included in previous Titan photochemical models. Microphysical modeling and analysis of Voyager photometric and polarimetric observations and albedo data have suggested the fractal nature of Titan haze whose scattering effects differ than those considered in previous one-dimensional Titan photochemical models (the two-dimensional model of Lebonnois et al. [2001] does consider fractal haze particles). With this in mind and in the context of preparation for the retrieval and interpretation of data from the upcoming Cassini-Huygens investigation of Titan, a one-dimensional steady state photochemical model has been constructed. This model computes the mole fraction for 80 neutrals and 33 ions, shown in Table 2, from the surface to 1600 km , while self-consistently calculating the total number density as a function of the mean molecular weight. The model incorporates a two-stream discrete ordinates scattering model, differing from the scattering treatment of previous Titan models, and includes dissociation via photoelectrons from $15-1000 \mathrm{eV}$, magnetospheric electrons, and cosmic rays, along with solar radiation from 50-3000 A. A multicomponent treatment of molecular diffusion is included along with sensitivity studies of various eddy diffusion profiles. The sensitivity studies include the analysis of constituent profiles generated by 100 eddy diffusion profiles, increasing through the stratosphere in varying degrees, with homopause levels ranging from 600 km to 1150 km .
[8] This paper discusses the details of the photochemical model, including the equations and inputs used to calculate constituent densities in sections 2 and 3. A discussion of the important free parameter of eddy diffusion is provided, detailing the basis for the profiles used in the sensitivity studies regarding Titan's homopause level. The chemical mechanisms, which govern the distribution of hydrocarbon, oxygen, and nitrile neutrals as well as ions in Titan's atmosphere, are discussed in section 4. Sensitivity studies regarding eddy diffusion and aerosol opacity are examined in section 5, along with a discussion on constituent profiles. Finally, conclusions are detailed in section 6.

2. Model Description

[9] To examine the physical and chemical processes that shape the distribution of constituents with altitude in Titan's
atmosphere, a one-dimensional photochemical model is developed. This photochemical model solves the steady state altitude-dependent continuity-diffusion equation in spherical coordinates

$$
\begin{equation*}
P_{i}-L_{i}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} \Phi_{i}\right)}{\partial r} \tag{1}
\end{equation*}
$$

where P_{i} is the chemical production rate of species i, L_{i} is the chemical loss rate, the radius $r=\left(R_{0}+z\right)$, where R_{0} is the radius of Titan and z is the altitude, and Φ_{i} is the vertical flux, which can be expressed as

$$
\begin{align*}
\Phi_{i}(z)= & -D_{i}\left[n \frac{\partial \xi_{i}}{\partial z}+\xi_{i} \frac{\partial n}{\partial z}+\left[1+\left[1-\xi_{i}\right] \alpha_{i}\right] \frac{n \xi_{i}}{T} \frac{\partial T}{\partial z}+\frac{n \xi_{i}}{H_{i}}\right] \\
& -K n \frac{\partial \xi_{i}}{\partial z} \tag{2}
\end{align*}
$$

where n is the total number density, ξ_{i} is the mole fraction, D_{i} is the molecular diffusion coefficient, K is the eddy diffusion coefficient, α_{i} is the thermal diffusion coefficient, T is the temperature, and H_{i} is the scale height

$$
\begin{equation*}
H_{i}=\frac{R T}{m_{i} g}, g=\frac{G M}{r^{2}} \tag{3}
\end{equation*}
$$

with R as the gas constant, m_{i} as the molecular weight of species i, g as the gravity, G as the gravitational constant, and M representing Titan's mass. The total number density as a function of mean molecular weight can be determined from the equation of hydrostatic equilibrium,

$$
\begin{equation*}
\frac{d p}{d z}=-\rho g \tag{4}
\end{equation*}
$$

where p is the pressure and ρ is the mass density $=n m$, where $m=\sum_{i} m_{i} \zeta_{i}(z)$, the mean molecular weight at altitude z, and the gas law

$$
\begin{equation*}
p[f+1]=n k T \tag{5}
\end{equation*}
$$

where k is Boltzmann's constant and f is a factor marking the departure from gas ideality, as Titan's atmosphere exhibits non-ideal characteristics near its surface [Lindal et al., 1983]. Atmospheric parameters that are inputs into the model are the surface pressure $p_{0}=1496 \mathrm{mb}$ [Lindal et al., 1983] and the non-ideality profile and temperature profile (Figure 1a), modeled by Yelle et al. [1997] and used for all studies related to the Huygens probe.
[10] These equations are finite differenced (see Appendix A) and solved through the reduced Jacobian solver method [Sandilands and McConnell, 1997] where the species in Table 2 are divided into two families, representing the neutrals and the ions. The structure of the model is laid out in Figure 2. The primary input parameters - the solar flux and cross sections combined with the thermal profile - are used to calculate the next group of parameters located in the first box. The calculation of the radiation field then follows, producing photolysis rates for absorbing species. The continuity-diffusion equation is then inverted

Table 2. Observations of Constituents in Titan's Atmosphere

Species	Altitude, km	Instrument	Observation	References
$\mathrm{CH}_{4}{ }^{\text {a }}$	1400	Voyager UVS	$20 \pm 2 \%$	Strobel et al. [1992]
	1130		$8 \pm 3 \%$	Smith et al. [1982]
	1000		$6 \pm 1 \%$	Smith et al. [1982]
	>825	Voyager UVS	1-2\%	Smith et al. [1982]
$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{\text {a,b }}$	725		0.1-0.3\%	
	300_{-60}^{+80}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 4.7_{-2.1}^{+3.5} \times 10^{-6}$	
	180_{-30}^{+50}		$\mathrm{NP}^{\mathrm{b}}: 2.3_{-1}^{+1.6} \times 10^{-6}$	Coustenis et al. [1991]
	125_{-40}^{+50}		$\mathrm{EQ}^{\mathrm{b}}: 2.22_{-0.9}^{+0.7} \times 10^{-6}$	Coustenis et al. [1989]
$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{\text {a }}$	180_{-30}^{+50}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 3.0_{-2.1}^{+2.8} \times 10^{-6}$	Coustenis et al. [1991]
	125_{-35}^{+55}		$\mathrm{EQ}^{\mathrm{b}}: 9.0_{-5}^{+3} \times 10^{-8}$	Coustenis et al. [1989]
$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{\text {a }}$	$300-60$ 180		$\mathrm{NP}^{\mathrm{b}}: 1.5_{-0.9}^{+2.2} \times 10^{-5}$	Coustenis et al. [1991]
	$180-30$ 1255_{-40}^{+50}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 1.1 .3_{-0.6}^{+0.6} \times 10^{+0.5} \times 10^{-5}$	Coustenis et al. [1989]
	105-300	IRHS-IRTF	$8.8 \pm 2.2 \times 10^{-6}$	Livengood et al. [2002]
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	300_{-60}^{+80}		$\mathrm{NP}^{\mathrm{b}}: 6.2^{+4} .5 \times 10^{-8}$	
	180_{-30}^{+50}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 2.0_{-0.8}^{+1.1} \times 10^{-8}$	Coustenis et al. [1991]
	105_{-30}^{+55}		$\mathrm{EQ}^{\mathrm{b}}: 4.44_{-2.1}^{+1.7} \times 10^{-9}$	Coustenis et al. [1989]
$\mathrm{C}_{3} \mathrm{H}_{8}$	180_{-30}^{+50}	Voyager IRIS	NP ${ }^{\text {b }}: 5.0_{-3.5}^{+4} \times 10^{-7}$	Coustenis et al. [1991]
	105_{-30}^{+55}	Voyager IRIS	$\mathrm{EQ}^{\text {b }}: 7.0_{-4}^{+4} \times 10^{-7}$	Coustenis et al. [1989]
	90-250	TEXES-IRTF	$6.2 \pm 1.2 \times 10^{-7}$	Roe et al. [2003]
$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{\text {a }}$	300_{-60}^{+80}		$\mathrm{NP}^{\mathrm{b}}: 4.2^{+3.3}{ }^{\text {a }}$ NP $\times 10^{-8}$	
	180_{-30}^{+50}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 2.7_{-1.2}^{+2} \times 10^{-8}$	
	105_{-30}^{+55}		EQ ${ }^{\text {b }}: 1.4_{-0.7}^{+0.6} \times 10^{-9}$	Coustenis et al. [1989]
$\mathrm{H}_{2} \mathrm{O}$	400 >40	ISO	$\begin{gathered} 8.0_{-4}^{+6} \times 10^{-9 \mathrm{c}} \\ 4.0 \times 10^{-10} \end{gathered}$	Coustenis et al. [1998]
CO	350	IRAM - Pico Veleta, Spain	$4.8_{-1.5}^{+3.8} \times 10^{-6}$	Hidayat et al. [1998]
	175		$2.44_{-0.5}^{+0.5} \times 10^{-5}$	
	60		$2.9{ }_{-0.5}^{+0.9} \times 10^{-5}$	
	200-300		$5.2 \pm 1.2 \times 10^{-5}$	Gurwell and Muhleman [2000]
	40-200	Owens Valley millimeter array	$5.2 \pm 0.6 \times 10^{-5}$	
CO_{2}	180_{-30}^{+50}	Voyager IRIS	$\mathrm{NP}^{\text {b }}: \leq 7.0 \times 10^{-9}$	Coustenis et al. [1991]
	$\xrightarrow{\sim} 180$		$\mathrm{EQ}^{\mathrm{b}, \mathrm{c}}: 1.4 \times 10^{-8}$	
	${ }_{105}^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: 1.4_{-0.5}^{+0.3} \times 10^{-8}$	Coustenis et al. [1989]
$\mathrm{HCN}^{\text {a }}$	300_{-60}^{+80} 180 0^{+50}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 2.33_{-1.4}^{+1.8} \times 10^{-7}$ $\mathrm{NP}^{\mathrm{b}} \cdot 40^{+2.8} \times 10^{-7}$	Coustenis et al. [1991]
	180_{-30} 12550		$\mathrm{EQ}^{\mathrm{b}}: 1.6_{-0.4}^{+0.4} \times 10^{-7}$	Coustenis et al. [1989]
	350		$3.7_{-1.2}^{+1.8} \times 10^{-7}$	Hidayat et al. [1997]
	300	IRAM - Pico Veleta, Spain	$5.2_{-3.9}^{+6.6} \times 10^{-6}$	Tanguy et al. [1990]
	200		$3.5{ }_{-1.1}^{+1.2} \times 10^{-7} / 6.2_{-2.1}^{+1.9} \times 10^{-7}$	Hidayat et al. [1997]/Tanguy et al. [1990]
	170		$2.0_{-0.4}^{+0.3} \times 10^{-7} / 3.3_{-0.8}^{+0.9} \times 10^{-7}$	
	110	IRAM - Pico Veleta, Spain	$5.0_{-0.9}^{+1.1} \times 10^{-8}$	Hidayat et al. [1997]
	100		$7.5_{-3.0}^{+8.0} \times 10^{-8}$	Tanguy et al. [1990]
$\mathrm{CH}_{3} \mathrm{CN}$	320		$1.0 \times 10^{-8 \mathrm{c}}$	
	250		$3.5 \times 10^{-9 \mathrm{c}}$	Bézard et al. [1993]
	180		$1.5 \times 10^{-9 \mathrm{c}}$	
$\mathrm{HC}_{3} \mathrm{~N}^{\text {a }}$	300_{-60}^{+80}	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 2.5_{-1}^{+1.1} \times 10^{-7}$	Coustenis et al. [1991]
	180_{-30}^{+50}		$\mathrm{NP}^{\mathrm{b}}: 8.44_{-3.5}^{+3} \times 10^{-8}$	Coustenis et al. [1991]
	105_{-30}^{+55}		$\mathrm{EQ}^{\mathrm{b}}: \leq 1.5 \times 10^{-9}$	Coustenis et al. [1989]
$\mathrm{C}_{2} \mathrm{~N}_{2}{ }^{\text {a }}$	300_{-60}^{+80}		NP: $1.6_{-1}^{+2.6} \times 10^{-8}$	Coustenis et al. [1991]
	180_{-30}^{+50}	Voyager IRIS	NP: $5.5{ }_{-2.2}^{+5} \times 10^{-9}$	
	105_{-30}^{+55}		$\mathrm{EQ}^{\mathrm{b}}: \leq 1.5 \times 10^{-9}$	Coustenis et al. [1989]

${ }^{\text {a }}$ Vervack [1997] and Vervack et al. [2003] conducted Voyager UVS reanalysis of upper atmosphere observations for these constituents. See text.
${ }^{\mathrm{b}}$ Voyager IRIS observations taken at NP: north polar region, EQ: equatorial region.
${ }^{\mathrm{c}}$ Value obtained by linear fitting of a model-calculated density profile.
for a given chemical family before proceeding back to the recalculation of box 1 parameters with the new abundance values. This cycle continues until a solution is reached, defined by the convergence level

$$
(\Delta \xi, \Delta n)_{c o n v}=\left\{\begin{array}{l}
\frac{\Delta \xi}{\xi}<10^{-4} \\
\frac{\Delta n}{n}<10^{-4}
\end{array}\right.
$$

The resultant nominal total number density profile is shown in Figure 1b.

3. Model Parameters

3.1. Radiation Field

3.1.1. Solar Flux Input

[11] During the Voyager 1 flyby of Titan in November 1980, the solar flux output was near the maximum of its 11-year cycle, amplifying the effect of solar radiation on the

Figure 1. a) Temperature profile and non-ideality factor from Yelle et al. [1997]. b) Calculated total number density in Titan's atmosphere.
atmosphere. However, most of the stable constituents in Titan's atmosphere have lifetimes longer than one solar cycle in the stratosphere and are thus less sensitive to the changes in solar flux over the course of that cycle in that region. Thus the solar flux for moderate solar conditions obtained by The Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) [Woods et al., 1996] on the Upper Atmosphere Research Satellite (UARS) from 1150-3000 A and an EUV flux, calculated using the EUVAC model [Richards et al., 1994] for solar conditions associated with a 10.7 cm radio solar flux of $130\left(\times 10^{-22} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}\right)$, is used to calculate neutral densities in the nominal model. However, in the upper atmosphere above $\sim 0.01 \mu$ bar, lifetimes for most constituents are considerably shorter. Sensitivity to solar flux for many of these constituents is discussed in section 5.2, in which simulations are run for solar minimum, solar maximum, and moderate solar conditions. Due to the short ion chemical lifetimes, profiles for charged particles in the solar maximum case are considered

Figure 2. Layout of the structure of the model.
for the nominal model. In the solar maximum case, an EUV flux for $\mathrm{F} 10.7=233$ and the 81 -day average 10.7 cm radio solar flux (F10.7A) equal to 211.9, which matches the solar conditions during the Voyager flyby, is used to calculate the distribution of species. The incident solar flux is calculated with a zenith angle of 58°, corresponding to the zenith angle representing a globally averaged incident flux in November 1980.
[12] The scattering contribution to the solar flux is calculated through a two-stream discrete ordinates algorithm detailed by Edgington et al. [1998]. The contributions of solar radiation, direct and scattered flux, for three characteristic wavelengths are shown in Figure 3. In the EUV region, scattering does not play a major role, shown in the $800 \AA$ example, as nitrogen absorption prevents the penetration of photons to deeper regions where scattering would have a larger effect. In the $1700 \AA$ example, radiation penetrates further into the atmosphere, allowing some backscattering to take place. In the denser regions, the effect

Figure 3. The direct solar flux and diffuse contribution as a function of altitude for $800 \AA, 1700 \AA$, and $3000 \AA$ intensities.

Figure 4. a) Radial electron fluxes from T. Cravens (personal communication, 1998) for various electron energies. b) Electron density profile in Titan's stratosphere (solid line) and molecular nitrogen dissociation as a result of cosmic ray deposition (long dashed line).
of scattering increases. At $3000 \AA$, the high single scattering albedo results in similar levels of direct and diffuse radiation throughout the atmosphere, with scattering dominating the solar input below 300 km .

3.1.2. Electron Input

[13] The solar flux while ionizing molecules also creates photoelectrons in the process. These photoelectrons play a significant role in the radiation field by providing an additional source of energy through which chemistry is induced. In their study of Titan's ionosphere, Gan et al. [1992] calculated photoelectron fluxes through Titan's atmosphere as a function of electron energy. On the basis of this study, the radial fluxes of photoelectrons from $15-$ 100 eV , for a solar zenith angle of 60 degrees is adopted for altitudes from $725-1600 \mathrm{~km}$ (T. Cravens, personal communication, 1998). The radial fluxes for some of these electrons are shown in Figure 4a. Considering the input from Saturn's magnetosphere, Keller et al. [1992] calculated the ion production rates of $\mathrm{N}_{2}^{+}, \mathrm{N}^{+}$, and CH_{4}^{+}, the ions that begin Titan ion chemistry, due to magnetospheric electron impact. These rates are also considered in the model.

3.1.3. Cosmic Rays

[14] The deposition of cosmic rays in Titan's stratosphere can be an important source of nitrile formation through cosmic ray-induced N_{2} dissociation. Cosmic ray input in Titan's atmosphere is treated using the model of local energy deposition described by Atreya et al. [1995], assum-
ing zero magnetic rigidity for Titan, under moderate solar conditions. The cascading penetration of energy deposition analyzed by Capone et al. [1983] is neglected, amounting to a possible underprediction of N_{2} dissociation of a factor ~ 2, according to Lellouch et al. [1994]. The total ionization rate calculated is assumed to equal the N_{2} ionization rate and is scaled for the dissociation and ionization rate of N_{2} and other species by a factor relating the peak absorption cross section via electron impact of that species with the N_{2} absorption cross section at that wavelength. Thus, for $\mathrm{X}+e^{-} \rightarrow \mathrm{j}^{(+)}$, where j is a neutral or ion,

$$
\begin{equation*}
P_{j}^{X}=\frac{\sigma_{X}\left(E_{j}^{\text {peak }}\right) q_{j}}{\sigma_{N_{2}}\left(E_{j}^{\text {peak }}\right) q_{i o n}^{N_{2}}} Q_{N_{2}} \xi_{X}=J_{j} n \xi_{X} \tag{6}
\end{equation*}
$$

where, P_{j}^{X} is the production rate of species j from destruction of X, σ_{j} is the electron impact absorption cross section of species $j, E_{j}^{\text {peak }}$ is the electron energy of peak absorption for species j, q_{j} is the quantum yield of species j from destruction of $\mathrm{X}, q_{\text {ion }}^{N_{2}}$ is the total ionization quantum yield of N_{2} for electron impact, $Q_{N_{2}}$ is the calculated total ionization rate of N_{2} from cosmic ray impact, and J_{j} is the coefficient of production from destruction of X .

3.2. Photochemistry

[15] The chemical production term in the continuity equation (1) is given by

$$
\begin{equation*}
P_{i}=\sum_{j} \sum_{k} k_{j k} n^{2} \xi_{j} \xi_{k}+\sum_{l} J_{l}^{i} n \xi_{l} \tag{7}
\end{equation*}
$$

where $k_{j k}$ is the rate coefficient of the reaction in which species j and species k react to form species i, while

$$
\begin{equation*}
J_{l}^{i}(z)=\int_{\lambda} \sigma_{l}^{a b s} I(z, \lambda) q_{i}(\lambda) d \lambda \tag{8}
\end{equation*}
$$

where $q_{i}(\lambda)$ is the quantum yield, representing the probability that the photolysis of l will produce i. The expression $k_{j k} n^{2} \xi_{j} \xi_{k}$ represents the production rate of i resulting from the two-body reaction of j and k, and $J_{l n} n \xi_{l}$ is the production rate of i resulting from the photolysis of l. The chemical term for species i, on the other hand, is dependent on the mixing ratio of i, as the loss rate of a species is affected by its abundance

$$
\begin{equation*}
L_{i}=\sum_{j} k_{i j} n^{2} \xi_{i} \xi_{j}+J_{i} n \xi_{i} \tag{9}
\end{equation*}
$$

$k_{i j}$ is the rate coefficient of the reaction of reactant i with some reactant j, with $k_{i j} n^{2} \xi_{i} \xi_{j}$ expressing the reaction rate of i and j. The photolysis rate of i is $J_{i} n \xi_{i}$.
[16] For three-body pressure dependent reactions, where the two reactants react with the background atmosphere, $k_{j k}$ is often given in terms of a low-pressure rate k_{0} and a highpressure rate k_{∞} where

$$
\begin{equation*}
k_{j k}=\frac{k_{0} k_{\infty} n}{\left(k_{0} n+k_{\infty}\right)} \tag{10}
\end{equation*}
$$

Meanwhile, the production rate due to the deexcitation of an excited constituent is $k_{j} n \xi_{j}$, where k_{j} is the deexcitation rate of constituent j.
[17] The set of reactions used in the model is displayed in Table 3. The reaction rates chosen are the rates calculated or measured under the conditions most representative of Titan's atmosphere. The most important of these conditions is temperature. The rate of a reaction can vary by many orders of magnitude over the span of 100 K in temperature, which can have a large effect on the overall chemistry of the atmosphere. The bulk of chemistry in Titan's atmosphere occurs in the region where atmospheric temperatures range between about 130 K and 180 K . So, rate coefficient measurements that are applicable at or near these temperatures are favored over rate measurements that are applicable at room temperature, for example. The pressure at which the rate was measured and the bath gas used is also taken into consideration.
[18] The absorption cross sections and quantum yields which are used in (7) to calculate photolysis rates are referenced in Table 4. Many of these cross sections can also vary significantly with temperature, and thus low temperature cross sections, where available, are used. For Rayleigh scattering, the cross section is

$$
\begin{equation*}
\sigma_{i}^{\text {Ray }}=\frac{32 \pi^{3} \alpha_{i}^{2}\left[\frac{6+3 \delta_{i}}{6-7 \delta_{i}}\right]}{3 \lambda^{4}} \tag{11}
\end{equation*}
$$

where $\alpha_{C H_{4}}=25.6 \times 10^{-25}, \delta_{C H_{4}}=0, \alpha_{N_{2}}=3.96 \times 10^{-25}$, and $\delta_{N_{2}}=0.03$ [Allen, 1976].
[19] Microphysical models matched with geometric albedo observations [e.g., McGrath et al., 1998] have suggested that Titan aerosols in the main haze layer are likely fractal in nature. Aerosol opacities for fractal particles were taken from Lebonnois et al. [2001], assuming aerosol single scattering albedos calculated from scattering and extinction efficiency factors from Rannou et al. [1995]. Haze opacity profiles for Mie particles from Rannou et al. [1995] were also tested.
[20] Charged particles are assumed to be governed solely through chemical processes with the assumption of charge neutrality. The electron temperature is taken from Keller et al. [1992] model A.

3.3. Condensation

[21] Due to the very low temperatures reached in Titan's tropopause and lower stratosphere, many gases become saturated and proceed to condense according to their saturation vapor pressures. The saturation laws governing condensing species are taken from Allen and Nelson [1998] for CH_{4} above $90 \mathrm{~K}, \mathrm{C}_{2} \mathrm{H}_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{4}$, Moses et al. [1992] for other hydrocarbons, Washburn [1924] for $\mathrm{H}_{2} \mathrm{O}$, and Sagan and Thompson [1984] for $\mathrm{HC}_{3} \mathrm{~N}$. Vapor pressures for other compounds are determined by fitting the lowest two points in the vapor pressure table from Weast et al. [1987] for the expression $\ln p(z)=A+\frac{B}{T(z)}$. This process is taken into account in the chemical side of equation (1) where for condensing species,

$$
\begin{equation*}
P_{i}-L_{i}-\gamma_{i}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} \Phi_{i}\right)}{\partial r} \tag{12}
\end{equation*}
$$

where γ_{i} is the condensation factor of species i. The condensation factor is assumed to dominate in regions of condensation, forcing the constituent mixing ratio profile to follow the profile associated with its saturation vapor pressure. This is done by setting the condensation factor

$$
\begin{equation*}
\gamma_{i}=\left[A n\left[\xi_{i}-\xi_{i}^{s a t}\right]\right]^{p} \tag{13}
\end{equation*}
$$

where $\xi_{i}^{\text {sat }}$ equals the saturation mole fraction, $A \gg P_{i}, L_{i}$, and p is a constant ≈ 1 to smooth the transition between condensation and non-condensation regions.
[22] As evident in equation (4) the total number density is dependent on the mean mass of the atmosphere, which will be affected by the distribution of the most abundant constituents. Thus condensation must be taken into account in the mean mass calculation in a similar fashion as the mole fractions in equation (13), by forcing $m(z)=m^{\text {sat }}(z)$ in condensing regions, where

$$
\begin{equation*}
m^{s a t}(z)=\sum_{i} m_{i} \min \left(\xi_{i}, \xi_{i}^{s a t}\right) \tag{14}
\end{equation*}
$$

3.4. Boundary Conditions

[23] The boundary conditions for the model are presented in Table 5. At the lower boundary, the mole fractions for H_{2} and CO are set to their observed quantities in the stratosphere, while CH_{4} assumes a mixing ratio profile consistent with the saturation model of Samuelson et al. [1997], with a surface mole fraction of 5.6% and a supersaturation of 1.37. $\xi_{N_{2}}$ follows as $1-\sum \xi_{i}, i \neq \mathrm{N}_{2}$ throughout the model. The total number density is set to $1.2 \times 10^{20} \mathrm{~cm}^{-3}$ at the lower boundary, associated with a pressure of 1496 mb , a temperature of 94 K , and a non-ideality factor of 0.0347 . At the upper boundary, $\Phi_{i}=0$ is assumed for most species, although $\Phi_{\mathrm{H}_{2} \mathrm{O}}=-5.0 \times 10^{6}$ molecules $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ is adopted for $\mathrm{H}_{2} \mathrm{O}$, accounting for the influx of water molecules arising from micrometeorites [Feuchtgruber et al., 1997]. For H and H_{2}, the escape flux is dependent on the density of these constituents that are being solved. Thus the boundary condition accounting for escape of H , H_{2} is expressed in terms of velocity
$w_{i}\left(\tilde{r}_{N}\right)=-D_{i}\left[\frac{1}{\xi_{i}} \frac{\partial \xi_{i}}{\partial z}+\frac{1}{n} \frac{\partial n}{\partial z}+\left[1+\alpha_{i}\right] \frac{1}{T} \frac{\partial T}{\partial z}+\frac{1}{H_{i}}\right]-K \frac{1}{\xi_{i}} \frac{\partial \xi_{i}}{\partial z}$.

The top of the model is assumed to be the exobase, where the effusion velocity from Jeans escape is given as

$$
\begin{equation*}
w_{e}=\sqrt{\frac{k T}{2 \pi m}}\left[1+E_{e}\right] e^{-E_{e}} \tag{16}
\end{equation*}
$$

where $E_{e}=\frac{r_{e}}{H_{e}}$. Thus $w_{H}=2.72 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}$ and $w_{H_{2}}=$ $7000 \mathrm{~cm} \mathrm{~s}^{-1}$.

3.5. Vertical Transport

3.5.1. Molecular Diffusion

[24] Molecular diffusion coefficients are often provided as measurements of diffusivity in a medium consisting of two constituents. Atmospheres, however, are not binary

Table 3 (Representative Sample). Rate Coefficients Used in the Model (The full Table 3 is available in the HTML version of this article)

Rxn	Reactions	Rate Coefficients	References and Comments
1	$\mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{H}_{2}+\mathrm{M}$	$1.5 \times 10^{-29} \mathrm{~T}^{-1.3}$	Tsang and Hampson [1986]; bath gas N_{2}
2	$\mathrm{C}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$ products	2.6×10^{-10}	Guadagnini et al. [1998]
3	$\mathrm{CH}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{3}+\mathrm{M}$ $\mathrm{CH}+\mathrm{H}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{H}$	$\begin{aligned} & \mathrm{k}_{0}=4.7 \times 10^{-26} \mathrm{~T}^{-1.6} \\ & \mathrm{k}_{\infty}=2.5 \times 10^{-10} \mathrm{~T}^{-0.08} \end{aligned}$	Brownsword et al. [1997]
4	$\mathrm{CH}+\mathrm{H} \rightarrow \mathrm{C}+\mathrm{H}_{2}$	3.1×10^{-11} 1.4×10^{-8}	Becker et al. [1989]
5	$\mathrm{CH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	$3.96 \times 10^{-8} \mathrm{~T}^{-1.04} \mathrm{e}^{-36.1 / \mathrm{T}}$	Canosa et al. [1997]
6	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}$	$1.59 \times 10^{-9} \mathrm{~T}^{-0233} \mathrm{e}^{-16 / \mathrm{T}}$	Canosa et al. [1997]
7	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$ $\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}$	$\begin{aligned} & 3.87 \times 10^{-9} \mathrm{~T}^{-0.546} \mathrm{e}^{-29.6 / \mathrm{T}} \\ & 3.87 \times 10^{-9} \mathrm{~T}^{-0.546} \mathrm{e}^{-29.6 / \mathrm{T}} \end{aligned}$	Canosa et al. [1997]
8	$\begin{aligned} & \mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3} \\ & \mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H} \end{aligned}$	$\begin{aligned} & 1.9 \times 10^{-8} \mathrm{~T}^{-0.859} \mathrm{e}^{-53.2 / \mathrm{T}} \\ & 1.9 \times 10^{-8} \mathrm{~T}^{-0.859} \mathrm{e}^{-53.2 / \mathrm{T}} \end{aligned}$	Canosa et al. [1997]
9	$\mathrm{CH}+\mathrm{C}_{4} \mathrm{H}_{8} \rightarrow$ products	$8.78 \times 10^{-9} \mathrm{~T}^{-0.529} \mathrm{e}^{-33.5 / \mathrm{T}}$	Canosa et al. [1997]
10	${ }^{3} \mathrm{CH}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{3}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=3.1 \times 10^{-30} \mathrm{e}^{457 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=1.5 \times 10^{-10} \end{aligned}$	Gladstone [1983]
	${ }^{3} \mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}+\mathrm{H}_{2}$	$4.7 \times 10^{-10} \mathrm{e}^{-370 / \mathrm{T}}$	Zabarnick et al. [1986]
11	${ }^{3} \mathrm{CH}_{2}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$ ${ }^{3} \mathrm{CH}_{2}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}$	$\begin{aligned} & 2.0 \times 10^{-11} \mathrm{e}^{-400 / \mathrm{T}} \\ & 1.8 \times 10^{-11} \mathrm{e}^{-400 / \mathrm{T}} \end{aligned}$	Baulch et al. [1992]
12	${ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	7.0×10^{-11}	Tsang and Hampson [1986]
13	${ }^{3} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}$	$1.5 \times 10^{-11} \mathrm{e}^{-3332 / \mathrm{T}}$	Bohland et al. [1986]
14	${ }^{3} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}$	3.0×10^{-11}	Tsang and Hampson [1986]
15	${ }^{3} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}$	3.0×10^{-11}	Tsang and Hampson [1986]
16	${ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{H}_{2}$ ${ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{H}$	$\begin{aligned} & 1.26 \times 10^{-11} \\ & 9.24 \times 10^{-11} \end{aligned}$	Langford et al. [1983]
17	$\begin{aligned} & { }^{1} \mathrm{CH}_{2}+\mathrm{CH}_{4} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{4} \\ & { }^{1} \mathrm{CH}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & 1.2 \times 10^{-11} \\ & 6.0 \times 10^{-11} \end{aligned}$	Bohland et al. [1985]
18	${ }^{1} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}$	3.6×10^{-10}	Guadagnini et al. [1998]
19	${ }^{1} \mathrm{CH}_{2}+\mathrm{N}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{N}_{2}$	$2.36 \times 10^{-14} \mathrm{~T}$	Ashfold et al. [1981]
20	$\mathrm{CH}_{3}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{4}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=4.0 \times 10^{-29} \\ & \mathrm{k}_{\infty}=4.7 \times 10^{-10} \\ & \mathrm{~F}_{\mathrm{c}}=0.902-1.03 \times 10^{-3} \mathrm{~T} \end{aligned}$	Brouard et al. [1989]
21	$\mathrm{CH}_{3}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-6} \mathrm{~T}^{-7.03} \mathrm{e}^{-1390 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=1.5 \times 10^{-6} \mathrm{~T}^{-1.18} \mathrm{e}^{-329 / \mathrm{T}} \\ & \mathrm{~F}_{\mathrm{c}}=0.381 \mathrm{e}^{-\mathrm{T} / 37.2}-0.619 \mathrm{e}^{-\mathrm{T} / 1180} \end{aligned}$	Slagle et al. [1988]; Rate used is $10 \times$ measured rate - see text
22	$\mathrm{CH}_{4}+\mathrm{C}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{CH}_{3}$	$5.05 \times 10^{-11} \mathrm{e}^{-297 / \mathrm{T}}$	Pitts et al. [1982]
23	$\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.2 \times 10^{-11} \mathrm{e}^{-491 / \mathrm{T}}$	Opansky and Leone [1996a]
24	$\mathrm{CH}_{4}+\mathrm{C}_{4} \mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.2 \times 10^{-11} \mathrm{e}^{-491 / \mathrm{T}}$	estimating that $\mathrm{C}_{4} \mathrm{H}$ reaction rates are equal to their $\mathrm{C}_{2} \mathrm{H}$ analogues; Kiefer and von Drasek [1990]
25	$\mathrm{CH}_{4}+\mathrm{C}_{6} \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.2 \times 10^{-11} \mathrm{e}^{-491 / \mathrm{T}}$	estimating that $\mathrm{C}_{6} \mathrm{H}$ reaction rates are equal to their $\mathrm{C}_{2} \mathrm{H}$ analogues; Kiefer and von Drasek [1990]
26	$\mathrm{C}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$1.77 \times 10^{-12} \mathrm{e}^{-1469 / \mathrm{T}}$	Pitts et al. [1982]
27	$\mathrm{C}_{2} \mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.26 \times 10^{-18} \mathrm{~T}^{-3.1} \mathrm{e}^{-721 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=3.0 \times 10^{-10} \end{aligned}$	Tsang and Hampson [1986]
28	$\mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}$	$9.2 \times 10^{-18} \mathrm{~T}^{2.17} \mathrm{e}^{-478 / \mathrm{T}}$	Opansky and Leone [1996b]
29	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]
30	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4}+\mathrm{H} \\ & \mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & 4.6 \times 10^{-11} \mathrm{e}^{24.6 / \mathrm{T}} \\ & 4.6 \times 10^{-11} \mathrm{e}^{24.6 / \mathrm{T}} \end{aligned}$	Opansky and Leone [1996b], Chastaing et al. [1998]
31	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{5}$	$3.5 \times 10^{-11} \mathrm{e}^{2.9 / \mathrm{T}}$	Opansky and Leone [1996b]
32	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{3} \mathrm{H}_{6} \rightarrow$ products	$1.47 \times 10^{-10} \mathrm{e}^{65.3 / \mathrm{T}}$	Chastaing et al. [1998]
33	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{3} \mathrm{H}_{7}$	$7.8 \times 10^{-11} \mathrm{e}^{3 / \mathrm{T}}$	Hoobler et al. [1997]
34	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
35	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{6} \mathrm{H}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
36	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{8} \mathrm{H}_{2} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
37	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=3.3 \times 10^{-30} \mathrm{e}^{-740 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=1.4 \times 10^{-11} \mathrm{e}^{-1300 / \mathrm{T}} \end{aligned}$	Baulch et al. [1992]
38	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
39	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{6} \mathrm{H} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
40	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	7.6×10^{-11}	k_{0} estimate; Monks et al. [1995]

Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
k_{0} estimate; Monks et al. [1995]

Tsang and Hampson [1986]

Fahr et al. [1991]
k_{0} estimated from $\mathrm{k}_{0}\left(\mathrm{CH}_{3}+\mathrm{CH}_{3}\right)$; Fahr et al. [1991]
Tsang and Hampson [1986]
Fahr and Stein [1988]
k_{0} estimated as $10 \times \mathrm{k}_{0}\left(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}\right)$; Weissman and Benson [1988]
Fahr et al. [1991]
Table 4. Absorption Cross Sections and Quantum Yields Used in the Model

Table 4. (continued)

Pathways	Branching Ratios	Cross Sections	Quantum Yields
[J10] $\mathrm{C}_{3} \mathrm{H}_{3}+h \nu \rightarrow$ a) $\mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}$ b) $\mathrm{C}_{3} \mathrm{H}+\mathrm{H}_{2}$	$\begin{aligned} & 0.96 \\ & 0.04 \end{aligned}$	Fahr et al. [1997]	Jackson et al. [1991]
$\text { [J11] } \left.\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+h \nu \rightarrow \text { a) } \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}, ~ 子, ~ b\right) ~ \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}_{2} .$	$\begin{gathered} 0.56 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1200 \AA) ; 0.56(1200-2200 \AA) \\ 0.44 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1200 \AA) ; 0.44(1200-2200 \AA \text { A }) \end{gathered}$	Ho et al. [1998]; Chen et al. [2000] at 200 K	Sun et al. [1999]; Ho et al. [1998]
	$\begin{aligned} & 0.64 \\ & 0.36 \end{aligned}$	Rabalais et al. [1971]; Chen et al. [2000] at 200 K	Rabalais et al. [1971]
[J13] $\mathrm{C}_{3} \mathrm{H}_{5}+h \nu \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{3}$ b) $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$ c) $\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}$	$\begin{aligned} & 0.79 \\ & 0.16 \\ & 0.01 \end{aligned}$	Jenkin et al. [1993]	Gierczak et al. [1988]
[J14] $\mathrm{C}_{3} \mathrm{H}_{6}+h \nu \rightarrow$ a) $\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H}$	$\begin{gathered} 0.0(1000-1350 \AA) ; 0.0(1350-1550 \AA) ; 0.565 \\ (1550-1750 \AA) ; 0.41(1750-1950 \AA) \end{gathered}$	Samson et al. [1962]; Fahr and Nayak [1996] at 223 K	Collin [1988]
b) $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2}$	$\begin{aligned} & 0.11(1000-1350 \AA) ; 0.11(1350-1550 \AA) \text {) } \\ & 0.01(1550-1750 \AA) ; 0.01(1750-1950 \AA \AA) \end{aligned}$		
c) $\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}_{2}$	$\begin{gathered} 0.17(1000-1350 \AA) ; 0.22(1350-1550 \AA) ; \\ 0.01(1550-1750 \AA) ; 0.01(1750-1950 \AA) \end{gathered}$		
d) $\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{1} \mathrm{CH}_{2}$	$\begin{aligned} & 0.06(1000-1350 \AA) \text {); } 0.04(1350-1550 \AA) \text {); } \\ & 0.02(1550-1750 \AA) ; 0.03(1750-1950 \AA) \end{aligned}$		
e) $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{3}$	$\begin{aligned} & 0.21(1000-1350 \AA) ; 0.27(1350-1550 \AA) ; \\ & 0.335(1550-1750 \AA) ; 0.4(1750-1950 \AA) \end{aligned}$		
f) $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{4}$	$\begin{aligned} & 0.05(1000-1350 \AA) \text {); } 0.03(1350-1550 \AA) ; \\ & 0.05(1550-1750 \AA) ; 0.04(1750-1950 \AA) \end{aligned}$		
$\left.[\mathrm{J} 15] \mathrm{C}_{3} \mathrm{H}_{8}+h \nu \rightarrow \mathrm{a}\right) \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}_{2}$	$\begin{gathered} 0.19(1000-1150 \AA) ; 0.34(1150-1350 \AA) ; \\ 0.66(1350-1540 \AA) ; 0.94(1540-1630 \AA) \end{gathered}$	Koch and Skibowski [1971]; Okabe and Becker [1963]	Johnston et al. [1978]
b) $\mathrm{C}_{2} \mathrm{H}_{6}+{ }^{1} \mathrm{CH}_{2}$	$\begin{aligned} & 0.09(1000-1150 \AA) ; 0.09(1150-1350 \AA) \text {); } \\ & 0.04(1350-1540 \AA) ; 0.00(1540-1630 \AA) \end{aligned}$		
c) $\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$	$\begin{gathered} 0.40(1000-1150 \AA) ; 0.35(1150-1350 \AA) \text { A ; } \\ 0.19(1350-1540 \AA) ; 0.00(1540-1630 \AA) \end{gathered}$		
d) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{4}$	$\begin{aligned} & 0.32(1000-1150 \AA) \text {); } 0.22(1150-1350 \AA) \text {); } \\ & 0.11(1350-1540 \AA) ; 0.06(1540-1630 \AA) \end{aligned}$		
$\begin{aligned} & \text { [J16] } \mathrm{C}_{4} \mathrm{H}_{2}+h \nu \rightarrow \text { a) } \mathrm{C}_{4} \mathrm{H}+\mathrm{H} \\ & \text { b) } 2 \mathrm{C}_{2} \mathrm{H} \\ & \text { c) } \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \\ & \text { d) } \mathrm{C}_{4} \mathrm{H}_{2}^{*} \end{aligned}$	$\begin{aligned} & 0.20(1200-1640 \AA) ; 0.00(1640-2640 \AA) \\ & 0.03(1200-1640 \AA) ; 0.01(1640-2640 \AA) \\ & 0.10(1200-1640 \AA) ; 0.06(1640-2640 \AA) \\ & 0.67(1200-1640 \AA) ; 0.93(1640-2640 \AA) \end{aligned}$	Okabe [1981]; Fahr and Nayak [1994] at 223 K ; Smith et al. [1998] at 193 K.	Glicker and Okabe [1987]
[J17] $\mathrm{C}_{4} \mathrm{H}_{4}+h \nu \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}_{2}$	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	Fahr and Nayak [1996] at 233 K.	Gladstone et al. [1996]
[J18] $\mathrm{C}_{4} \mathrm{H}_{6}+h \nu \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{4}+\mathrm{H}_{2}$ b) $2 \mathrm{C}_{2} \mathrm{H}_{3}$ c) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{2}$ d) $\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{CH}_{3}$ e) $\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}$	$\begin{aligned} & 0.05 \\ & 0.10 \\ & 0.17 \\ & 0.40 \\ & 0.28 \end{aligned}$	Samson et al. [1962]	Bergmann and Demtröder [1968]

Table 4. (continued)

Pathways	Branching Ratios	Cross Sections	Quantum Yields	
[J19] $\mathrm{C}_{4} \mathrm{H}_{8}+h \nu \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{6}+2 \mathrm{H}$	$\begin{gathered} 0.23(1050-1350 \AA) ; 0.14(1350-1600 \AA) ; \\ 0.06(1600-1980 \AA) \end{gathered}$	Samson et al. [1962]	Niedzielski et al. [1978, 1979]; Collin and Wieckowski [1978]	
b) $\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{CH}_{3}$	$\begin{gathered} 0.12(1050-1350 \AA) ; 0.39(1350-1600 \AA) ; \\ 0.66(1600-1980 \AA) \end{gathered}$			
c) $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{CH}_{4}$	$0.03(1050-1350 \AA) ; 0.02(1350-1600 \AA) ;$			
d) $\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{CH}_{4}$	$\begin{gathered} 0.14(1050-1350 \AA) ; 0.10(1350-1600 \AA) ; \\ 0.00(1600-1980 \AA) \end{gathered}$			
e) $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3}$	$\begin{gathered} 0.25(1050-1350 \AA) ; 0.14(1350-1600 \AA) ; \\ 0.04(1600-1980 \AA) \end{gathered}$			
f) $2 \mathrm{C}_{2} \mathrm{H}_{4}$	$\begin{gathered} 0.02(1050-1350 \AA) ; 0.04(1350-1600 \AA) ; \\ 0.05(1600-1980 \AA) \end{gathered}$			
g) $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{CH}_{3}$	$\begin{gathered} 0.02(1050-1350 \AA) ; 0.00(1350-1600 \AA) ; \\ 0.04(1600-1980 \AA) \end{gathered}$			
h) $\mathrm{C}_{3} \mathrm{H}_{6}+{ }^{1} \mathrm{CH}_{2}$	$\begin{aligned} & 0.02(1050-1350 \AA) ; 0.02(1350-1600 \AA) ; \\ & 0.00(1600-1980 \AA) \end{aligned}$			
[J20] $\mathrm{C}_{4} \mathrm{H}_{10}+h \nu \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$ b) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$ c) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3}+\mathrm{H}$ d) $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$		Koch and Skibowski [1971]; Okabe and Becker [1963]	Obi et al. [1971]	
[J21] $\mathrm{C}_{6} \mathrm{H}_{2}+h \nu \rightarrow$ a) $\mathrm{C}_{6} \mathrm{H}+\mathrm{H}$ b) $\mathrm{C}_{4} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}$	$\begin{aligned} & 0.20(1150-1640 \AA) \AA 0.00(1640-3000 \AA \text { A) } \\ & 0.13(1150-1640 \AA) ; 0.07(1640-3000 \AA) \end{aligned}$	Kloster-Jensen et al. [1974]; Bénilan et al. [1995] at 233 K Assumed same as $\mathrm{C}_{6} \mathrm{H}_{2}+h \nu$	Wilson and Atreya [2003]	
[J22] $\mathrm{C}_{8} \mathrm{H}_{2}+h \nu \rightarrow$ a) $2 \mathrm{C}_{4} \mathrm{H}$	$0.20(1150-1640 ~ \AA) ; 0.00(1640-3000 ~ \AA)$ $0.13(1150-1640 ~ \AA) ~$		Wilson and Atreya [2003]	
[J23] $\mathrm{C}_{6} \mathrm{H}_{6}+h \nu \rightarrow$ a) $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}$	$\begin{gathered} 0.8 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1300 \AA) ; 0.8(1300-2200 \AA) ; \\ 0.0(2200-2700 \AA) \end{gathered}$	Rennie et al. [1998]; Pantos et al. [1978]	Yokoyama et al. [1990]; Rennie et al. [1998]	
b) $\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{H}_{2}$	$\begin{gathered} 0.16 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1300 \AA) ; 0.16(1300-2200 \AA) ; \\ 0.96(2200-2700 \AA) \end{gathered}$			
c) $\mathrm{C}_{5} \mathrm{H}_{3}+\mathrm{CH}_{3}$	$\begin{aligned} & 0.04 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1300 \AA) ; 0.04(1300-2200 \AA) ; \\ & 0.04(2200-2700 \AA) \end{aligned}$			
[J24] $\mathrm{N}+h \nu \rightarrow \mathrm{~N}^{+}+\mathrm{e}^{-}$	1.0	Fennelly and Torr [1992]		
$[\mathrm{J} 25] \mathrm{N}_{2}+h \nu \rightarrow$ a) $\mathrm{N}^{4 \mathrm{~s}}+\mathrm{N}^{2 \mathrm{~d}}$ b) $\mathrm{N}_{2}^{+}+\mathrm{e}^{-}$ c) $\mathrm{N}^{+}+\mathrm{N}^{4 \mathrm{~s}}+\mathrm{e}^{-}$	see Quantum Yields	Chan et al. [1993]	Shaw et al. [1992]; Zipf and McLaughlin [1978]; Gallagher et al. [1988]	
$[\mathrm{J} 26] \mathrm{HCN}+h \nu \rightarrow \text { a) } \mathrm{CN}+\mathrm{H}$ b) $\mathrm{HCN}+\mathrm{e}^{-}$ c) $\mathrm{CN}^{+}+\mathrm{H}+\mathrm{e}^{-}$ d) $\mathrm{H}^{+}+\mathrm{e}^{-}+\ldots$	$\mathrm{q}_{\mathrm{ncu}}{ }^{\text {a }}$ see Quantum Yields; Kreile et al. [1982]	180-620 \AA assumed equal to $\mathrm{C}_{2} \mathrm{H}_{2}$; Nuth and Glicker [1982]; F. Raulin (personal communication, 1995)	Kreile et al. [1982]; Nuth and Glicker [1982]	
[J27] $\mathrm{HC}_{3} \mathrm{~N}+h \nu \rightarrow$ a) $\mathrm{C}_{3} \mathrm{~N}+\mathrm{H}$	0.09	```Connors et al. [1974]; Clarke and Ferris [1996]; Andrieux et al. [1995]; Bénilan et al. [1994]; Bruston et al. [1989]```	Clarke and Ferris [1995]; Halpern et al. [1988]; see text	
b) $\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}$	0.05			
c) $\mathrm{HC}_{3} \mathrm{~N}^{*}$	0.24			
[J28] $\mathrm{CH}_{3} \mathrm{CN}+h \nu \rightarrow \mathrm{CN}+\mathrm{CH}_{3}$	1.0	Nuth and Glicker [1982]; Suto and Lee [1985]		
[J29] $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+h \nu \rightarrow$ a) $\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{3}$	0.01	F. Raulin (personal communication, 1995), Derecskei-Kovacs and North [1999] Wilson and Atreya [2003]		
b) $\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{2}$	0.15			
c) $\mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}_{2}$	0.59			
d) $\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}+\mathrm{H}$	0.25			
[J30] $\mathrm{C}_{2} \mathrm{~N}_{2}+h \nu \rightarrow 2 \mathrm{CN}$	1.0	Nuth and Glicker [1982]; F. Raulin (personal communication, 1995)		
$[J 31] \mathrm{C}_{4} \mathrm{~N}_{2}+h \nu \rightarrow \mathrm{C}_{3} \mathrm{~N}+\mathrm{CN}$	1.0	Connors et al. [1974];	Bénilan et al. [1996] at 233 K	

Table 4. (continued)

Pathways	Branching Ratios	Cross Sections	Quantum Yields
[J32] $\mathrm{CO}+h \nu \rightarrow \mathrm{C}+\mathrm{O}^{3 \mathrm{p}}$	$\mathrm{q}_{\text {neu }}{ }^{\text {a }}$	$\begin{aligned} & \text { Wight et al. [1976]; } \\ & \text { Gallagher et al. [1988] } \end{aligned}$	Wight et al. [1976]; Okabe [1978]
$[\mathrm{J} 33] \mathrm{CO}_{2}+h \nu \rightarrow$ a) $\mathrm{CO}+\mathrm{O}^{3 \mathrm{p}}$ b) $\mathrm{CO}+\mathrm{O}^{\text {1d }}$	$\begin{aligned} & 1.0(1000-1670 \AA) ; 0.0(1670-2150 \AA) \\ & 0.0(1000-1670 \AA) ; 1.0(1670-2150 \AA) \end{aligned}$	Nakata et al. [1965]; Ogawa [1971], Lewis and Carver [1983] at 200 K	Okabe [1978]
[J34] $\mathrm{H}_{2} \mathrm{O}+h \nu \rightarrow$ a) $\mathrm{OH}+\mathrm{H}$ b) $\mathrm{O}^{1 \mathrm{~d}}+\mathrm{H}_{2}$ c) $\mathrm{O}^{3 \mathrm{p}}+\mathrm{H}_{2}$ d) $\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{e}^{-}$ e) $\mathrm{H}^{+}+\mathrm{e}^{-}+\ldots$		Haddad and Samson [1986]; Watanabe and Jursa [1964]; Watanabe et al. [1953]; Thompson et al. [1963]	Haddad and Samson [1986]; Stief et al. [1975]; Mordaunt et al. [1994]
$\begin{array}{r} {[\mathrm{J} 35] \mathrm{H}_{2} \mathrm{CO}+h \nu \rightarrow \text { a) } \mathrm{CO}+\mathrm{H}_{2}} \\ \text { b) } \mathrm{CO}+2 \mathrm{H} \end{array}$		Gentieu and Mentall [1970]; Suto et al. [1985]	Glicker and Stief [1971]; Moortgat et al. [1983]
[J36] $\mathrm{CH}_{2} \mathrm{CO}+h \nu \rightarrow \mathrm{CO}+{ }^{1} \mathrm{CH}_{2}$	1.0	Braun et al. [1970]; Rabalais et al. [1971] Harich et al. [1999]	
[J37] $\mathrm{CH}_{3} \mathrm{OH}+h \nu \rightarrow$ a) $\mathrm{CH}_{3} \mathrm{O}+\mathrm{H}$ b) $\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2}$			
[E1] $\mathrm{H}+\mathrm{e}^{-} \rightarrow \mathrm{H}^{+}+2 \mathrm{e}^{-}$	1.0		et al. [1987]
[E2] $\mathrm{H}_{2}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{H}_{2}+2 \mathrm{e}^{-}$ b) $\mathrm{H}^{+}+\mathrm{H}+2 \mathrm{e}^{-}$ c) $2 \mathrm{H}+\mathrm{e}^{-}$	see Quantum Yields		et al. [1976]
[E3] $\mathrm{CH}_{4}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{CH}_{4}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{CH}_{3}^{+}+\mathrm{H}+2 \mathrm{e}^{-}$	see Quantum Yields	Orien	Srivastava [1987]
[E4] $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{C}_{2} \mathrm{H}+\mathrm{H}^{+}+2 \mathrm{e}^{-}$	see Quantum Yields	Zhen	Srivastava [1996]
[E5] $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{H}+2 \mathrm{e}^{-}$ c) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ d) $\mathrm{H}^{+}+2 \mathrm{e}^{-}+\ldots$ e) $\mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ f) $\mathrm{H}_{3}^{+}+2 \mathrm{e}^{-}+\ldots$ g) $\mathrm{CH}_{3}^{+}+2 \mathrm{e}^{-}+\ldots$	see Quantum Yields		d Vidal [1998a]
[E6] $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{6}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}+2 \mathrm{e}^{-}$ c) $\mathrm{C}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{e}^{-}+\ldots$ d) $\mathrm{C}_{2} \mathrm{H}_{3}^{+}+2 \mathrm{e}^{-}+\ldots$ e) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ f) $\mathrm{H}^{+}+2 \mathrm{e}^{-}+\ldots$ g) $\mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ h) $\mathrm{H}_{3}^{+}+2 \mathrm{e}^{-}+\ldots$ i) $\mathrm{CH}_{3}^{+}+2 \mathrm{e}^{-}+\ldots$	see Quantum Yields		d Vidal [1998b]
[E7] $\mathrm{N}+\mathrm{e}^{-} \rightarrow \mathrm{N}^{+}+2 \mathrm{e}^{-}$ [E8] $\mathrm{N}_{2}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{N}^{4 \mathrm{~s}}+\mathrm{N}^{4 \mathrm{~s}}+\mathrm{e}^{-}$ b) $\mathrm{N}^{4 \mathrm{~s}}+\mathrm{N}^{2 \mathrm{~d}}+\mathrm{e}^{-}$ c) $\mathrm{N}^{2 \mathrm{~d}}+\mathrm{N}^{2 \mathrm{~d}}+\mathrm{e}^{-}$ d) $\mathrm{N}_{2}^{+}+2 \mathrm{e}^{-}$ e) $\mathrm{N}^{+}+\mathrm{N}^{4 \mathrm{~s}}+2 \mathrm{e}^{-}$	$\begin{gathered} 1.0 \\ \text { see Quantum Yields } \end{gathered}$	Zipf et al.	et al. [1978]]; Itikawa et al. [1986]
[E9] $\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{H}_{2} \mathrm{O}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{H}^{+}+2 \mathrm{e}^{-}+\ldots$	see Quantum Yields		et al. [1995]

[^0]Table 5. Boundary Conditions Used in the Model

Physical Quantity	Boundary Constraint
Lressure	
Lower Boundary Conditions	$\mathrm{p}_{0}=1496 \mathrm{mb}$
Methane mole fraction	$\xi_{\mathrm{CH}_{4}}=5.6 \%$
Methane supersaturation	1.37
Molecular hydrogen mole fraction	$\xi_{\mathrm{H}_{2}}=1.1 \times 10^{-3}$
Carbon monoxide mole fraction	$\xi_{\mathrm{CO}}=5.0 \times 10^{-5}$

Upper Boundary Conditions
Atomic hydrogen escape velocity

$$
\begin{gathered}
\mathrm{H}_{\text {vel }}^{\text {esc }}=2.7 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1} \\
\mathrm{H}_{2 \text { vel }}^{\text {esc }}=7 \times 10^{3} \mathrm{~cm} \mathrm{~s}^{-1} \\
\Phi_{\mathrm{H}_{2}} \mathrm{O}^{2}=5 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\hline
\end{gathered}
$$

Molecular hydrogen escape velocity
Water influx from micrometeorites
${ }^{a}$ Flux referred to the surface.
mixtures of gases, but rather are composed of many constituents. For an atmosphere dominated by one constituent, binary coefficients involving that major constituent and a minor constituent are sufficient for calculating the molecular diffusion coefficient of that given minor constituent. However, an atmosphere with a minor constituent that makes up a significant portion of the bulk gas requires a multicomponent treatment. Wilke [1950] provides a convenient approximation for the diffusion of gas in a multicomponent mixture of J gases

$$
\begin{equation*}
D_{i}=\frac{1-\xi_{i}}{\sum_{j=1, j \neq i}^{J} \frac{\xi_{j}}{D_{i j}}} \tag{17}
\end{equation*}
$$

where $D_{i j}$ are the binary diffusion coefficients and ξ_{i} is the mole fraction for species i. This formulation, which is good to about 10% for multicomponent systems where the individual diffusion coefficients are not sensitive to composition changes [Wilke, 1950], is useful for Titan where methane increases, due to diffusive separation, in the heterosphere, exceeding 20% above 1400 km [Strobel et al., 1992]. Unfortunately, the measurements of binary coefficients have been conducted for only a select group of molecules. The diffusion coefficient follows the form of

$$
\begin{equation*}
D=\frac{A T^{s}}{n} \tag{18}
\end{equation*}
$$

where $T=$ temperature and $n=$ bulk gas density. The binary gas mixtures pertinent to Titan that have been measured or empirically calculated are shown in Table 6. In the absence
of measurements, empirical correlations are often used, on the basis of the physical parameters of the given molecules.
[25] Thermal diffusion, which typically affects light gases, is given by the term in equation (2)

$$
\left[1-\xi_{i}\right] \alpha_{i} \frac{n \xi_{i}}{T} \frac{\partial T}{\partial z}
$$

where α_{i} is the thermal diffusion coefficient. In the model, $\alpha_{H}=\alpha_{H_{2}}=-0.38$ is adopted [Banks and Kockarts, 1973], while for all other species $\alpha=0$.

3.5.2. Eddy Diffusion

[26] Owing to the complexity involved in relating microscopic turbulent processes to macroscopic transport, the eddy diffusion coefficient acts as a free parameter that must be estimated to match constituent observations. This task is relatively trivial for a completely inert species (e.g., argon), as the point where the constituent profile changes from well-mixed to diffusively separated marks the homopause where the eddy diffusion coefficient is equal to the molecular diffusion coefficient of the constituent. Unfortunately, there is no known vertical profile of such a species for Titan. Methane, however, is largely inert and is distributed largely through diffusive processes, as shown in Figure 5a. Thus the methane distribution can be used as a proxy for the determination of the homopause level. In the lower atmosphere, chemistry plays a major role for many species. However, HCN is largely formed in the upper atmosphere and transported to lower altitudes. In much of the lower regions of the atmosphere the eddy diffusion time constant is much smaller than the HCN chemical time constant (Figure 5b), and the millimeter observations of Tanguy et al. [1990] and Hidayat et al. [1997] provide a vertical

Table 6. Binary Molecular Diffusion Coefficients Used in the Model

Binary Mixture	$\mathrm{A}, \mathrm{cm}^{-1} \mathrm{~K}^{-\mathrm{s}}$	s	References
$\mathrm{N}_{2}-\mathrm{N}_{2}$	5.09×10^{16}	0.810	Massman $[1998]$
$\mathrm{CH}_{4}-\mathrm{N}_{2}$	7.34×10^{16}	0.750	Banks and Kockarts $[1973]$
$\mathrm{H}-\mathrm{N}_{2}$	4.87×10^{17}	0.698	Banks and Kockarts $[1973]$
$\mathrm{H}_{2}-\mathrm{N}_{2}$	1.88×10^{17}	0.820	Mason and Marrero $[1970]$
${\mathrm{N}-\mathrm{N}_{2}}^{\mathrm{O}-\mathrm{N}_{2}}$	9.69×10^{16}	0.774	Mason and Marrero $[1970]$
$\mathrm{CO}-\mathrm{N}_{2}$	9.69×10^{16}	0.774	Banks and Kockarts $[1973]$
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	5.15×10^{16}	0.810	Massman $[1998]$
$\mathrm{H}_{2} \mathrm{O}-\mathrm{N}_{2}$	4.08×10^{16}	0.810	Massman $[1998]$
$\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{N}_{2}$	6.26×10^{16}	0.810	Massman $[1998]$
$\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{N}_{2}$	7.64×10^{16}	0.730	Wakeham and Slater $[1973]$
$\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{N}_{2}$	6.54×10^{16}	0.660	Wakeham and Slater $[1973]$
$\mathrm{CH}_{4}-\mathrm{CH}_{4}$	7.34×10^{16}	0.610	Wakeham and Slater $[1973]$
$\mathrm{H}_{2}-\mathrm{CH}_{4}$	5.73×10^{16}	0.500	estimated from Lennard-Jones correlation; Reid et al. $[1987]$

Figure 5. Local chemical, eddy, and molecular diffusive time constants for a) CH_{4} and b) HCN .
profile for HCN in this region. These factors make HCN a good candidate for constraining the eddy diffusion profile in the lower atmosphere.
[27] Observations of CH_{4} in the upper atmosphere were provided by Smith et al. [1982], who analyzed the Voyager ultraviolet spectrometer (UVS) observations and obtained mole fractions of $6 \pm 1 \%$ at 1000 km and $8 \pm 3 \%$ at 1130 km . However, the reanalysis of Voyager data by R. J. Vervack et al. (New perspectives on Titan's upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations, submitted to Icarus, 2003) (hereinafter referred to as Vervack et al., submitted manuscript, 2003) suggested a methane mixing ratio profile that might decrease with altitude, contrary to what would be expected from diffusive separation. Such a profile might be possible through a large chemical sink for CH_{4}, as suggested by Lara et al. [1999], but such a sink would most likely require much larger electron densities that what has been observed, as discussed in section 5.7. The authors argue that this profile may be the result of misassignment of CH_{4} absorption to other species above 1050 km . With the large error bars and lack of coverage below the nanobar region, these results are unable to yield any firm conclusions about the homopause level, although the authors favor a high homopause level. Strobel et al. [1992], in their analysis of Voyager UVS solar occultation and airglow data, also infer a high homopause level around 1000 km. However, Steiner and Bauer [1990] in their study of diffusive processes on Titan, presented an analytical eddy profile corresponding to a homopause level of 660 km .
[28] The UVS reanalysis also points out a discrepancy with the Smith et al. [1982] $\mathrm{C}_{2} \mathrm{H}_{2}$ observations, retrieving
up to three orders of magnitude less acetylene in the upper atmosphere than was suggested by the Smith et al. [1982] observations. This finding is supported by photochemical models, which have not determined a mechanism to form upper atmospheric $\mathrm{C}_{2} \mathrm{H}_{2}$ at such high densities as suggested by Smith et al. [1982].
[29] The millimeter observations of Hidayat et al. [1997] and Tanguy et al. [1990] are in decent agreement with each other over the lower 200 km of the atmosphere. However, above this level they diverge, with Hidayat et al. [1997] observing an approximately uniform HCN mixing ratio profile while Tanguy et al. [1990] observed a profile increasing with altitude. The recent Marten et al. [2002] observations corroborate the finding of Tanguy et al. [1990] that HCN increases in mole fraction throughout the stratosphere. To determine the nominal eddy diffusion profile, the fitting of the Smith et al. [1982] CH_{4} observations in the upper atmosphere and the HCN observations of Hidayat et al. [1997] and Tanguy et al. [1990] are used as a guideline. Considering this set of observations, 100 monotonically increasing, randomly generated eddy diffusion coefficients are used to determine the best fits for the CH_{4} and HCN observations. These profiles are generated by obtaining diffusion coefficients at 12 altitude levels, determined by calculating a randomly generated positive slope from the previous altitude level within a predetermined range. The eddy diffusion coefficient at the lower boundary is randomly chosen between $100-10000 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. The results of the bestfit profiles are then compared to determine which profile fits the remaining observational constraints, with slight adjustments made to achieve a better fit. The resulting nominal profile (NOM) along with the Steiner and Bauer [1990] profile (SB) is shown in Figure 6a, corresponding to a homopause level of 850 km . This process was repeated, replacing the Smith et al. [1982] results with those from the Vervack et al. (submitted manuscript, 2003) nominal CH_{4} profiles up to 1050 km , to determine the best-fit high homopause eddy profile (HI), which is also displayed in Figure 6b.
[30] The nominal profile allows for more mixing in the middle atmosphere than previous models, with a larger eddy coefficient from $250-700 \mathrm{~km}$ (Figure 6c). The homopause level of 850 km is higher than the Yung et al. [1984], Toublanc et al. [1995], and Lara et al. [1996] profiles, although considerably lower than the Lara et al. [2002] model, which counteracts the result of a smaller methane upper atmosphere mole fraction from the higher homopause level by assuming a larger methane surface density.

4. Chemical Mechanisms

4.1. Hydrocarbons

[31] The formation of hydrocarbons begins with the photodissociation of CH_{4}, which proceeds through the following channels:

$$
\begin{gather*}
\mathrm{CH}_{4}+h \nu \rightarrow \mathrm{CH}_{3}+\mathrm{H} \tag{J4a}\\
\rightarrow{ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \\
\rightarrow{ }^{1} \mathrm{CH}_{2}+2 \mathrm{H}
\end{gather*}
$$

Figure 6. a) Randomly generated eddy diffusion profiles used to determine best fitting profile to constituent observations. b) Plots of tested eddy diffusion profiles nominal profile (solid line), Steiner and Bauer [1990] profile (dotted line), the best-fit high homopause profile (short dashed line), and the Lara et al. [2002] profile (long dashed line). Also included in the methane molecular diffusion coefficient profile c) Eddy diffusion profiles from various photochemical models - nominal profile (solid line), Yung et al. [1984] profile (dotted line), Toublanc et al. [1995] profile (short dashed line), Lara et al. [1996] profile (long dashed line), and Lara et al. [2002] profile (dot dashed line).

$$
\begin{equation*}
\rightarrow{ }^{3} \mathrm{CH}_{2}+2 \mathrm{H} \tag{J4d}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow \mathrm{CH}+\mathrm{H}_{2}+\mathrm{H} . \tag{J4e}
\end{equation*}
$$

The branching ratios for this process, particularly at Lyman α, which accounts for 75% of methane photodissociation above 700 km , are still unsettled. Toublanc et al. [1995] used the Mordaunt et al. [1993] model 1 scheme, which
places half of methane dissociation into (J4a) while splitting the other half between (J4b) and (J4d), and Lara et al. [1996] chose the Mordaunt et al. [1993] model 2 scheme, splitting methane dissociation into (J4a) and (J4e). The scheme adopted for this model is the Romani [1996] scheme where the quantum yields at Lyman α are as follows: $\mathrm{q}(\mathrm{J} 4 \mathrm{a})=0.41, \mathrm{q}(\mathrm{J} 4 \mathrm{~b})=0.28, \mathrm{q}(\mathrm{J} 4 \mathrm{c})=0.0, \mathrm{q}(\mathrm{J} 4 \mathrm{~d})=0.21$, $\mathrm{q}(\mathrm{J} 4 \mathrm{e})=0.10$. At wavelengths other than Lyman α, methane is assumed to dissociate into the (J4a) channel. Wilson and Atreya [2000b] examined and compared these methane photolytic schemes along with that provided by Smith and Raulin [1999] and determined that there was little impact in the distribution of C_{2}-hydrocarbons, while there was considerable difference in the profiles of the $\mathrm{C}_{3} \mathrm{H}_{4}$ isomers and $\mathrm{C}_{3} \mathrm{H}_{6}$, mainly arising from the differences in CH yield among the schemes. The progression of hydrocarbon chemistry follows with reactions involving the radicals produced from methane dissociation.
[32] Ethylene is created in the upper atmosphere through two different addition/decomposition mechanisms - radical/ radical association

$$
\begin{equation*}
{ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \tag{R12}
\end{equation*}
$$

and the CH -insertion-H-elimination process involving methane

$$
\begin{equation*}
\mathrm{CH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \tag{R5}
\end{equation*}
$$

to yield the net reaction $2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}+2 \mathrm{H}$, as well as through ion chemistry in the scheme

$$
\begin{gather*}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}_{2}^{+}+e^{-} \\
\mathrm{CH}_{4}+\mathrm{N}_{2}^{+} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{N}_{2}+\mathrm{H} \\
\mathrm{CH}_{4}+\mathrm{CH}_{3}^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \\
\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{5}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \tag{S1}\\
e^{-}+\mathrm{H}_{2} \mathrm{CN}^{+} \rightarrow \mathrm{HCN}^{+\mathrm{H}} \\
\hline 2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}+2 \mathrm{H}
\end{gather*}
$$

The ion contribution through (S1) controls ethylene production near the model-calculated ionospheric peak at 1060 km . However, the peak of ethylene production corresponds with the peak of methane dissociation near 800 km , controlled by processes (R12) and (R5) which accounts for 56% and 42%, respectively, of ethylene production above 600 km [Wilson and Atreya, 2000b]. Once ethylene is formed, it serves as the major source of acetylene above 500 km through photolysis (J7), responsible for 75% of the total acetylene column production rate above 500 km . This differs from the Toublanc et al. [1995] and Yung et al. [1984] models where recombination of methylene radicals plays a larger role due to the authors' choice of methane photolytic scheme and the larger ${ }^{3} \mathrm{CH}_{2}$ recombination rate coefficient. Most of this acetylene is diffused into the lower atmosphere where it is polymerized to form higher-order hydrocarbons (e.g., $\mathrm{C}_{4} \mathrm{H}_{2}$)

$$
\begin{gather*}
\mathrm{C}_{2} \mathrm{H}_{2}+h \nu \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H} \tag{S2}\\
\hline 2 \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+2 \mathrm{H}
\end{gather*}
$$

Figure 7. Schematic of Titan hydrocarbon chemistry. Stable species and primary reactions are shown in bold.
and undergoes reactions with hydrogen to reform ethylene:

$$
\begin{gather*}
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{3} \\
\frac{\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{4}}{\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}} \tag{S3}
\end{gather*}
$$

abstraction from ethane (R31), to produce propane in the lower stratosphere

$$
\begin{gather*}
2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}+\mathrm{H}_{2} \\
\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{5} \tag{S7}\\
\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \xrightarrow{\mathrm{\rightarrow}} \mathrm{C}_{3} \mathrm{H}_{8} \\
3 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+2 \mathrm{H}+\mathrm{H}_{2}
\end{gather*}
$$

$$
\begin{gathered}
2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}_{2}+h \nu \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \\
\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \xrightarrow{\mathrm{M}} \mathrm{C}_{3} \mathrm{H}_{8} \\
\hline 3 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+4 \mathrm{H}
\end{gathered}
$$

with (S7) accounting for 61% of $\mathrm{C}_{3} \mathrm{H}_{8}$ production and (S8) producing 38% of the propane in the atmosphere.
[34] CH radical is mainly produced through (R10b) in the upper atmosphere, promoted by the formation of ${ }^{3} \mathrm{CH}_{2}$ radicals through both methane dissociation (J 4 d) -43% of ${ }^{3} \mathrm{CH}_{2}$ and ${ }^{1} \mathrm{CH}_{2}$ collisional quenching -51% of ${ }^{3} \mathrm{CH}_{2}$ above 600 km [Wilson and Atreya, 2000b]

$$
\mathrm{CH}_{4}+h \nu \rightarrow{ }^{3} \mathrm{CH}_{2}+2 \mathrm{H}
$$

and

$$
\begin{gathered}
\mathrm{CH}_{4}+h \nu \rightarrow{ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \\
{ }^{1} \mathrm{CH}_{2}+\mathrm{N}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{N}_{2} . \\
\hline \mathrm{CH}_{4} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{H}_{2}
\end{gathered}
$$

Via (R10b) and (S5) CH radicals advance the production of methylacetylene and propylene. $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ is produced in the

Methyl radicals also combine with $\mathrm{C}_{2} \mathrm{H}_{5}$ radicals, produced from H -attachment to ethylene (R 48) or $\mathrm{C}_{2} \mathrm{H}$-insertion- H -

$$
\begin{gather*}
\mathrm{CH}_{4}+h \nu \rightarrow{ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \tag{S9}\\
\mathrm{CH}_{4}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{6} \\
\hline
\end{gather*}
$$

upper atmosphere from the direct CH -insertion-H-elimination process

$$
\begin{gather*}
\mathrm{CH}_{4} \rightarrow{ }^{3} \mathrm{CH}_{2}+2 \mathrm{H} \\
{ }^{3} \mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}+\mathrm{H}_{2} \\
\frac{\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}}{\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2}+2 \mathrm{H}} \tag{S10}
\end{gather*}
$$

and indirectly through collisional isomerization of allene,

$$
\begin{gather*}
\mathrm{CH}_{4} \rightarrow{ }^{3} \mathrm{CH}_{2}+2 \mathrm{H} \\
{ }^{3} \mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}+\mathrm{H}_{2} \\
\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H} \tag{S11}\\
\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H} \\
\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2}+2 \mathrm{H}
\end{gather*},
$$

while propylene is formed in the upper atmosphere through the mechanism

$$
\begin{gather*}
2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \\
\mathrm{CH}_{4} \rightarrow{ }^{3} \mathrm{CH}_{2}+2 \mathrm{H} \\
{ }^{3} \mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}+\mathrm{H}_{2} \tag{S12}\\
\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H} \\
3 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+2 \mathrm{H}_{2}+2 \mathrm{H}
\end{gather*},
$$

and more prominently in the lower atmosphere through

$$
\begin{gather*}
2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}+\mathrm{H}_{2} \\
\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}_{4}+h \nu \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \\
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H} \xrightarrow{M} \mathrm{C}_{2} \mathrm{H}_{3} \tag{S13}\\
\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{3} \xrightarrow{\mathrm{M}} \mathrm{C}_{3} \mathrm{H}_{6} \\
\hline 3 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+2 \mathrm{H}_{2}+2 \mathrm{H}
\end{gather*}
$$

[35] Heavier hydrocarbons may also be formed in Titan's atmosphere - among the most prominent, benzene. Wilson et al. [2003] explored possible mechanisms for benzene formation, supported by the tentative detection of $\mathrm{C}_{6} \mathrm{H}_{6}$ by Coustenis et al. [2003]. Benzene in the lower stratosphere is primarily formed through the scheme
(S14)

$$
\begin{gather*}
4\left(\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{3}\right) \\
2\left(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{3} \xrightarrow{\mathrm{M}} \mathrm{C}_{4} \mathrm{H}_{6}\right) \\
2\left(\mathrm{C}_{4} \mathrm{H}_{6}+h \nu \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{CH}_{3}\right) \\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{6} \\
\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{C}_{3} \mathrm{H}_{3} \xrightarrow{\mathrm{M}} n-\mathrm{C}_{6} \mathrm{H}_{6} \tag{S18}\\
n-\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H} \\
\hline 4 \mathrm{C}_{2} \mathrm{H}_{2}+4 \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{6}
\end{gather*}
$$

with (S16) accounting for 60% of non-recycled HCN in the atmosphere. HCN is then diffused down into the lower atmosphere, providing the major source of HCN in this region, evident by an HCN flux of $3.4 \times 10^{8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at 600 km , where it undergoes recycling mechanisms, commenced through photolysis and H -addition

$$
\begin{gather*}
\mathrm{HCN}+h \nu \rightarrow \mathrm{CN}+\mathrm{H} \\
\frac{\mathrm{CN}+\mathrm{CH}_{4} \rightarrow \mathrm{HCN}+\mathrm{CH}_{3}}{\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{H}} \tag{S19}
\end{gather*}
$$

providing a minor pathway.

4.2. Nitriles

[36] Nitrogen, the predominant molecule in Titan's atmosphere, is largely chemically inert. The primary manner in

$$
\begin{gather*}
\mathrm{N}_{2}+e^{-} \rightarrow \mathrm{N}^{+}+\mathrm{N}^{4 \mathrm{~s}, 2 \mathrm{~d}}+2 e^{-} \\
\mathrm{CH}_{4}+\mathrm{N}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \\
\frac{e^{-}+\mathrm{H}_{2} \mathrm{CN}^{+} \rightarrow \mathrm{HCN}+\mathrm{H}}{\mathrm{~N}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{HCN}+\mathrm{N}+\mathrm{H}_{2}+\mathrm{H}} \tag{S17}
\end{gather*}
$$

and photoionization

$$
\begin{gathered}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}^{+}+\mathrm{N}^{2 \mathrm{~d}}+e^{-} \\
\mathrm{CH}_{4}+\mathrm{N}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \\
\mathrm{~N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{H} \\
\mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}_{2} \mathrm{CN}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CNH}^{+}+\mathrm{HCN} \\
\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HCN}+\mathrm{H}_{2}+\mathrm{H}+\mathrm{CH}_{3} \mathrm{CNH}^{+}
\end{gathered}+e^{-} .
$$

which nitrogen is involved in chemistry is through dissociation via both photons and electrons. Nitrogen is photodissociated mainly due to radiation in the $800-1000 \AA$ region. Zipf and McLaughlin [1978] and Zipf et al. [1980] have determined the yields of nitrogen atoms from this process to be approximately 50% for ground-state $\mathrm{N}^{4 \mathrm{~s}}$ and $30-40 \%$ and $10-20 \%$ for excited states $\mathrm{N}^{2 \mathrm{~d}}$ and $\mathrm{N}^{2 \mathrm{p}}$, respectively. However, Zipf et al. [1980] found that $\mathrm{N}^{2 \text { p }}$ atoms are rapidly de-excited to the $\mathrm{N}^{2 \mathrm{~d}}$ state. Therefore $\mathrm{N}^{4 \mathrm{~s}}$ and $\mathrm{N}^{2 \mathrm{~d}}$ are assumed to adopt a quantum yield of 0.5 each from N_{2} photolysis. Nitrogen also undergoes electronimpact dissociation, with quantum yields determined by Zipf et al. [1980] and Itikawa et al. [1986].
[37] Nitrogen atoms combine with hydrocarbons to form an assortment of nitrile neutrals and ions in the upper atmosphere, as shown in Figure 8. The flux of $\mathrm{N}^{4 \mathrm{~s}}$ atoms combines with methane photolytic product, CH_{3}, to form the basis of nitrile chemistry-HCN. HCN is formed through photodissociation

$$
\begin{gather*}
0.5\left(\mathrm{~N}_{2}+h \nu \rightarrow \mathrm{~N}^{4 s}+\mathrm{N}^{4 s}\right) \\
\mathrm{CH}_{4}+h \nu \rightarrow \mathrm{CH}_{3}+\mathrm{H} \\
\mathrm{~N}^{4 s}+\mathrm{CH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{CN}+\mathrm{H} \tag{S16}\\
\mathrm{H}_{2} \mathrm{CN}+\mathrm{H} \rightarrow \mathrm{HCN}+\mathrm{H}_{2} \\
.5 \mathrm{~N}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{HCN}+\mathrm{H}_{2}+\mathrm{H}
\end{gather*}
$$

18)

electron impact processes

$$
\begin{gather*}
\mathrm{HCN}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{H}_{2} \mathrm{CN} \\
\frac{\mathrm{H}_{2} \mathrm{CN}+\mathrm{H} \rightarrow \mathrm{HCN}+\mathrm{H}_{2}}{\mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}} . \tag{S20}
\end{gather*}
$$

Figure 8. Schematic of Titan nitrile chemistry. Stable species and primary reactions are shown in bold, with ions shown in rounded rectangles.
[38] $\mathrm{HC}_{3} \mathrm{~N}$ is produced primarily through the addition of the photolytic product CN and acetylene

$$
\begin{gather*}
\mathrm{HCN}+h \nu \rightarrow \mathrm{CN}+\mathrm{H} \\
\frac{\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}}{\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}} . \tag{S21}
\end{gather*}
$$

[39] $\mathrm{C}_{4} \mathrm{~N}_{2}$ can also be formed through CN -insertion, as studied by Halpern et al. [1989]

$$
\begin{equation*}
\mathrm{CN}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{C}_{4} \mathrm{~N}_{2}+\mathrm{H} \tag{R149}
\end{equation*}
$$

Yung [1987] proposed another mechanism for the formation of $\mathrm{C}_{4} \mathrm{~N}_{2}$ as well as $\mathrm{C}_{2} \mathrm{~N}_{2}$ through the action of the CHCN radical in the reactions

$$
\begin{equation*}
\mathrm{CHCN}+\mathrm{CHCN} \rightarrow \mathrm{C}_{4} \mathrm{~N}_{2}+\mathrm{H}_{2} \tag{R161}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CHCN}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{H} \tag{R160}
\end{equation*}
$$

Considering estimations by Yung [1987] for (R161), the main source of dicyanoacetylene is the scheme

$$
\begin{gather*}
\mathrm{N}_{2}+h \nu \rightarrow 2 \mathrm{~N}^{2 \mathrm{~d}} \\
2\left[\mathrm{~N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CHCN}+\mathrm{H}\right] \tag{S22}\\
\mathrm{CHCN}+\mathrm{CHCN} \rightarrow \mathrm{C}_{4} \mathrm{~N}_{2}+\mathrm{H}_{2} \\
\mathrm{~N}_{2}+2 \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{~N}_{2}+2 \mathrm{H}+\mathrm{H}_{2}
\end{gather*}
$$

responsible for 98% of $\mathrm{C}_{4} \mathrm{~N}_{2}$ production throughout Titan's atmosphere. Likewise, $\mathrm{C}_{2} \mathrm{~N}_{2}$ is produced through the scheme

$$
\begin{gathered}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}^{4 \mathrm{~s}}+\mathrm{N}^{2 \mathrm{~d}} \\
\mathrm{~N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CHCN}+\mathrm{H} \\
\mathrm{~N}^{4 \mathrm{~s}}+\mathrm{CHCN} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{H}_{2} \\
\hline \mathrm{~N}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}+2 \mathrm{H}
\end{gathered},
$$

responsible for virtually all of $\mathrm{C}_{2} \mathrm{~N}_{2}$ production. Reactions with CH_{3} and $\mathrm{H}_{2} \mathrm{CN}$, to produce HCN , severely limit the availability of $\mathrm{N}^{4 \mathrm{~s}}$ atoms, giving a preference for CHCN to produce $\mathrm{C}_{4} \mathrm{~N}_{2}$ in the upper atmosphere.
[40] In the upper atmosphere, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ production follows along the same procedure as (S19),

$$
\begin{gather*}
\mathrm{HCN}+h \nu \rightarrow \mathrm{CN}+\mathrm{H} \\
\frac{\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+\mathrm{H}}{\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+2 \mathrm{H}}, \tag{S24}
\end{gather*}
$$

while in the lower atmosphere, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ is produced through

$$
\begin{gather*}
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{C}_{2} \mathrm{H}_{3} \\
\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+\mathrm{H} \tag{S25}
\end{gather*} .
$$

4.3. Oxygen Species

[41] Stratospheric measurements of CO [e.g., Gurwell and Muhleman, 2000], CO_{2} [Coustenis et al., 1989], and $\mathrm{H}_{2} \mathrm{O}$ [Coustenis et al., 1998] have indicated the presence of oxygen chemistry in the atmosphere of Titan. A likely contributor to this oxygen inventory is an influx of micrometeorites into the atmosphere, providing a source of $\mathrm{H}_{2} \mathrm{O}$ molecules. Primarily, $\mathrm{H}_{2} \mathrm{O}$ molecules undergo UV photolysis. The formation of hydroxyl radicals through $\mathrm{H}_{2} \mathrm{O}$
photodissociation comprises 60% of $\mathrm{H}_{2} \mathrm{O}$ destruction in Titan's atmosphere. Some of the OH radicals serve to recycle $\mathrm{H}_{2} \mathrm{O}$. In fact, 54% of $\mathrm{H}_{2} \mathrm{O}$ destruction is recycled back to $\mathrm{H}_{2} \mathrm{O}$, mainly through charged-particle catalysis,

$$
\begin{gather*}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}_{2}^{+}+e^{-} \\
\mathrm{N}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{N}_{2} \\
\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \tag{S26}\\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{CH}_{4}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{3}+e^{-}
\end{gather*}
$$

$$
\begin{gathered}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}_{2}^{+}+e^{-} \\
\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H} \\
\mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{N}_{2} \\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{CH}+\mathrm{H}_{4}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{3}+e^{-}
\end{gathered}
$$

through the reversibility of methylene-water addition
(R214a)

$$
\begin{aligned}
& { }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3}+\mathrm{OH} \\
& \mathrm{CH}_{3}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{CH}_{2},
\end{aligned}
$$

and through

$$
\begin{gather*}
\mathrm{H}_{2} \mathrm{O}+h \nu \rightarrow \mathrm{OH}+\mathrm{H} \\
\mathrm{OH}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \tag{S28}\\
\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{H}
\end{gather*} .
$$

The main destiny of OH radicals that are not recycled back to $\mathrm{H}_{2} \mathrm{O}$ is the formation of CO_{2} through reaction with primordial CO,

$$
\begin{equation*}
\mathrm{CO}+\mathrm{OH} \rightarrow \mathrm{CO}_{2}+\mathrm{H} . \tag{R219}
\end{equation*}
$$

[42] CO is engaged in chemistry mainly in the lower atmosphere, where it produces oxygenated compounds through pressure-dependent reactions

$$
\begin{equation*}
\mathrm{CO}+{ }^{3} \mathrm{CH}_{2} \xrightarrow{\mathrm{M}} \mathrm{CH}_{2} \mathrm{CO} \tag{R217}
\end{equation*}
$$

and

$$
\begin{gather*}
2(\mathrm{CO}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{HCO}) \\
\frac{\mathrm{HCO}+\mathrm{HCO} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{CO}}{\mathrm{CO}+2 \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{CO}} \tag{S29}
\end{gather*}
$$

However, photolysis of these compounds simply leads to CO recycling, the dominant mechanism in Titan oxygen chemistry.

4.4. Ion Chemistry

[43] Ion chemistry in Titan's atmosphere commences with the ionization of molecular nitrogen. Nitrogen is ionized by solar photons below $796 \AA$ and by electron impact. These sources provide N_{2}^{+}and N^{+}ions that readily react with neutrals to form larger ions. Likewise, the abundance of CH_{4} in the upper atmosphere makes its ionization an
important early process in the formation of the ionosphere. Methane is ionized by photons and electrons producing a number of hydrocarbon and hydrogen ions.
[44] The formation of most of the ions in Titan's ionosphere begin with the mechanism

$$
\begin{gather*}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}_{2}^{+}+e^{-} \\
\mathrm{N}_{2}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{N}_{2}+\mathrm{H} \\
\mathrm{CH}_{3}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \tag{S30}\\
\hline 2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}+\mathrm{H}+e^{-}
\end{gather*}
$$

which serves to produce the abundant ion $\mathrm{C}_{2} \mathrm{H}_{5}^{+} . \mathrm{H}_{2} \mathrm{CN}^{+}$, found to be the major ion in the Keller et al. [1992] and Banaszkiewicz et al. [2000] models, is produced through

$$
\begin{gather*}
2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}+\mathrm{H}+e^{-} \\
\frac{\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}}{} \tag{S31}\\
2 \mathrm{CH}_{4}+\mathrm{HCN}_{\mathrm{HCN}}^{\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}+\mathrm{H}+e^{-}}
\end{gather*}
$$

and

$$
\begin{gather*}
\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}_{2}^{+}+e^{-} \\
\mathrm{N}_{2}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{H} \\
\mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{N}_{2} \tag{S32}\\
\mathrm{CH}_{5}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{4} \\
\hline \mathrm{HCN}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}+e^{-}
\end{gather*}
$$

where (S 31) is responsible for 78% of $\mathrm{H}_{2} \mathrm{CN}^{+}$production and (S32) accounts for 10%. As indicated previously, the main function of $\mathrm{H}_{2} \mathrm{CN}^{+}$ions is the formation of HCN through electron recombination (R349) and through reactions (R347) and scheme (S 18), while $\mathrm{C}_{2} \mathrm{H}_{5}^{+}$serves to convert nitriles to hydrocarbons through (S31).

5. Results and Discussion

5.1. Sensitivity to Eddy Diffusion and Methane Abundance

[45] A test of the accuracy of a photochemical model is comparison with observations of constituent abundances. However, exactly what is being considered when dealing with observations must be taken into account. The large error bars associated with the Vervack et al. (submitted manuscript, 2003) UVS reanalysis and the questions about the CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{2}$ observations that affect the retrieval of other species, as well, have been pointed out in section 3.5.2. However, the absence of other observations of constituent densities in Titan's upper atmosphere, with the exception of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{2}$, and the difficulty in reconciling Titan chemistry with the Smith et al. [1982] $>825 \mathrm{~km} \mathrm{C}_{2} \mathrm{H}_{2}$ observation suggests the use of the Vervack non- CH_{4} retrievals as a preliminary guide to how Titan's constituents might be distributed in the upper atmosphere. Furthermore, many of the existing observations in the stratosphere (e.g., IRIS) are determined assuming a uniform mole fraction profile, which is not realistic for chemically active constituents, affecting the abundances derived. For instance, Coustenis et al. [1989] derived a CO_{2} mole fraction of $1.4_{-0.5}^{+0.3} \times 10^{-8}$ at 105 km , the altitude where the contribution function of CO_{2} peaks. However, as dictated by the contribution function, the IRIS instrument received signal
contribution from layers above and below this layer. Consequently, an uncertainty of $+55,-30 \mathrm{~km}$ is included with this result, associated with the region where the contribution function is greater than half of the peak value. The authors were able to fit the obtained spectra with a CO_{2} mole fraction profile that reaches 1.4×10^{-8} at $\sim 180 \mathrm{~km}$ and decreases to 5×10^{-9} at 105 km , outside the range of values indicated at the contribution peak assuming a uniform mole fraction profile. A similar case is found for $\mathrm{H}_{2} \mathrm{O}$ as the stratospheric value of 4×10^{-10} is 20 times smaller than the value of the best-fitting $\mathrm{H}_{2} \mathrm{O}$ mole fraction profile, provided by Lara et al. [1996], at the peak of the contribution function for the observation [Coustenis et al., 1998]. Thus the assumption of a uniform profile must be kept in mind when comparing model results to observations.
[46] To demonstrate the effect of the eddy diffusion coefficient on the distribution of constituents, mole fraction profiles of key constituents for the eddy diffusion profiles demonstrated in Figure 6 are displayed in Figures 9 and 10. Figure 9 shows the results for CH_{4} and HCN , key constituents used as guides in obtaining the eddy coefficient along with the observations referred to in section 3.5.2. The Vervack et al. (submitted manuscript, 2003) and Vervack [1997] UVS reanalysis observations displayed represent the extremes of both ingress and egress results, converted to mole fractions on the basis of the nominal total number density profile of this model.
[47] The nominal CH_{4} profile fits the Smith et al. [1982] 1125 km observation along with the Strobel et al. [1992] 1400 km observation and the Vervack et al. (submitted manuscript, 2003) observations up to $\sim 1000 \mathrm{~km}$. SB approximates the upper limits of Smith et al. [1982] while HI matches Vervack et al. (submitted manuscript, 2003) up to higher levels but does not approach the Strobel et al. [1992] observation.
[48] For HCN the nominal profile fits the Tanguy et al. [1990] observations at 100 km and 200 km , as well as provides a good fit to the Coustenis et al. [1989] IRIS observations. Above 300 km , the nominal profile splits the divergent observations of Tanguy et al. [1990] and Hidayat et al. [1997] HI was generated to fit the Hidayat et al. [1997] HCN observations below 300 km as closely as possible, while simultaneously matching the CH_{4} Vervack et al. (submitted manuscript, 2003) observations up to 1000 km , but is unable to completely match the HCN observations below 200 km . On the other hand, SB clearly overpredicts the HCN abundance in the lower stratosphere.
[49] In the upper atmosphere, the nominal profile provides a reasonable fit to the Vervack [1997] reanalysis, below 800 km , in all cases with the exception of $\mathrm{C}_{2} \mathrm{H}_{2}$. The $\mathrm{C}_{2} \mathrm{H}_{2}$ nominal profile overpredicts acetylene abundance in relation to the Vervack [1997] results, consistent with the other photochemical models but on a lesser scale than the Yung et al. [1984] or Toublanc et al. [1995] models. Vervack et al. (submitted manuscript, 2003) provide reanalysis profiles assuming $\mathrm{C}_{2} \mathrm{H}_{2}$ to be the only absorbing species that exceeds the nominal profile. Furthermore, it is difficult to imagine a $\mathrm{C}_{2} \mathrm{H}_{2}$ profile with a shape that fits both the stratospheric and nominal upper atmosphere observations, simultaneously, absent a significant localized sink around to $10^{-1}-10^{-2}$ millibar region. This raises the possibility that more absorption should be ascribed to

Figure 9. a) CH_{4} and b) HCN profiles using the nominal eddy diffusion profile (NOM, solid line), Steiner and Bauer [1990] profile (SB, dotted line), the high homopause profile (HI, short dashed), and the Lara et al. [2002] profile (NL, long dashed line). The group of horizontal lines represent the Vervack [1997] reanalysis of UVS observations. In a) the horizontal bars at 1000 km and 1130 km represent the Smith et al. [1982] observations, while the horizontal bar at 1400 km indicates the Strobel et al. [1992] Voyager UVS observations. In b) the solid horizontal lines in the lower portion of the plot shows the Hidayat et al. [1997] observations with the dotted lines representing the Tanguy et al. [1990] results, and the box represents the stratospheric Voyager IRIS observations including error bars in abundance and altitude.
$\mathrm{C}_{2} \mathrm{H}_{2}$ in the UVS reanalysis than their nominal observations suggest. Above 800 km , NOM falls off with respect to the Vervack [1997] observations for $\mathrm{C}_{4} \mathrm{H}_{2}$ and $\mathrm{HC}_{3} \mathrm{~N}$. However, these constituents have short lifetimes in this region of the atmosphere compared with a solar cycle and thus are sensitive to changes in the solar radiation output, as discussed in the next section, and assuming solar maximum conditions provides a better fit to this data. Furthermore, as Vervack [1997] points out, the uniformity in number density with respect to altitude for the $\mathrm{C}_{4} \mathrm{H}_{2}$ and $\mathrm{HC}_{3} \mathrm{~N}$ observations suggest that these species may not have been well-retrieved. Misassignment of CH_{4} absorption may have understated CH_{4} densities at high altitudes while overstating these species.
[50] The high homopause eddy diffusion profile limits the amount of methane in the upper atmosphere, resulting in

Figure 10. Constituent profiles using the nominal eddy diffusion profile (NOM, solid line), Steiner and Bauer [1990] profile (SB, dotted line), the high homopause profile (HI, short dashed), and the Lara et al. [2002] profile (NL, long dashed line). The boxes represent the stratospheric Voyager IRIS observations including error bars in abundance and altitude, while the horizontal lines represent the Vervack [1997] reanalysis of UVS observations.
less conversion to higher order hydrocarbons and, consequently, smaller hydrocarbon abundances. HI matches the $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ upper atmosphere observations well, but underpredicts for $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{2}$ and $\mathrm{HC}_{3} \mathrm{~N}$. SB , on the other hand, provides reasonable predictions only for $\mathrm{HC}_{3} \mathrm{~N}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ above 700 km , according to the Vervack et al. (submitted manuscript, 2003) observations. The HI profile significantly underpredicts constituent abundances in the stratosphere, while SB matches IRIS observations only for the C_{2}-hydrocarbons.
[51] Recently, Lara et al. [2002] reanalyzed this question of the eddy diffusion coefficient in relation to the methane density in the upper atmosphere. They proceeded by recalculating the methane density with an assumption of CH_{4} stratospheric mole fraction at 3.8%, compared to the Lara et al. [1996] assumption of 1.7%. This value assumes very high methane supersaturation in the troposphere, which according to Courtin et al. [1995], can be as high as 230%. In contrast, the nominal model uses the results of Samuelson et al. [1997], which places the level of maxi-

Figure 11. Photodissociation coefficients of key species.
mum methane supersaturation at 1.48 ± 0.11, using a methodology that, according to the authors, avoids some of the sources of systematic error inherent in the Courtin et al. [1995] study. A methane supersaturation value of 1.37 yields of CH_{4} stratospheric mole fraction of 2.2%. Nevertheless, with the large methane abundance, Lara et al. [2002] adopt an eddy diffusion profile (NL) that increases rapidly in the stratosphere and middle atmosphere, resulting in a high homopause level around 1000 km (Figure 6b). This profile with a CH_{4} stratospheric mole fraction of 3.8% was tested along with the nominal case. As Figure 9 shows, NL provides good agreement with the HCN infrared and microwave observations, which eliminates the necessity for a large sink for HCN to the haze due to polymerization, as promoted by Lara et al. [1999]. However, demonstrated by Figure 10, the NL case underpredicts hydrocarbons in the lower stratosphere, with the exception of $\mathrm{C}_{4} \mathrm{H}_{2} . \mathrm{C}_{3}$-hydrocarbons are especially diminished in the NL case, with a $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ profile that is two orders of magnitude smaller and a $\mathrm{C}_{3} \mathrm{H}_{8}$ profile (not shown) that is an order of magnitude smaller than IRIS observations. In the upper atmosphere, the nominal case provides profiles more consistent with the UVS reanalysis than the NL case, as well.

5.2. Sensitivity to Solar Flux and Aerosol Structure

[52] The stable constituents in Titan's atmosphere are dissociated and ionized by solar photons and electrons that are transferred through the atmosphere. A comparison of Figure 11 and absorption cross sections will yield the deposition regions of different wavelength regions. N_{2}, which is dissociated by EUV photons, undergoes attenuation in dissociation in the upper atmosphere, with $\mathrm{J}_{\mathrm{N}_{2}}$ having been reduced by an order of magnitude at 1000 km . Below 900 km , electron impact dominates N_{2} absorption as $\mathrm{J}_{\mathrm{N}_{2}}$ drops off at the base of the ionosphere at 720 km . Abundant species that undergo significant absorption of photons at $1000 \AA \leq \lambda \leq 1450 \AA$ experience dissociation attenuation around 800 km , as these photons are deposited through methane absorption. Deposition of UV radiation longer than $1450 \AA$ occurs lower in the atmosphere, at $200-300 \mathrm{~km}$, as a result of absorption by molecules such as $\mathrm{HCN}(\lambda \leq 1800 \AA)$ and $\mathrm{C}_{2} \mathrm{H}_{2}(\lambda \leq 2100 \AA)$ as well as by aerosols $(\lambda \geq 1800 \AA)$.
[53] During much of the upcoming Cassini-Huygens encounter with Titan, the Sun will undergo moderate solar activity, likely resulting in a reduced solar flux compared with what took place during the Voyager flybys. In Titan's atmosphere, constituents above 500 km are typically destroyed chemically within one solar cycle, while for certain stable constituents, like $\mathrm{C}_{4} \mathrm{H}_{2}$, their relatively short lifetimes may allow changes in solar output to affect their lower stratospheric abundances, as well. With this in mind, it is constructive to analyze the effect of variations in solar flux on the distribution of various key constituents in Titan's atmosphere. Figure 12 provides such a comparison, assuming solar fluxes in the FUV and NUV obtained by SOLSTICE for average solar maximum, solar moderate, and solar minimum conditions, with the corresponding EUV calculated fluxes for $(\mathrm{F} 10.7, \mathrm{~F} 10.7 \mathrm{~A})=(233$, 211.9), (130, 130), and (70, 70), respectively. The $\mathrm{C}_{2^{-}}$ hydrocarbons, which are more directly affected by methane and its dependence in the upper atmosphere on transport rather than chemistry, show little dependence on solar activity. However, nitriles like HCN and $\mathrm{HC}_{3} \mathrm{~N}$ show much more sensitivity in the upper atmosphere to solar output as HCN photolysis plays a considerably larger role with respect to transport than CH_{4} photolysis.
[54] In comparing the nominal dissociation coefficients with the photodissociation coefficients of Toublanc et al. [1995] and Lara et al. [1996] the most glaring differences reside in the lower 300 km . The nominal dissociation coefficients fall off much more rapidly than Lara et al. [1996] most likely due to differences in the treatment of aerosols. Solar radiation at wavelengths $1800 \AA \leq \lambda \leq$ $2100 \AA$ is relatively unattenuated in the Lara et al. [1996] model, reaching to lower regions, while those photons are deposited above 200 km in the nominal model due to $\mathrm{C}_{2} \mathrm{H}_{2}$ absorption and aerosol opacity. The assertion of significant opacity at these wavelengths is corroborated by the analysis of UV spectra by McGrath et al. [1998]. The Toublanc et al. [1995] photodissociation rates fall off more significantly than Lara et al. [1996] which used the Yung et al. [1984] parameterization of aerosol absorption, but less than the nominal case, probably a result of consideration of Mie haze particles. For instance, $\mathrm{J}_{\mathrm{C}_{2}} \mathrm{H}_{2}(100 \mathrm{~km}) / \mathrm{J}_{\mathrm{C}_{2}} \mathrm{H}_{2}(500 \mathrm{~km})=$ 1.0×10^{-5} in the nominal model while Toublanc et al. [1995] and Lara et al. [1996] yield 4.8×10^{-2} and $8.2 \times$ 10^{-3}, respectively. Fractal particles are more opaque than Mie particles at short wavelengths [Rannou et al., 1995], limiting the penetration of radiation at deeper levels. However, aerosol opacities amount to a significant uncertainty affecting photodissociation coefficients, as Titan aerosol densities and optical constants are still not well understood. The effect of the type of aerosol particle considered is shown in Figure 13, which compares constituent mole fraction profiles from the nominal case with those assuming Mie opacities derived from Rannou et al. [1995]. In the Mie case more radiation is allowed to penetrate into the lower atmosphere, promoting greater formation of CH_{3} radical through catalytic dissociation of methane (S5) and increasing the levels of ethane and propane in the atmosphere. Furthermore, the smaller opacity provided by Mie particles longward of $1800 \AA$ results in much larger dissociation of $\mathrm{HC}_{3} \mathrm{~N}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ molecules which significantly absorb in that wavelength region. The IRIS $\mathrm{HC}_{3} \mathrm{~N}$ upper limit of

Figure 12. Constituent profiles for average solar maximum (long dashed line), solar moderate (solid line), and solar minimum conditions (dotted line).
1.5×10^{-9} and the lack of observations of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ suggest that more absorption of these molecules takes place in the lower atmosphere than what is determined by the nominal profile. These factors along with the $\mathrm{C}_{3} \mathrm{H}_{8}$ Mie profile hint at possibly less aerosol opacity in Titan's stratosphere than what is considered in the nominal case.

5.3. Hydrocarbons

[55] Figure 10 shows that the model slightly underpredicts ethylene density in Titan's stratosphere. This issue is a
factor in the Toublanc et al. [1995] model, as well. Lara et al. [1996] assumed a boundary condition of 1.5×10^{-7} to match IRIS observations, necessitating a flux of $7.0 \times$ $10^{7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ from the surface, resulting from some surficial process (e.g., outgassing). The nominal model calculates a $\mathrm{C}_{2} \mathrm{H}_{4}$ net loss of $8.1 \times 10^{7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (Table 7), requiring a corresponding flux from the surface in order to maintain steady state equilibrium. Such a flux, which would not be cold-trapped as $\mathrm{C}_{2} \mathrm{H}_{4}$ does not condense at those abundances, is a viable mechanism to account for the IRIS obser-

Figure 13. Constituent profiles assuming fractal haze particles (solid line) and Mie haze particles (long dashed line). The boxes represent the stratospheric Voyager IRIS observations including error bars in abundance and altitude, while the horizontal lines represent the Vervack [1997] reanalysis of UVS observations. For HCN, the solid horizontal bars show the Hidayat et al. [1997] observations with the dotted bars representing the Tanguy et al. [1990] observations.
vations. Possible irradiation of hydrocarbon condensates on Titan's surface may also provide a source of $\mathrm{C}_{2} \mathrm{H}_{4}$ in the stratosphere.
[56] Canosa et al. [1997] measured the $\mathrm{CH}+\mathrm{CH}_{4}$ rate coefficient in a temperature range of $23-295 \mathrm{~K}$, but could
not positively identify products. Thermochemical and kinetic analysis indicate, however, that H -atom elimination is the most favored process [Canosa et al., 1997], yielding the $\mathrm{C}_{3} \mathrm{H}_{4}$ complex. With potential products $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CCH}_{2}$ similarly exothermic, these isomers are assumed

Table 7. Production and Loss Rates and Chemical Lifetimes of Various Stable Species

	Production (P), $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$	Loss (L), $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$	$\mathrm{P}-\mathrm{cm}^{-2} \mathrm{~L}^{-1}$	Chemical Lifetime at $300 \mathrm{~km}, \mathrm{~s}$
Species $^{\mathrm{a}}$				

in this model to have a branching ratio of 0.5 for this reaction. This mechanism for forming methylacetylene and allene is not considered in other Titan photochemical models. With this assumption, the $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ profile shown in Figure 10 agrees well with observations as opposed to Toublanc et al. [1995], which is a factor of six too large or Lara et al. [1996], which is two orders of magnitude too small (Table 8).
[57] Notwithstanding the effect of aerosol opacity, the model-generated propane profile has a similar uniform shape in the homosphere as the Yung et al. [1984], Lara et al. [1996], and Lebonnois et al. [2001]. The Toublanc et al. [1995] $\mathrm{C}_{3} \mathrm{H}_{8}$ profile shape differs with propane peaking at 500 km , mainly a product of their chemical scheme which results in a $\mathrm{C}_{3} \mathrm{H}_{8}$ net production rate 15 times larger than the Lara et al. [1996] or our nominal rate. In our model, the $\mathrm{C}_{3} \mathrm{H}_{8}$ abundance is governed by the synthesis of ethyl and methyl radicals (R51b) above 140 km , and the self-reaction of $\mathrm{C}_{3} \mathrm{H}_{7}$ radicals (R81) below 140 km , which facilitates the recycling of propane in the stratosphere, via H_{2}-elimination in propane photolysis (J 15 a) and subsequent hydrogen attachment (R72). The omission of this recycling mechanism in the Lara et al. [1996] scheme is responsible for their $\mathrm{C}_{3} \mathrm{H}_{8}$ fall-off above $100 \mathrm{~km} .89 \%$ of propane created is lost to condensation below 50 km .
[58] The diacetylene profile compares well with the IRIS observations while both Toublanc et al. [1995] and Lara et al. [1996] overpredict $\mathrm{C}_{4} \mathrm{H}_{2}$ abundance, by a factor of three and two, respectively, due to smaller eddy mixing in the stratosphere. The $\mathrm{C}_{4} \mathrm{H}_{2}$ profile shape compares similarly to the Lebonnois et al. [2001] $\mathrm{C}_{4} \mathrm{H}_{2}$ equatorial profile shape, although the nominal profile exhibits larger diacetylene densities in the stratosphere as a result of larger acetylene mixing ratios, compared to the Lebonnois et al. [2001] $\mathrm{C}_{2} \mathrm{H}_{2}$ equatorial profile. Diacetylene reacts with the photo-

Table 8. A Comparison of Model-Generated Species Abundances Along With Available Observations ${ }^{\mathrm{a}}$

Species	Altitude, km	Observational Limits	Y84	T95	La96/B00	Le01/Le02	Nominal With Fractal/Mie Haze
$\mathrm{C}_{2} \mathrm{H}_{2}$	125	1.3-2.9(-6) (IRIS)	4.3(-5)	2.2(-6)	$3.0(-6)^{\text {b }}$	1.9(-6)	1.9(-6)/1.1(-6)
$\mathrm{C}_{2} \mathrm{H}_{4}$	125	0.4-1.2(-7) (IRIS)	3.1(-7)	$3.2(-9)$	8.3(-8)	2.1(-8)	9.4(-9)/1.5(-8)
$\mathrm{C}_{2} \mathrm{H}_{6}$	125	0.6-1.8(-5) (IRIS)	2.0(-4)	1.2(-5)	8.7(-6)	$2.7(-6)$	5.8(-6)/1.2(-5)
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	105	2.3-6.1(-9) (IRIS)	9.5(-7)	$1.4(-8)$	$2.3(-11) /<1.0(-11)$	9.8(-10)	$1.8(-9) / 6.6(-10)$
$\mathrm{C}_{3} \mathrm{H}_{8}$	105	0.3-1.1(-6) (IRIS)	4.2(-6)	$2.8(-7)$	$1.0(-7)^{\text {c }}$	2.4(-7)	$6.3(-8) / 2.8(-7)$
$\mathrm{C}_{4} \mathrm{H}_{2}$	105	0.7-2.0(-9) (IRIS)	$1.6(-10)$	$6.8(-9)$	$4.7(-9)^{\text {d }}$	3.9(-9)	$6.2(-10) / 1.9(-9)$
$\mathrm{C}_{6} \mathrm{H}_{6}$	110	1.0-7.0(-10) (ISO)	-	-	-	<1.0(-13)	6.1(-10)/5.8(-11)
CO_{2}	105	0.9-1.7(-8) (IRIS)	5.7(-9)	4.6(-13)	5.5(-9)	-	$6.2(-9) / 5.8(-9)$
$\mathrm{H}_{2} \mathrm{O}$	400	0.4-1.4(-8) (ISO)	$1.2(-9)$	3.1(-9)	1.9(-8)	-	1.1(-8)/1.0(-8)
HCN	110	0.5-1.6(-7) (IRAM)	$3.8(-6)$	1.6(-7)	1.2(-7)/4.0(-8)	1.3(-7)	1.4(-7)/3.2(-7)
	300	0.03-1.2(-5) (IRAM)	9.7(-6)	2.2(-6)	$6.4(-6) / 2.3(-6)$	7.9(-7)	$1.3(-6) / 2.0(-6)$
$\mathrm{CH}_{3} \mathrm{CN}$	450	2.2-6.2(-8) (IRAM)	-	1.2(-7)	$7.3(-9)^{\text {e }}$	$7.8(-7)$	$9.6(-9) / 8.0(-9)$
$\mathrm{HC}_{3} \mathrm{~N}$	105	1.5-8.5(-10) (ISO)	3.3(-7)	$<1.0(-12)$	$2.4(-8) / 1.4(-8)$	$3.2(-8)$	$1.2(-8) / 1.2(-10)$
	450	$2.2-6.2(-8)$ (IRAM)	3.1(-6)	4.1(-6)	$3.9(-6) / 3.1(-6)$	$1.3(-6)$	4.0(-8)/3.7(-8)
$\mathrm{C}_{2} \mathrm{~N}_{2}$	105	$\leq 1.0(-9)$ (IRIS)	1.1(-7)	$<1.0(-12)$	$4.5(-12) / 1.6(-11)$	$1.5(-9)$	$1.1(-9) / 1.6(-13)$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}^{\mathrm{f}}$	105	-	-	-	-	$6.6(-9)$	$2.1(-8) / 8.8(-12)$
$\mathrm{C}_{4} \mathrm{~N}_{2}{ }^{\text {f }}$	105	-	-	${ }^{-}$	$1.2(-11) / 1.7(-12)$	-	$1.4(-9) / 6.2(-12)$
$\mathrm{H}_{2} \mathrm{CO}^{\text {f }}$	120	-	$<1.0(-11)$	$9.1(-12)$	-	-	$1.0(-9) / 4.1(-9)$
$\mathrm{CH}_{3} \mathrm{OH}^{\mathrm{f}}$	120	-	-	$1.6(-9)$	-	-	$4.5(-13) / 1.0(-14)$
$\mathrm{CH}_{2} \mathrm{CO}^{\text {f }}$	120	-	$<1.0(-11)$	3.2(-9)	-	-	2.4(-11)/2.2(-11)

${ }^{\text {a }}$ Read $1.0(-9)$ as 1.0×10^{-9}. Y84 = Yung et al. [1984]; T95 = Toublanc et al. [1995]; La96 = Lara et al. [1996]; B00 = Banaszkiewicz et al. [2000]; Le01/Le02 = Lebonnois et al. [2001] (equator), Lebonnois et al. [2002].
${ }^{\mathrm{b}}$ Mixing ratio at 130 km .
${ }^{c}$ Mixing ratio at 110 km .
${ }^{\mathrm{d}}$ Mixing ratio at 125 km .
${ }^{\mathrm{e}}$ Mixing ratio at 400 km .
${ }^{\mathrm{f}}$ This species has not yet been observed in Titan's atmosphere.

Figure 14. Nominal constituent profiles for various hydrocarbon species along with atomic nitrogen, atomic hydrogen, and molecular hydrogen.
lytic products of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{4} \mathrm{H}_{2}$ to form $\mathrm{C}_{6} \mathrm{H}_{2}$ and $\mathrm{C}_{8} \mathrm{H}_{2}$, whose profiles are shown in Figure 14. These processes may have implications in the formation of Titan haze between $500-800 \mathrm{~km}$.
[59] Wilson et al. [2003] suggested the possibility of benzene formation in Titan's atmosphere, corroborated by the tentative detection of benzene by the Infrared Space Observatory (ISO) [Coustenis et al., 2003]. The observation fit by a uniform mole fraction profile of $4 \pm 3 \times 10^{-10}$ was matched by a vertical profile of benzene from Wilson et al. [2003], multiplied by 3.0 ± 0.5, an upper-limit profile calculated assuming reaction rates for aromatic compounds that correspond to a temperature of 300 K . However, aerosol opacity was not considered in that calculation. Haze particles act to shield benzene from photodissociation, which extends as far as $2700 \AA$ [Pantos et al., 1978]. Figure 15 compares the nominal benzene profile from Wilson et al. [2003] with the present nominal profiles including aerosols and calculated with the nominal temperature profile, taken from Yelle et al. [1997], which ranges from 71 K at the tropopause to 175 K in the thermosphere. The present profile matches the ISO observation with a column density of $2.4 \times 10^{15} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ above 30 mbar , with a benzene mole fraction of 6.1×10^{-10} at 110 km . The only other modeling study that covers benzene abundance on Titan is Lebonnois et al. [2002], which calculates a benzene mole fraction at least three orders of magnitude smaller at the observation altitude. Figure 15 also demonstrates the large dependence on solar flux for benzene
abundance in the upper atmosphere. Wilson and Atreya [2003] explored possible mechanisms for haze formation and suggested that aromatic compounds like benzene could be a source of Titan haze. Assuming this nominal benzene profile and that the mechanism for haze formation begins with the reactions

$$
\begin{align*}
& \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H} \rightarrow \text { haze } \tag{R115}\\
& \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \text { haze }
\end{align*}
$$

the aromatic pathway provides a haze production rate of $9.5 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ or $3.2 \times 10^{-14} \mathrm{~g} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, assuming a nucleation mass of 2000 amu [Richter and Howard, 2000], compared with $0.5-2 \times 10^{-14} \mathrm{~g} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ derived by microphysical models [McKay et al., 2001].
[60] An important uncertainty in modeling chemistry in outer planetary atmospheres is the methyl recombination rate. Methyl recombination serves as the primary loss mechanism for the chemically important methyl radical as well as the source of ethane production. However, until recently, rate measurements have only been taken as low as room temperature, with extrapolations down to lower temperatures yielding widely varying results [Atreya et al., 1999]. ISO observations of CH_{3} seem to indicate that the more widely used Slagle et al. [1988] rate expression is too low, perhaps by an order of magnitude. For this reason, we use a methyl recombination rate that is ten times that obtained with the Slagle et al. [1988] expression. Studies comparing hydrocarbon mixing ratio profiles using both the Slagle et al. [1988] rate and our rate indicate little difference in the ethane stratospheric profile and a factor a two increase in ethane density in the upper atmosphere with our rate [Wilson and Atreya, 2000a]. Recently, Cody et al. [2003] have measured methyl recombination at lower temperatures, obtaining results at as low as 155 K . These results find

Figure 15. Benzene profiles for average solar maximum (long dashed line), solar moderate (solid line), and solar minimum conditions (dotted line), along with the Wilson et al. [2003] nominal benzene profile (short dashed line). The box represents the ISO benzene observations including error bars in abundance and altitude.

Figure 16. Constituent profiles of various nitrile species including cosmic ray deposition (thick line) and no cosmic ray deposition (thin line).
methyl recombination to proceed at roughly 1.6 times the Slagle et al. [1988] rate at high pressures. However, these experiments were conducted with He as a bath gas, and the reaction may proceed faster with N_{2} as the background atmosphere as exhibited by the hydrogen atom recombination reaction, which proceeds 60% faster at 150 K with the Tsang and Hampson [1986] rate which uses an N_{2} bath gas, as opposed to the Baulch et al. [1992] rate which uses an H_{2} bath gas. Using the Cody et al. [2003] rate, the nominal ethane density in the upper atmosphere is reduced by 55% at 1100 km and reduced by 6% at 200 km , while the CH_{3} density is increased by 145% and 35%, respectively, at those altitudes.

5.4. Nitriles

[61] Cosmic rays can play a substantial role in the formation of nitriles. Cosmic rays penetrate the atmosphere and dissociate nitrogen molecules (Figure 4b), producing N atoms that serve as a source for stratospheric nitriles, in particular, nitriles that are formed directly from N -atom addition. In addition, Molina-Cuberos et al. [2002] demonstrated that the possible formation of ion clusters in this region through high pressure reactions may be a source of stratospheric nitriles. The kinetics and identification of products of these reactions, however, are still to be determined. Figure 16 shows the profiles of several nitrile compounds with and without the inclusion of galactic cosmic rays. In particular, the stratospheric abundances of $\mathrm{C}_{2} \mathrm{~N}_{2}$ and $\mathrm{C}_{4} \mathrm{~N}_{2}$ are highly dependent on cosmic ray dissociation of nitrogen, through the schemes (S20) and (S21). Treatment of cosmic ray interaction through particle cascade, illustrated by Capone et al. [1983], may increase $\mathrm{C}_{2} \mathrm{~N}_{2}$ and $\mathrm{C}_{4} \mathrm{~N}_{2}$ densities in the lower atmosphere further.
[62] Lara et al. [1996] in order to explain the $\mathrm{CH}_{3} \mathrm{CN}$ observations announced by Bézard et al. [1993] propose a source provided by $\mathrm{CH}_{4}+\mathrm{CN}$ and $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{CN}$. Previous studies [Hess et al., 1989; Yang et al., 1992b; Sims et al., 1993], however, give no indication of an acetonitrile channel, while Balla et al. [1991] point out that though the $\mathrm{CH}_{3} \mathrm{CN}$ channel is thermodynamically possible, their mea-
surements only indicate traces of $\mathrm{CH}_{3} \mathrm{CN}$. Nevertheless, Lara et al. assume a quantum yield for the production of 0.05 for $\mathrm{CH}_{4}+\mathrm{CN}$ and 0.035 for $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{CN}$. The reaction $\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{4}$ was taken to proceed at a rate of $1.2 \times$ $10^{-12} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$ by Lellouch et al. [1994] in their Neptune model, on the basis of $\mathrm{N}^{2 \mathrm{~d}}$ quenching coefficients by Black et al. [1969]. They predicted the reaction to proceed in an insertion/abstraction manner, producing products NH and $\mathrm{C}_{2} \mathrm{H}_{3}$. This reaction was included in the Lara et al. model, while Toublanc et al. [1995] and Yung [1987] did not include this reaction. However, Sato et al. [1999] measured $\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{4}$ down to 230 K and obtained a rate of $2.6 \times$ $10^{-11} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$, a rate over 20 times that assumed by Lellouch et al. [1994] and Lara et al. [1996]. Furthermore, crossed-beam experiments conducted by Balucani et al. [2000] indicate $\mathrm{CH}_{3} \mathrm{CN}$ to be the likely product
(R127)

$$
\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}
$$

Including (R127) with the Sato et al. [1999] rate produces a profile (Figure 16) that matches observations reasonably well, producing acetonitrile primarily in the upper atmosphere through the scheme

$$
\begin{gather*}
0.5\left(\mathrm{~N}_{2}+h \nu \rightarrow 2 \mathrm{~N}^{2 \mathrm{~d}}\right) \\
\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{H} \tag{S33}\\
0.5 \mathrm{~N}_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}
\end{gather*}
$$

[63] Notwithstanding the nominal $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ profile (Figure 16), which presents a stratospheric mixing ratio as high as 3.8×10^{-8}, observations suggest the lack of significant abundance of acrylonitrile in this region of the atmosphere. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ has not been identified in the atmosphere of Titan by IRIS or ISO observations. Furthermore, Voyager infrared spectra analysis do not seem to advocate the presence of acrylonitrile condensates in larger abundances than say $\mathrm{C}_{2} \mathrm{~N}_{2}$ or $\mathrm{C}_{4} \mathrm{~N}_{2}$. In the nominal model, acrylonitrile stratospheric production, despite the low rate coefficient for (R156), is clearly dominated by (S23) over (S22). Monks et al. [1993] assume an addi-tion-decomposition process as the favored mechanism of (R156) through analogy with (R155) and (R29). However, a definitive yield for acrylonitrile production was not given as only trace amounts of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ were identified in the experiment. Thus an excessively large reaction rate for acrylonitrile production through (R156), as well as excessive aerosol opacity in the NUV as discussed in section 5.2, are possible explanations for the large stratospheric abundance of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ calculated by the model.

5.5. Will Ammonia Be Detected?

[64] Ammonia has not been detected in Titan's atmosphere but does serve prominently in Saturn's atmosphere and may have played a significant role in the formation of Titan's present nitrogen inventory [Atreya et al., 1978; Atreya and Wilson, 2001]. Bernard et al. [2003] detected ammonia in their electron discharge simulations of Titan's atmosphere. They correctly point out that the source of ammonia molecules would likely arise through chargedparticle chemistry. Apart from a supply of primordial NH_{3} from the interior, any ammonia in Titan's strato-

Figure 17. Constituent profiles for various amine species.
sphere will be the result of cosmic-ray ionization of N_{2}, through the mechanism

$$
\begin{gather*}
\mathrm{N}_{2}+G C R \rightarrow \mathrm{~N}^{+}+\mathrm{N}+e^{-} \\
\mathrm{CH}_{4}+\mathrm{N}^{+} \rightarrow \mathrm{HCN}^{+}+\mathrm{H}_{2}+\mathrm{H} \\
\mathrm{CH}_{4}+\mathrm{HCN}^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{NH}_{2} \tag{S34}\\
\mathrm{~N}_{2}+\frac{\mathrm{NH}_{2}+\mathrm{H} \xrightarrow{\mathrm{M}} \mathrm{NH}_{3}}{\mathrm{CH}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{N}+\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{3}^{+}}+e^{-}
\end{gather*}
$$

[65] However, this mechanism results in an ammonia mole fraction of only 9.6×10^{-13} at 120 km (Figure 17). The profile of NH_{3} indicates a decrease in mole fraction above this level as a result of smaller cosmic ray precipitation, followed by an increasing profile with altitude at higher levels due to the greater influence of precipitating electrons in the upper atmosphere. In this region, electron recombination of ammonium ions, as suggested by Atreya [1986], is the most likely ammonia source. The larger estimate for NH_{3} by Bernard et al. [2003] is most likely a result of the use of electron discharge as the primary energy source.
[66] The amino radical $\left(\mathrm{NH}_{2}\right)$, produced through (R336a), is responsible for the formation of other amine species, such as $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{R} 174 \mathrm{~b})$ and $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{R} 175)$. Figure 17 shows methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ as the most abundant of the amine species in the stratosphere. However, barring a significant source of primordial ammonia, the low densitites of ammonia may preclude detection by Cassini-Huygens.

5.6. Oxygen Species

[67] Buoyed by the recent detection of $\mathrm{H}_{2} \mathrm{O}$ on the giant planets, Feuchtgruber et al. [1997] estimate a water influx of $3-50 \times 10^{5} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. With the recent detection of $\mathrm{H}_{2} \mathrm{O}$ in Titan's atmosphere, it is evident that this applies to Titan as well. CO is the most abundant oxygen-bearing molecule in Titan's atmosphere. Sensitive millimeter observations have found a uniformly mixed carbon monoxide profile at $\sim 5 \times$ 10^{-5} [Muhleman et al., 1984; Gurwell and Muhleman, 1995], although further millimeter observations [Hidayat et al., 1998] and near infrared observations [Noll et al., 1996] have suggested lower abundances with stratospheric deple-
tion. Using a surface CO mole fraction of 5×10^{-5} from the Gurwell and Muhleman [1995] finding of $5 \pm 1 \times 10^{-5}$ and an external $\mathrm{H}_{2} \mathrm{O}$ influx of $5 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ [Feuchtgruber et al., 1997], abundances are calculated for oxygen-bearing species, shown in Figure 18.
[68] ISO confirmed the existence of water vapor in Titan's atmosphere as Coustenis et al. [1998] found a uniform $\mathrm{H}_{2} \mathrm{O}$ profile at 4×10^{-10} consistent with the obtained $\mathrm{H}_{2} \mathrm{O}$ spectrum. However, scaling the Lara et al. [1996] $\mathrm{H}_{2} \mathrm{O}$ model profile by a factor of 0.4 yielded a profile with an $\mathrm{H}_{2} \mathrm{O}$ mole fraction of $8_{-4}^{+6} \times 10^{-9}$ at 400 km to fit the ISO data. The nominal model finds agreement with this observation as shown in Figure 18.
[69] With (R219) as the primary source of CO_{2}, the IRIS carbon dioxide observations argue for an external source of water. Coustenis et al. [1989] found a uniform mole fraction profile of $1.4_{-0.5}^{+0.3} \times 10^{-8}$ to fit IRIS observations, although a linear scaling of a altitude-dependent CO_{2} profile of Samuelson et al. [1983], yielding a CO_{2} mole fraction of 1.4×10^{-8} at 1.5 mbar where the value of the CO_{2} contribution function was about 35% of the peak value at 4 mbar, provided a decent fit. The nominal profile of CO_{2} is consistent with the IRIS observations, rendering a CO_{2} mole fraction of 1.4×10^{-8} at 4 mbar.
[70] The nominal model predicts much lower abundances for $\mathrm{CH}_{2} \mathrm{CO}$ and $\mathrm{CH}_{3} \mathrm{OH}$ in the stratosphere than Toublanc et al. [1995] as a result of including photolysis which provides

Figure 18. Constituent profiles for various oxygenbearing species with the horizontal bar representing the ISO $\mathrm{H}_{2} \mathrm{O}$ observations based on the Lara et al. [1996] profile, and the box representing the Voyager IRIS CO_{2} observations.
the main sink for these compounds. Toublanc et al. [1995] refer the absorption cross section of ketene to that of $\mathrm{H}_{2} \mathrm{O}$, although the absorption cross section for $\mathrm{CH}_{2} \mathrm{CO}$ extends past 3000 A [Rabalais et al., 1971], much further than that of $\mathrm{H}_{2} \mathrm{O}(2000 \AA$ A $)$. Furthermore, the nominal model includes the measurement of the $\mathrm{CH}_{3} \mathrm{OH}$ cross section [Wodtke and Lee, 1987], not included in previous models.
[71] However, formaldehyde is predicted to be in greater abundance than in previous models, perhaps near the levels of detection in the stratosphere. $\mathrm{H}_{2} \mathrm{CO}$ is formed through self-reaction of formic acid (HCO), which is produced via pressure-dependent H -attachment to CO , demonstrated in (S29). The calculated $\mathrm{H}_{2} \mathrm{CO}$ mole fraction of 1.0×10^{-9} at 4 mbar and the corresponding condensation at the tropopause indicate the possibility of detection of $\mathrm{H}_{2} \mathrm{CO}$ gas and condensate by the GCMS, CIRS, and ACP instruments during the upcoming Cassini-Huygens exploration.
[72] The significant abundance of formaldehyde also suggests the possibility of detection of ethylene oxide $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)$ in Titan's stratosphere. Ethylene oxide was detected in the Titan simulations of Bernard et al. [2003], although they did not detect formaldehyde, presumably a result of the lack of water in their experiments. The isomer of ethylene oxide, acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ is largely produced through the synthesis of methyl radicals and formic acid at higher pressures (R223) and it is redistributed in the oxygen family via reaction with N atoms (R283), released by cosmic rays, and through photolysis. This balance results in a calculated peak $\mathrm{CH}_{3} \mathrm{CHO}$ mole fraction of 4.7×10^{-10} at 1 mbar , suggesting possible identification by CassiniHuygens. Ethylene oxide, on the other hand, is formed less efficiently in Titan's atmosphere, produced by the synthesis of ethylene and oxygen atoms [Gaedtke et al., 1973]. Considering this synthesis and the photodissociation of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ [Fleming et al., 1959], ethylene oxide is expected to be present in Titan's atmosphere in abundances of $1-$ 2 orders of magnitude less than acetaldehyde.
[73] A major question involving the distribution of these oxygen-bearing molecules is what the source of carbon monoxide is. Samuelson et al. [1983] suggested a source from the water influx through the mechanism $\mathrm{OH}+\mathrm{CH}_{3} \rightarrow$ $\mathrm{CO}+2 \mathrm{H}_{2}$. However, this was an overall reaction mechanism that was measured by Fenimore [1969]. No laboratory studies [e.g., De Avillez Pereira et al., 1997; Fagerström et al., 1993] have detected CO as a product of this reaction, and no mechanism involving the products of $\mathrm{CH}_{3}+\mathrm{OH}$ forming CO is evident. Lara et al. [1996] calculated an upward flux from the surface of 1.6×10^{6} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ necessary to maintain an mole fraction of $5 \times$ 10^{-5} in equilibrium, which they deem to be unlikely over the course of Titan evolution. Consequently, they have suggested that CO may be provided directly from the influx of micrometeorites, although a typical cometary inventory of CO does not provide enough influx to achieve equilibrium.
[74] Primordial CO remains the most likely source. Bézard et al. [2002] report the likelihood that CO is primordial on Jupiter, on the basis of the CO abundance in the troposphere. The Titan nominal model calculates an upward CO flux of $3.9 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ necessary to maintain photochemical equilibrium. Oxygen is lost from the atmosphere through condensation of CO_{2} and $\mathrm{H}_{2} \mathrm{CO}$,
which combines for an upper limit condensation flux of $4.0 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ as determined by the net production rate shown in Table 7. Surficial processes such as outgassing from the interior or irradiation of CO_{2} and $\mathrm{H}_{2} \mathrm{CO}$ condensates may balance this oxygen loss to the surface, providing a source for CO . Another possibility is that CO is not in equilibrium and was more abundant in Titan's past. Wong et al. [2002] postulate that CO may have been as much as 14 times more abundant after the initial escape stage in Titan's early evolution.

5.7. Charged Particles

[75] As shown in section 4.4, ions produced through N_{2} and CH_{4} ionization, in particular $\mathrm{N}_{2}^{+}, \mathrm{N}^{+}, \mathrm{CH}_{4}^{+}$, and CH_{3}^{+} begin the chemical processes that furnish Titan's ionosphere. Figure 19 shows the relative importance of photoionization and photoelectron-impact ionization in the formation of these ions. Electron impact becomes important only below 1000 km , providing an important source in the lower part of this ionospheric region. Five times more N_{2}^{+} than N^{+}is produced at the peak of ion production through N_{2} ionization, facilitating the formation of abundant ions $\mathrm{C}_{2} \mathrm{H}_{5}^{+}$and $\mathrm{H}_{2} \mathrm{CN}^{+}$through (S28) and (S29). Comparing these production rates with previous Titan ionosphere models show that the Keller et al. [1992] model provides an N_{2}^{+}production rate peak due to photoionization about three times larger than the nominal profile and about twice as large for CH_{4}^{+}, while Banaszkiewicz et al. [2000] exceeds the nominal rates by 3.5 and 3 times, respectively. The reason for this discrepancy is not evident, but the fact that Banaszkiewicz et al. [2000] consider photoionization at a solar zenith angle of 30° would certainly be a factor in enhancing their photoionization rates with respect to the nominal model.
[76] The Banaszkiewicz et al. [2000] model shows a significant decrease in the CH_{4} ionospheric density due to the inclusion of ion chemistry. However, our results indicate that loss of CH_{4} through chemistry, which is larger than determined by Lara et al. [1999], peaking at $13 \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$ at 1040 km for solar maximum conditions, is more than replenished by the transport of methane from lower altitudes. An increase in the electron flux by a factor of 10 would be necessary to deplete methane whereby the mole fraction decreases with altitude in this region (Figure 20a), but such an increase would result in a peak electron density of $9740 \mathrm{~cm}^{-3}$ (Figure 20b), 24 times larger than observations.
[77] With the influence of EUV radiation on the formation of electrons, the electron density has a strong dependence on solar conditions, as exhibited in Figure 21a. For solar maximum conditions, consistent with those which took place during the Voyager flyby, the nominal model calculates an electron density profile which peaks at a density of $4200 \mathrm{~cm}^{-3}$ at $1060 \mathrm{~km}, 20 \%$ larger than the upper limit of the Bird et al. [1997] radio occultation observations. Considering the differences in production rates, it is not surprising that electron densities of Keller et al. [1992] and Banaszkiewicz et al. [2000] are larger by about 40% than the nominal model. Assuming electronimpact processes to be scaled for solar minimum and solar moderate conditions, Figure 21a shows a 24% decrease in the peak electron concentration from solar maximum

Figure 19. Production rates of $\mathrm{N}_{2}^{+}, \mathrm{N}^{+}, \mathrm{CH}_{4}^{+}$, and CH_{3}^{+}ions from photoionization (dashed line), electron impact (dotted line), and the sum of the two processes (solid line).
conditions for moderate solar activity, which should have implications in the INMS observations from the upcoming Cassini-Huygens mission.
[78] Nominal ion densities, calculated for solar maximum conditions, are shown in Figures 21b and 21c. In agreement with Banaszkiewicz et al. [2000] and Keller et al. [1992] the nominal model finds $\mathrm{H}_{2} \mathrm{CN}^{+}$as the major ion above 1000 km . Below this level, a pseudoion representing the collection of larger ions not considered separately in the model is found to dominate, necessitating the kinetic study and modeling of higher order ions.
[79] The most abundant oxidized ion is $\mathrm{H}_{3} \mathrm{O}^{+}$, formed by

$$
\begin{align*}
& 2 \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}+\mathrm{H}+e^{-} \\
& \frac{\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}}{-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}+\mathrm{H}}+e^{-} \tag{S35}
\end{align*} .
$$

However, the primary function of $\mathrm{H}_{3} \mathrm{O}^{+}$is recycling back to $\mathrm{H}_{2} \mathrm{O}$, through

$$
\begin{equation*}
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O}, \tag{R494}
\end{equation*}
$$

as shown in (S23).
[80] In the stratosphere, an ionosphere develops as well, as a result of cosmic ray ionization of nitrogen. Methane cosmic ray destruction, which is shielded by nitrogen, occurs at a much lesser extent. This cosmic ray deposition, which plays a significant role in nitrile chemistry in the stratosphere as shown previously, results in an electron peak of $1410 \mathrm{~cm}^{-3}$ at 120 km for maximum solar conditions. This value increases to $2010 \mathrm{~cm}^{-3}$ (Figure 4b) with a moderate sun, as cosmic rays diffuse more efficiently during periods of reduced solar activity [Jokipii and Kopriva, 1979]. As products of reactions with larger stable molecules

Figure 20. a) CH_{4} mole fraction and b) electron density profiles for maximum solar conditions with nominal electron fluxes (solid line) and $10 \times$ nominal electron fluxes (dashed line).
like ethane and acetonitrile, ions like $\mathrm{C}_{4} \mathrm{H}_{7}^{+}(\mathrm{R} 413 \mathrm{~b})$, $\mathrm{C}_{2} \mathrm{H}_{7}^{+}(\mathrm{R} 376 \mathrm{~b}), \mathrm{HCO}^{+}(\mathrm{R} 379), \mathrm{CH}_{3} \mathrm{CNH}^{+}(\mathrm{R} 347)$, and $\mathrm{C}_{5} \mathrm{H}_{5}^{+}(\mathrm{R} 430)$, serve as the gateway to the formation of the large ions which populate Titan's lower ionosphere, as demonstrated by Molina-Cuberos et al. [1999]. Ion clusters, as stated before, may also play a significant role in the lower ionosphere.

6. Conclusions

[81] The results of a one-dimensional photochemical model of Titan's neutral constituents and charged particles have been reported. This model contains updated chemistry and an extensive treatment of dissociation processes from solar photons at $50-3000 \AA$ and electrons at $15-1000 \mathrm{eV}$, as well as parameterization of processes including galactic cosmic rays, magnetospheric electrons, and opacity provided by fractal haze particles.
[82] A test of various eddy diffusion profiles has revealed a profile with a homopause level of 850 km to provide the best fit to IRIS and ISO stratospheric observations as well as UVS observations in the upper atmosphere. With such a profile, fitted with the assumption of methane supersaturation near the tropopause, as analyzed by the Samuelson et al. [1997] study, the nominal model provides a good fit for the bulk of Titan stratospheric observations and provides a reasonable fit for most of the Voyager UVS reanalysis
observations, an improvement over previous models. In this model, loss of HCN due to polymerization to Titan haze is not required to match observations. The profile of Lara et al. [2002], derived with a more extreme scenario of tropospheric methane supersaturation suggested by Courtin et al. [1995], was also tested. This profile, although providing a good fit of CH_{4} and HCN observations, significantly underestimates stratospheric $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ and overestimates $\mathrm{C}_{4} \mathrm{H}_{2}$ in the lower and middle atmosphere. The nominal profile, assuming opacity provided by fractal haze particles from Lebonnois et al. [2001], underpredicts the $\mathrm{C}_{3} \mathrm{H}_{8}$ stratospheric mole fraction by about a factor of two, while rendering profiles for $\mathrm{HC}_{3} \mathrm{~N}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ that are not consistent with the lack of firm detection by the IRIS equatorial observations. Assuming Mie haze opacities, these profiles fall much more in line with what has and has not been observed, suggesting that the opacities for the fractal case used in the model may be too large.
[83] Dynamics is certain to play an important role in the distribution of Titan's constituents and the effect of dynamical processes should certainly be explored. However,

Figure 21. Density distribution of ions in Titan's upper ionosphere.
considering the limitations of existing observations, the uncertainties in other parameters such as aerosol opacity, and the results of the model, it is not possible to rule out the possibility that the globally averaged distribution of Titan's constituents can be accurately and simultaneously described with a single eddy-diffusion profile.
[84] Considering the differences in the expected solar flux during the upcoming Cassini-Huygens mission and the more enhanced solar flux during the Voyager flyby of Titan, sensitivity to variations in solar flux during the course of solar cycle has been explored. With the large chemical lifetimes of most of the stable constituents in Titan's atmosphere, only $\mathrm{C}_{4} \mathrm{H}_{2}$ demonstrated significant sensitivity among likely observed species, with stratospheric densities for moderate solar conditions reduced by about 60% from solar maximum conditions and a variation of a factor of three from solar maximum to solar minimum.
[85] The profile of $\mathrm{C}_{6} \mathrm{H}_{6}$ is improved on the basis of ISO observations [Coustenis et al., 2003], compared with previous studies by the authors [Wilson et al., 2003]. The inclusion of haze opacity sharply reduces the amount of benzene photolysis, the primary sink for $\mathrm{C}_{6} \mathrm{H}_{6}$ in the stratosphere. With this inclusion, the profile of $\mathrm{C}_{6} \mathrm{H}_{6}$ under nominal Titan temperature dependency matches the ISO observations and suggests a mechanism for haze production peaking at 180 km .
[86] A mechanism for the formation of $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ is proposed with the aid of the kinetic measurements of Canosa et al. [1997]. Assuming a branching ratio of 0.5 for methylacetylene production through $\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4}$, the profile of $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ finds good agreement with observations, over the results of previous models. In agreement with previous models exploring Titan's ionosphere, the dominant ion at the electron peak is found to be $\mathrm{H}_{2} \mathrm{CN}^{+}$, with larger ions making up the bulk of Titan's ionosphere below 1000 km . The peak of electron density is found to be $4200 \mathrm{~cm}^{-3}$, a 20% enhancement over the observations of Bird et al. [1997]. The electron peak density is expected to be reduced by about 24% for moderate solar conditions. CassiniHuygens will encounter variations in the magnetospheric input into the ionosphere. Any major enhancement of magnetospheric electrons over what was found by Voyager should affect the electron density above 1150 km , with no major effect on atmospheric neutrals.
[87] The Cassini-Huygens mission will seek to answer many of the questions explored in this study, among many others. Results from this model indicate the possible detection of $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ by the Composite Infrared Spectrometer (CIRS) and the Gas Chromatograph Mass Spectrometer (GCMS), although acrylonitrile abundances may be overpredicted due to chemistry or opacity assumptions. Benzene, already tentatively detected by ISO [Coustenis et al., 2003] is predicted to be observed by these instruments, and the analysis of aerosols by the Aerosol Collector Pyrolyser (ACP) will enhance what we know about the composition and formation processes of Titan's aerosols. Furthermore, observations of constituents like $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ by the Ultraviolet Imaging Spectrograph (UVIS) and the Ion and Neutral Mass Spectrometer (INMS) will further increase our understanding of the chemical and diffusive processes in the upper atmosphere. This model in conjunction with data
can be used as a helpful tool in furthering the understanding of Titan's atmosphere.

Appendix A: Finite Differencing and Matrix Solver

[88] The photochemical model solves the continuitydiffusion equation in spherical coordinates, accounting for condensation,

$$
P_{i}-L_{i}-\gamma_{i}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} \Phi_{i}\right)}{\partial r}
$$

where Φ_{i} is taken to be the flux of species i in the radial direction. Multiplying both sides by r^{2} and integrating over the interval $\left[\tilde{r}_{1}, \tilde{r}_{2}\right]$ yields

$$
\int_{\tilde{r}_{2}}^{\tilde{r}_{1}} \frac{\partial\left(r^{2} \Phi_{i}\right)}{\partial r} d r=\int_{\tilde{r}_{2}}^{\tilde{r}_{1}} r^{2}\left[P_{i}-L_{i}-\gamma_{i}\right] d r
$$

or

$$
\begin{aligned}
\tilde{r}_{1}^{2} \Phi_{i}\left(\tilde{r}_{1}\right)-\tilde{r}_{2}^{2} \Phi_{i}\left(\tilde{r}_{2}\right)= & \frac{1}{3} \tilde{r}_{1}^{3}\left[P_{i}(r)-L_{i}(r)-\gamma_{i}(r)\right] \\
& -\frac{1}{3} \tilde{r}_{2}^{3}\left[P_{i}(r)-L_{i}(r)-\gamma_{i}(r)\right]
\end{aligned}
$$

assuming $P_{i}-L_{i}-\gamma_{i}$ constant over the interval $\left[\tilde{r}_{1}, \tilde{r}_{2}\right]$. Equations (2) and (4) indicate that $n=n\left(\xi_{1}^{A}, \ldots, \xi_{S}^{A}\right)$ where the $\xi_{1}^{A}, \ldots, \xi_{S}^{A}$ are the S abundant species which affect the mean molecular weight, defined as species with a mole fraction greater than 10^{-3} for a particular level r. So, $\Phi_{i}=$ $\Phi_{i}\left(n\left(\xi_{1}^{A}, \ldots, \xi_{S}^{A}\right), \xi_{i}\right)$ and the P_{i}, L_{i}, and γ_{i} are functions of $n\left(\xi_{1}^{A}, \ldots, \xi_{S}^{A}\right)$ and the ξ_{1}, \ldots, ξ_{N} for M species and N atmospheric levels. Charged particles are assumed to be governed solely by chemistry, with $\Phi_{i}=0$, and the assumption of charge neutrality

$$
n_{e}=\sum_{i} n_{i}
$$

where n_{e} is the electron density and n_{i} is the density of each ion i.
[89] This system of equations is set up through finite differencing on a grid where the fluxes are expressed in terms of its values at $\tilde{r}_{1}=r_{i+1 / 2}$ and $\tilde{r}_{2}=r_{i-1 / 2}$, assuming that they are linear in the intervals $[i-1, i]$ and $[i, i+1]$, while the chemical terms are expressed at $r=r_{i}$. Thus for a quantity Q ,

$$
Q\left(\tilde{r}_{1}\right)=\frac{Q\left(r_{i+1}\right)+Q\left(r_{i}\right)}{2}, Q\left(\tilde{r}_{2}\right)=\frac{Q\left(r_{i}\right)+Q\left(r_{i-1}\right)}{2}
$$

while

$$
\frac{\partial Q\left(\tilde{r}_{1}\right)}{\partial z}=\frac{Q\left(r_{i+1}\right)-Q\left(r_{i}\right)}{r_{i+1}-r_{i}}, \frac{\partial Q\left(\tilde{r}_{2}\right)}{\partial z}=\frac{Q\left(r_{i}\right)-Q\left(r_{i-1}\right)}{r_{i}-r_{i-1}} .
$$

At the lower boundary, the mixing ratios ξ_{1}, \ldots, ξ_{N} and number density n are set to zero or their lower boundary
conditions, shown in Table 5, where n is described by equation (5). At the upper boundary, the flux equations are finite differenced where, using equation (2),

$$
\begin{aligned}
\Phi_{i}\left(\tilde{r}_{N}\right)= & -\left[D_{i}\left(\tilde{r}_{N}\right)+K\left(\tilde{r}_{N}\right)\right] n\left(\tilde{r}_{N}\right) \frac{\partial \xi_{i}\left(\tilde{r}_{N}\right)}{\partial z} \\
& -D_{i}\left(\tilde{r}_{N}\right) \xi\left(\tilde{r}_{N}\right)\left[\frac{\partial n\left(\tilde{r}_{N}\right)}{\partial z}+n\left(\tilde{r}_{N}\right)\left(\frac{1}{T\left(\tilde{r}_{N}\right)} \frac{\partial T\left(\tilde{r}_{N}\right)}{\partial z}\right.\right. \\
& \left.\left.+\frac{1}{H_{i}\left(\tilde{r}_{N}\right)}\right)\right] \\
= & \beta_{i}^{\Phi}
\end{aligned}
$$

where for quantity Q ,

$$
Q\left(\tilde{r}_{N}\right)=\frac{Q\left(r_{N}\right)+Q\left(r_{N-1}\right)}{2}, \frac{\partial Q\left(\tilde{r}_{N}\right)}{\partial z}=\frac{Q\left(r_{N}\right)-Q\left(r_{N-1}\right)}{r_{N}-r_{N-1}}
$$

and $\beta_{i}^{\Phi}=$ flux boundary condition for species i. For species H and H_{2}, the velocity equations at the boundary from equation (15) are expressed as

$$
\begin{aligned}
w_{i}\left(\tilde{r}_{N}\right)= & -\left[D_{i}\left(\tilde{r}_{N}\right)+K\left(\tilde{r}_{N}\right)\right] \frac{\partial \ln \left(\xi_{i}\left(\tilde{r}_{N}\right)\right)}{\partial z} \\
& -D_{i}\left(\tilde{r}_{N}\right)\left[\frac{\partial \ln \left(n\left(\tilde{r}_{N}\right)\right)}{\partial z}+\left(\left(1+\alpha_{i}\left(\tilde{r}_{N}\right)\right) \frac{1}{T\left(\tilde{r}_{N}\right)} \frac{\partial T\left(\tilde{r}_{N}\right)}{\partial z}\right.\right. \\
& \left.\left.+\frac{1}{H_{i}\left(\tilde{r}_{N}\right)}\right)\right] \\
= & \beta_{i}^{w}
\end{aligned}
$$

where for quantity Q ,

$$
\frac{\partial \ln \left(Q_{i}\left(\tilde{r}_{N}\right)\right)}{\partial z}=\frac{1}{Q_{i}\left(\tilde{r}_{N}\right)} \frac{\partial Q_{i}\left(\tilde{r}_{N}\right)}{\partial z}=\frac{\ln \left(Q_{i}\left(r_{N}\right)\right)-\ln \left(Q_{i}\left(r_{N-1}\right)\right)}{r_{N}-r_{N-1}}
$$

and $\beta_{i}^{w}=$ velocity boundary condition for species i.
[90] Meanwhile, equations (3) and (4) can be combined with expression (1) and expressed in terms of r_{i-1}, r_{i}, and r_{i+1} to calculate the total density

$$
\begin{gather*}
r^{2} \nabla_{r} p=-r^{2} n m g \\
\int_{\tilde{r}_{2}}^{\tilde{r}_{1}} \frac{\partial}{\partial r}\left(r^{2} p\right) d r=-G M \int_{\tilde{r}_{2}}^{\tilde{r}_{1}} \frac{r^{2} n m}{r^{2}} d r \\
\tilde{r}_{1}^{2} p\left(\tilde{r}_{1}\right)-\tilde{r}_{2}^{2} p\left(\tilde{r}_{2}\right)=-G M n(r) m(r)\left[\tilde{r}_{1}-\tilde{r}_{2}\right] \tag{A1}
\end{gather*}
$$

or, taking condensation into account,

$$
\tilde{r}_{1}^{2} p\left(\tilde{r}_{1}\right)-\tilde{r}_{2}^{2} p\left(\tilde{r}_{2}\right)=-G M\left[n(r) m(r)-\gamma^{c}\right]\left[\tilde{r}_{1}-\tilde{r}_{2}\right]
$$

where

$$
p\left(\tilde{r}_{1}\right)=\frac{n\left(\tilde{r}_{1}\right) k T\left(\tilde{r}_{1}\right)}{f\left(\tilde{r}_{1}\right)}, p\left(\tilde{r}_{2}\right)=\frac{n\left(\tilde{r}_{2}\right) k T\left(\tilde{r}_{2}\right)}{f\left(\tilde{r}_{2}\right)}
$$

$$
\gamma^{c}=\left\{\begin{array}{c}
{\left[n m(r)-n m^{s a t}(r)\right]^{p}, m(r) m^{s a t}(r)} \\
-\left[n m^{s a t}(r)-n m(r)\right]^{p}, m^{s a t}(r) m(r)
\end{array},\right.
$$

and

$$
m(r)=\sum_{j}^{S} \xi_{j}^{A}(r) m\left(\xi_{j}^{A}(r)\right)
$$

At the boundary $\left(r=r_{N}\right)$, since $\tilde{r}_{1}=R_{0}+z-\frac{1}{2} \Delta z$ and $\tilde{r}_{2}=$ $R_{0}+z+\frac{1}{2} \Delta z$, one can write in equation (A1) $\tilde{r}_{2}=2\left(R_{0}+z\right)-$ \tilde{r}_{1} or $\tilde{r}_{2}=2 r_{N}-\tilde{r}_{1}$, where $\tilde{r}_{1}=\frac{r_{N}+r_{N-1}}{2}$, and as follows, $n\left(\tilde{r}_{2}\right)=2 n\left(r_{N}\right)-n\left(\tilde{r}_{1}\right), T\left(\tilde{r}_{2}\right)=2 T\left(r_{N}\right)-\stackrel{2}{T}\left(\tilde{r}_{1}\right)$, and $f\left(\tilde{r}_{2}\right)=2 f\left(r_{N}\right)$ $2 f\left(r_{N}\right)-f\left(\tilde{r}_{1}\right)$.
[91] To solve this set of $T=(N) \times(M+1)$ nonlinear equations, the set can be linearized by expressing the equations as

$$
f_{i}\left(\xi_{1}, \ldots, \xi_{M}, n\right)=0
$$

expanding f_{i} in a Taylor series expansion, and dropping the higher order terms,

$$
\begin{aligned}
f_{i}\left(\xi_{1}\right. & \left.+\Delta \xi_{1}, \ldots, \xi_{M}+\Delta \xi_{M}, \ldots, n+\Delta n\right) \\
= & 0 \\
= & f_{i}\left(\xi_{1}, \ldots, \xi_{M}, n\right) \\
& +\sum_{j}^{M} \frac{\partial f\left(\xi_{1}, \ldots, \xi_{M}, n\right)}{\partial \xi_{j}} \Delta \xi_{j}+\frac{\partial f\left(\xi_{1}, \ldots, \xi_{M}, n\right)}{\partial n} \Delta n
\end{aligned}
$$

This results in the formation of a Jacobian matrix

$$
\mathbf{J}=\left[\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial \xi_{1}} & \cdot & \cdot & \cdot & \frac{\partial f_{1}}{\partial \xi_{M}}
\end{array} \frac{\partial f_{1}}{\partial n} \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\frac{\partial \dot{f}_{T}}{\partial \xi_{1}} & \cdot & \cdot & \cdot \\
\frac{\partial \dot{f}_{T}}{\partial \xi_{M}} & \frac{\partial \dot{f}_{T}}{\partial n}
\end{array}\right], \Delta \mathbf{x}=\left[\begin{array}{c}
\Delta \xi_{1} \\
\cdot \\
\cdot \\
\dot{\xi_{M}} \\
\Delta n
\end{array}\right]
$$

such that

$$
\mathrm{J} \cdot \Delta \mathbf{x}=-\mathbf{f}
$$

The Jacobian can then be inverted to solve for the $\Delta \mathbf{x}=$ $\left(\Delta \xi_{1}, \ldots, \Delta \xi_{M}, \Delta n\right)$, which is then added to the $\mathbf{x}=\left(\xi_{1}, \ldots\right.$, $\left.\xi_{M}, n\right)$ and the following equation is solved iteratively

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left[\mathbf{J}^{(k)}\right]^{-1} \mathbf{f}^{(k)}
$$

until $\Delta \mathbf{x}=\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}$ falls below the tolerance level. The Jacobian matrix is solved by the Crout-LU decomposition method with scaled partial pivoting [Yakowitz and Szidarovszky, 1989], optimized for banded matrices.
[92] Acknowledgments. SKA acknowledges support received from NASA's Planetary Atmospheres Program, and the Cassini-Huygens GCMS and ACP projects. EHW acknowledges support received from the National Research Council Research Associateship Program. The authors thank Scott Edgington for useful discussions and Tom Cravens for pertinent electron fluxes.

References

Adachi, H., N. Basco, and D. G. L. James (1979), A quantitative study of alkyl radical reactions by kinetic spectroscopy. III. Absorption spectrum and rate constants of mutual interaction for the ethyl radical, Int. J. Chem. Kinet., 11, 995-1005.
Adachi, H., N. Basco, and D. G. L. James (1981), The acetyl radicals $\mathrm{CH}_{3} \mathrm{CO}$ • and $\mathrm{CD}_{3} \mathrm{CO}$ • studied by flash photolysis and kinetic spectroscopy, Int. J. Chem. Kinet., 13, 1251-1276.
Aleksandrov, E. N., V. S. Arutyunov, I. V. Dubrovina, and S. N. Kozlov (1980), Study of the reaction of atomic hydrogen with allene, Kinet. Catal., 21, 1323-1326.
Allen, C. W. (1976), Astrophysical Quantities, Athelone, London.
Allen, J. E., Jr., and R. N. Nelson (1998), Low-temperature vapor pressures of some light hydrocarbons, Bull. Am. Astron. Soc., 30, 1101-1102
Anastasi, C., and P. R. Maw (1982), Reaction kinetics in acetyl chemistry over a wide range of temperature and pressure, J. Chem. Soc. Faraday Trans., Part 1, 78, 2423-2433.
Andrieux, D., Y. Bénilan, E. de Vanssay, P. Paillous, M. Khlifi, F. Raulin, P. Bruston, and J.-C. Guillemin (1995), Absorption coefficient of propynenitrile in the mid-UV range for the study of Titan's atmosphere: Solution to sample constraints, J. Geophys. Res., 100, 9455-9460
Anicich, V. G., and M. J. McEwan (1997), Ion-molecule chemistry in Titan's ionosphere, Planet. Space Sci., 45, 897-921
Arai, H., S. Nagai, and M. Hatada (1981), Radiolysis of methane containing small amount of carbon monoxide-Formation of organic acids, Radiat. Phys. Chem., 17, 211-216.
Ashfold, M. N. R., M. A. Fullstone, G. Hancock, and G. W. Ketley (1981), Singlet methylene kinetics-Direct measurements of removal rates of ã ${ }^{1} \mathrm{~A}_{2}$ and $\mathrm{b}{ }^{\mathrm{I}} \mathrm{B}_{1} \mathrm{CH}_{2}$ and CD_{2}, Chem. Phys., 55, 245-257.
Atkinson, D. B., and J. W. Hudgens (1999), Rate coefficients for the propargyl radical self-reaction and oxygen addition reaction measured using ultraviolet cavity ring-down spectroscopy, J. Phys. Chem., 103, 42424252.

Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi, and J. Troe (1992), Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 21, 1125-1568.
Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi, and J. Troe (1997), Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 26, 1329-1499.
Atreya, S. K. (1986), Atmospheres and Ionospheres of the Outer Planets and Their Satellites, Springer-Verlag, New York.
Atreya, S. K., and E. H. Wilson (2001), Evolution of Titan's nitrogen atmosphere, paper presented at the Scientific Assembly of the International Association of Meteorology and Atmospheric Sciences, Innsbruck, Austria.
Atreya, S. K., T. M. Donahue, and W. R. Kuhn (1978), Evolution of a nitrogen atmosphere on Titan, Science, 201, 611-613.
Atreya, S. K., S. G. Edgington, D. Gautier, and T. C. Owen (1995), Origin of the major planet atmospheres: Clues from trace species, Earth Moon Planets, 67, 71-75.
Atreya, S. K., S. G. Edgington, T. Encrenaz, and H. Feuchtgruber (1999), ISO observations of $\mathrm{C}_{2} \mathrm{H}_{2}$ on Uranus and CH_{3} on Saturn: Implications for atmospheric vertical mixing in the Voyager and ISO epochs, and a call for relevant laboratory measurements, Eur. Space Agency Spec. Publ., ESASP 427, 149-152.
Au, J. W., G. Cooper, G. R. Burton, T. N. Olney, and C. E. Brion (1993), The valence shell photoabsorption of the linear alkanes, $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}(\mathrm{n}=1-8)$, absolute oscillator strengths (7-220 eV), Chem. Phys., 173, 209-239.
Backx, C., G. R. Wight, and M. J. Van der Wiel (1976), Oscillator strengths $(10-70 \mathrm{eV})$ for absorption, ionization and dissociation in $\mathrm{H}_{2}, \mathrm{HD}$ and D_{2}, obtained by an electron-ion coincidence method, J. Phys. B., 9, 315-331.
Balla, R. J., K. H. Casleton, J. S. Adams, and L. Pasternack (1991), Absolute rate constants for the reaction of CN with $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{C}_{3} \mathrm{H}_{8}$ from 292 to 1500 K using high-temperature photochemistry and diode laser absorption, J. Phys. Chem., 95, 8694-8701.
Balucani, N., L. Cartechini, M. Alagia, P. Casavecchia, and G. G. Volpi (2000), Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: A crossed beam study of $\mathrm{N}\left({ }^{2} \mathrm{D}\right)+$ ethylene, J. Phys. Chem., 104, 5655-5659.
Banaszkiewicz, M., L. M. Lara, R. Rodrigo, J. J. Lòpez-Moreno, and G. J. Molina-Cuberos (2000), A coupled model of Titan's atmosphere and ionosphere, Icarus, 147, 386-404.
Bandy, R. E., C. Lakshminarayan, R. K. Frost, and T. S. Zwier (1993), The ultraviolet photochemistry of diacetylene: Direct detection of primary products of the metastable $\mathrm{C}_{4} \mathrm{H}_{2}^{*}+\mathrm{C}_{4} \mathrm{H}_{2}$ reaction, J. Chem. Phys., 98, 5362-5374.

Banks, P. M., and G. Kockarts (1973), Aeronomy, Academic, San Diego, Calif.
Bartels, M., J. Edelbüttel-Einhaus, and K. Hoyermann (1991), The detection of $\mathrm{CH}_{3} \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{5}$, and $\mathrm{CH}_{3} \mathrm{CHO}$ by REMPI/mass spectrometry and the application to the study of the reactions $\mathrm{H}+\mathrm{CH}_{3} \mathrm{CO}$ and $\mathrm{O}+\mathrm{CH}_{3} \mathrm{CO}$, Symp. Int. Combust. Proc., 23, 131-138.
Baulch, D. L., et al. (1992), Evaluated kinetic data for combustion modelling, J. Phys. Chem. Ref. Data, 21, 411-734.
Baulch, D. L., et al. (1994), Evaluated kinetic data for combustion modeling supplement I, J. Phys. Chem. Ref. Data, 23, 847-1033.
Becker, K. H., B. Engelhardt, P. Wiesen, and K. D. Bayes (1989), Rate constants for $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ reactions at low total pressures, Chem. Phys. Lett., 154, 342-348.
Bénilan, Y., P. Bruston, F. Raulin, C. Cossart-Magos, and J.-C. Guillemin (1994), Mid-UV spectroscopy of propynenitrile at low temperature: Consequences on expected results from observations of Titan's atmosphere, J. Geophys. Res., 99, 17,069-17,074

Bénilan, Y., P. Bruston, F. Raulin, R. Courtin, and J.-C. Guillemin (1995), Absolute absorption of $\mathrm{C}_{6} \mathrm{H}_{2}$ in the mid-UV range at low-temperatureImplications for the interpretation of Titan atmospheric spectra, Planet. Space Sci., 43, 83-89.
Bénilan, Y., D. Andrieux, M. Khlifi, P. Bruston, F. Raulin, J.-C. Guillemin, and C. Cossart-Magos (1996), Temperature dependence of $\mathrm{HC}_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{2}$, and $\mathrm{C}_{4} \mathrm{~N}_{2}$ mid-UV absorption coefficients: Application to the interpretation of Titan's atmospheric spectra, Astrophys. Space Sci., 236, 85-95.
Bergmann, K., and W. Demtröder (1968), Mass-spectrometric investigation of the primary processes in the photodissociation of 1,3-butadiene, J. Chem. Phys., 48, 18-22

Bernard, J.-M., P. Coll, A. Coustenis, and F. Raulin (2003), Experimental simulation of Titan's atmosphere: Detection of ammonia and ethylene oxide, Planet. Space Sci., 51, 1003-1011.
Bézard, B., A. Marten, and G. Paubert (1993), Detection of acetonitrile on Titan, Bull. Am. Astron. Soc., 25, 1100.
Bézard, B., E. Lellouch, D. Strobel, J.-P. Maillard, and P. Drossart (2002), Carbon monoxide on Jupiter: Evidence for both internal and external sources, Icarus, 159, 95-111
Bird, M. K., R. Dutta-Roy, S. W. Asmar, and T. A. Rebold (1997), Detection of Titan's ionosphere from Voyager 1 radio occultation observations, Icarus, 130, 426-436.
Black, G., T. G. Slanger, G. A. St. John, and R. A. Young (1969), Vacuumultraviolet photolysis of $\mathrm{N}_{2} \mathrm{O}$. IV, Deactivation of N($\left.{ }^{2} \mathrm{D}\right)$, J. Chem. Phys., 51, 116-121.
Bohland, T., F. Temps, and H. G. Wagner (1985), The contribution of intersystem crossing and reaction in the removal of $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$ by hydrocarbons studied with the LMR, Ber. Bunsen-Ges. Phys. Chem., 89, 1013-1018.
Bohland, T., F. Temps, and H. G. Wagner (1986), Kinetics of the reactions of $\mathrm{CH}_{2}\left(\mathrm{X}^{3} \mathrm{~B}_{1}\right)$-radicals with $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{4} \mathrm{H}_{2}$ in the temperature range 296 K $\leq \mathrm{T} \leq 700$ K, Symp. Int. Combust. Proc., 21, 841-850.
Bosco, S. R., D. F. Nava, W. D. Brobst, and L. J. Stief (1984), Temperature and pressure dependence of the absolute rate constant for the reactions of NH_{2} radicals with acetylene and ethylene, J. Chem. Phys., 81, 35053511.

Braun, W., A. M. Bass, and M. Pilling (1970), Flash photolysis of ketene and diazomethane: Production and reaction kinetics of triplet and single methylene, J. Chem. Phys., 52, 5131-5143.
Broadfoot, A. L., et al. (1981), Extreme ultraviolet observations from Voyager 1 encounter with Saturn, Science, 212, 206-211.
Brook, E., M. F. A. Harrison, and A. C. H. Smith (1978), Measurements of the electron impact ionisation cross sections of $\mathrm{He}, \mathrm{C}, \mathrm{O}$ and N atoms, J. Phys. B., 11, 3115-3132.

Brouard, M., M. T. MacPherson, and M. J. Pilling (1989), Experimental and RRKM modeling study of the $\mathrm{CH}_{3}+\mathrm{H}$ and $\mathrm{CH}_{3}+\mathrm{D}$ reactions, J. Phys. Chem., 93, 4047-4059.
Brownsword, R. A., S. D. Gatenby, L. B. Herbert, I. W. M. Smith, D. W. A. Stewart, and A. C. Symonds (1996), Kinetics of reactions between neutral free radicals-Rate constants for the reaction of CH radicals with N atoms between 216 and 584 K, J. Chem. Soc. Faraday Trans., 92, 723727.

Brownsword, R. A., A. Canosa, B. R. Rowe, I. R. Sims, I. W. M. Smith, D. W. A. Stewart, A. C. Symonds, and D. Travers (1997), Kinetics over a wide range of temperature ($13-744 \mathrm{~K}$): Rate constants for the reactions of $\mathrm{CH}(\nu=0)$ with H_{2} and D_{2} and for the removal of $\mathrm{CH}(\nu=1)$ by H_{2} and D_{2}, J. Chem. Phys., 106, 7662-7677.
Bruston, P., H. Poncet, F. Raulin, C. Cossart-Magos, and R. Courtin (1989), UV spectroscopy of Titan's atmosphere, planetary organic chemistry, and prebiological synthesis, Icarus, 78, 38-53.
Butterfield, M. T., T. Yu, and M. C. Lin (1993), Kinetics of CN reactions with allene, butadiene, propylene, and acrylonitrile, Chem. Phys., 169, 129-134.

Canosa, A., I. R. Sims, D. Travers, I. W. M. Smith, and B. R. Rowe (1997), Reactions of the methylidiyne radical with $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and but-1-ene studied between 23 and 295 K with a CRESU apparatus, Astron. Astrophys., 323, 644-651.
Capone, L. A., J. Dubach, S. S. Prasad, and R. C. Whitten (1983), Galactic cosmic rays and N_{2} dissociation on Titan, Icarus, 55, 73-82.
Carstensen, H.-H., and H. G. Wagner (1995), Investigations of the reactions of ${ }^{1} \mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}, \nu=0,1\right)$ with $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$, and HCl , Ber. Bunsen-Ges. Phys. Chem., 99, 1539-1545.
Carty, D., V. LePage, I. R. Sims, and I. W. M. Smith (2001), Low temperature rate coefficients for the reactions of CN and $\mathrm{C}_{2} \mathrm{H}$ radicals with allene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}\right)$ and methylacetylene $\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right)$, Chem. Phys. Lett., 344, 310-316.
Chan, W. F., G. Cooper, and C. E. Brion (1992), Absolute optical oscillator strengths ($11-20 \mathrm{eV}$) and transition moments for the photoabsorption of molecular hydrogen in the Lyman and Werner bands, Chem. Phys., 168, 375-388.
Chan, W. F., G. Cooper, R. N. S. Sodhi, and C. E. Brion (1993), Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11-200 eV), Chem. Phys., 170, 81-97.
Chang, A. H. H., A. M. Mebel, X. M. Yang, S. H. Lin, and Y. T. Lee (1998), Ab initio/RRKM approach toward the understanding of ethylene photodissociation, J. Chem. Phys., 109, 2748-2761.
Chastaing, D., P. L. James, I. R. Sims, and I. W. M. Smith (1998), Neutralneutral reactions at the temperatures of interstellar clouds: Rate coefficients for reactions of $\mathrm{C}_{2} \mathrm{H}$ radicals with $\mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$ down to 15 K, Faraday Discuss. Chem. Soc., 109, 165-181.
Chen, F. Z., D. L. Judge, and C. Y. R. Wu (2000), Temperature dependent photoabsorption cross sections of allene and methylacetylene in the VUV-UV region, Chem. Phys., 260, 215-223.
Cherian, M. A., P. Rhodes, R. J. Simpson, and G. Dixon-Lewis (1981), Kinetic modelling of the oxidation of carbon monoxide in flames, Symp. Int. Combust. Proc., 18, 385-393.
Clarke, D. W., and J. P. Ferris (1995), Photodissociation of cyanoacetylene: Application to the atmospheric chemistry on Titan, Icarus, 115, 119125.

Clarke, D. W., and J. P. Ferris (1996), Titan haze: Mechanism of cyanoacetylene photochemistry at 185 and 254 nm, J. Geophys. Res., 101, 7575-7584.
Cody, R. J., P. N. Romani, F. L. Nesbitt, M. A. Iannone, D. C. Tardy, and L. J. Stief (2003), Rate constant for the reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ at T $=155 \mathrm{~K}$ and model calculation of the CH_{3} abundance in the atmospheres of Saturn and Neptune, J. Geophys. Res., 108(E11), 5119, doi:10.1029/ 2002JE002037.
Collin, G. J. (1988), Photochemistry of simple olefins: Chemistry of electronic excited states or hot ground state?, Adv. Photochem., 14, 135-176.
Collin, G. J., and A. Wieckowski (1978), Photolysis of n-butene and isobutene at 174.3-174.5 nm (7.10 eV), J. Photochem., 8, 103-116.
Connors, R. E., J. L. Roebber, and K. Weiss (1974), Vacuum ultraviolet spectroscopy of cyanogen and cyanoacetylenes, J. Chem. Phys., 60, 5011-5024.
Cooper, G., G. R. Burton, and C. E. Brion (1995), Absolute UV and soft X-ray photoabsorption of acetylene by high resolution dipole (e,e) spectroscopy, J. Electron Spectrosc., 73, 139-148.
Courtin, R., D. Gautier, and C. P. McKay (1995), Titan's thermal emission spectrum-Reanalysis of the Voyager infrared measurements, Icarus, 114, 144-162.
Coustenis, A., B. Bézard, and D. Gautier (1989), Titan's atmosphere from Voyager infrared observations, I. The gas composition of Titan's equatorial region, Icarus, 80, 54-76.
Coustenis, A., B. Bézard, D. Gautier, and A. Marten (1991), Titan's atmosphere from Voyager infrared observations, III. Vertical distribution of hydrocarbons and nitriles near Titan's north pole, Icarus, 89 , 152-167.
Coustenis, A., A. Salama, E. Lellouch, T. Encrenaz, G. L. Bjoraker, R. E. Samuelson, T. de Graauw, H. Feuchtgruber, and M. F. Kessler (1998), Evidence for water vapor in Titan's atmosphere from ISO/SWS data, Astron. Astrophys., 336, L85-L89.
Coustenis, A., A. Salama, B. Schultz, S. Ott, E. Lellouch, T. Encrenaz, D. Gautier, and H. Feuchtgruber (2003), Titan's atmosphere from ISO mid-infrared spectroscopy, Icarus, 161, 383-403.
De Avillez Pereira, R., D. L. Baulch, M. J. Pilling, S. H. Robertson, and G. Zeng (1997), Temperature and pressure dependence of the multichannel rate coefficients for the $\mathrm{CH}_{3}+\mathrm{OH}$ system, J. Phys. Chem., 101, $9681-$ 9693.

De More, W. B., M. J. Molina, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, and A. R. Ravishankara (1987), Chemical kinetics and photochemical data for use in stratospheric modelling, Eval. 8, JPL Publ. 87-41, Jet Propul. Lab., Pasadena, Calif.

Demissy, M., and R. Lesclaux (1980), Kinetics of hydrogen abstraction by NH_{2} radicals from alkanes in the gas-phase-A flash-photolysis laser resonance-absorption study, J. Am. Chem. Soc., 102, 2897-2902.
Demissy, M., and R. Lesclaux (1982), Absolute rate constants for the reactions between amino and alkyl radicals at 298 K, Int. J. Chem. Kinet., 102, 1-12.
Derecskei-Kovacs, A., and S. W. North (1999), The unimolecular dissociation of vinylcyanide: A theoretical investigation of a complex multichannel reaction, J. Chem. Phys., 110, 2862-2871.
Edgington, S. G., S. K. Atreya, L. M. Trafton, J. J. Caldwell, R. F. Beebe, A. A. Simon, R. A. West, and C. Barnet (1998), On the latitude variation of ammonia, acetylene, and phosphine altitude profiles on Jupiter from HST Faint Object Spectrograph observations, Icarus, 133, 192-209.
Endo, Y., S. Tsuchiya, C. Yamada, E. Hirota, and S. Koda (1986), Microwave kinetic spectroscopy of reaction intermediates: $\mathrm{O}+$ ethylene reaction at low pressure, J. Chem. Phys., 85, 4446-4452.
Fagerström, K., A. Lund, G. Mahmoud, J. T. Jodkowski, and E. Ratajczak (1993), Kinetics of the cross reaction between methyl and hydroxyl radicals, Chem. Phys. Lett., 204, 226-234.
Fagerström, K., J. T. Jodkowski, A. Lund, and E. Ratajczak (1995), Kinetics of the self-reaction and the reaction with OH of the amidogen radical, Chem. Phys. Lett., 236, 103-110.
Fahr, A., and A. K. Nayak (1994), Temperature dependent ultraviolet absorption cross sections of 1,3-butadiene and butadiyne, Chem. Phys., 189, 725-731.
Fahr, A., and A. Nayak (1996), Temperature dependent ultraviolet absorption cross section of propylene, methylacetylene and vinylacetylene, Chem. Phys., 203, 351-358.
Fahr, A., and A. Nayak (2000), Kinetics and products of propargyl $\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)$ radical self-reactions and propargyl-methyl cross-combination reactions, Int. J. Chem. Kinet., 32, 118-124.
Fahr, A., and S. E. Stein (1988), Reactions of vinyl and phenyl radicals with ethyne, ethene, and benzene, Symp. Int. Combust. Proc., 22, 1023-1029.
Fahr, A., A. Laufer, R. Klein, and W. Braun (1991), Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms, J. Phys. Chem., 95, 3218-3224.

Fahr, A., P. Hassanzadeh, B. Laszlo, and R. E. Huie (1997), Ultraviolet absorption and cross sections of propargyl $\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)$ radicals in the $230-$ 300 nm region, Chem. Phys., 215, 59-66.
Fahr, A., P. Hassanzadeh, and D. B. Atkinson (1998), Ultraviolet absorption spectrum and cross sections of vinyl $\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$ radical in the $225-238 \mathrm{~nm}$ region, Chem. Phys., 236, 43-51.
Fenimore, C. P. (1969), paper presented at 12th International Symposium on Combustion, Combust. Inst., Pittsburgh, Pa.
Fennelly, J. A., and D. G. Torr (1992), Photoionization and photoabsorption cross sections of $\mathrm{O}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and N for aeronomic calculations, At. Data Nucl. Data Tables, 51, 321-363.
Feuchtgruber, H., E. Lellouch, T. de Graauw, B. Bezard, T. Encrenaz, and M. Griffin (1997), External supply of oxygen to the giant planets, Nature, 389, 159-162.
Fleming, G., M. M. Anderson, A. J. Harrison, and L. W. Pickett (1959), Effect of ring size on the far ultraviolet absorption and photolysis of cyclic ethers, J. Chem. Phys., 30, 351-354.
Fockenberg, C., G. E. Hall, J. M. Preses, T. J. Sears, and J. T. Muckerman (1999), Kinetics and product study of the reaction of CH_{3} radicals with $\mathrm{O}^{3 \mathrm{p}}$ atoms using time resolved time-of-flight spectrometry, J. Phys. Chem., 103, 5722-5731.
Ford, A. L., K. K. Docken, and A. Dalgarno (1975), Photoionization and dissociative photoionization of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, Astrophys. J., 195, 819824.

Fox, J. L., and R. V. Yelle (1997), Hydrocarbon ions in the ionosphere of Titan, Geophys. Res. Lett., 24, 2179-2182.
Frost, R. K., G. S. Zavarin, and T. S. Zwier (1995), Ultraviolet photochemistry of diacetylene: Metastable $\mathrm{C}_{4} \mathrm{H}_{2}^{*}+\mathrm{C}_{2} \mathrm{H}_{2}$ reaction in helium and nitrogen, J. Phys. Chem., 95, 9408-9415.
Frost, R. K., C. A. Arrington, C. Ramos, and T. S. Zwier (1996), Ultraviolet photochemistry of diacetylene: The metastable $\mathrm{C}_{4} \mathrm{H}_{2}^{*}$ reaction with ethene, propene, and propyne, J. Am. Chem. Soc., 118, 4451-4461.
Gaedtke, H., K. Glaenzer, H. Hippler, K. Luther, and J. Troe (1973), Addition reactions of oxygen atoms at high pressures, Symp. Int. Combust. Proc., 14, 295.
Galand, M., J. Lilenstein, D. Toublanc, and S. Maurice (1999), The ionosphere of Titan: Ideal diurnal and nocturnal cases, Icarus, 140, 92-105.
Gallagher, J. W., C. E. Brion, J. A. R. Samson, and P. W. Langhoff (1988), Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes, J. Phys. Chem. Ref. Data, 17, 9-153.
Gan, L., C. N. Keller, and T. E. Cravens (1992), Electrons in the ionosphere of Titan, J. Geophys. Res., 97, 12,137-12,151.

Gentieu, E. P., and J. E. Mentall (1970), Formaldehyde absorption coefficients in vacuum ultraviolet (650 to 1850 angstroms), Science, 169, 681683.

Gierczak, T., J. Gawlowski, and J. Niedzielski (1988), Reactions of excited $\mathrm{C}_{3} \mathrm{H}_{5}$ radicals: Implications for the photolysis of propylene at 8.4 eV , J. Photochem. Photobiol., 43, 1-9.

Gierczak, T., R. K. Talukdar, S. C. Herndon, G. L. Vaghjiani, and A. R. Ravishankara (1997), Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes, J. Phys. Chem., 101, 3125-3134.
Gladstone, G. R. (1983), Radiative transfer and photochemistry in the upper atmosphere of Jupiter, Ph.D. thesis, Calif. Inst. of Technol., Pasadena. Gladstone, G. R., M. Allen, and Y. L. Yung (1996), Hydrocarbon photochemistry in the upper atmosphere of Jupiter, Icarus, 119, 1-52.
Glicker, S., and H. Okabe (1987), Photochemistry of diacetylene, J. Phys. Chem., 91, 437-440.
Glicker, S., and L. J. Stief (1971), Photolysis of formaldehyde at 1470 and 1236 A, J. Chem. Phys., 54, 2852-2857.
Gorden, S., W. Mulac, and P. Nangia (1971), Pulse radiolysis of ammonia gas, II. Rate of disappearance of the $\mathrm{NH}\left(\mathrm{X}^{2} B_{1}\right)$ radical, J. Phys. Chem., 78, 2087-2093.
Gray, P., and J. C. J. Thynne (1965), Arrhenius parameters for elementary combustion reactions: H -atom abstraction from N-H bonds, Symp. Int. Combust. Proc., 10, 435.
Guadagnini, R., G. C. Schatz, and S. P. Walch (1998), Ab initio and RRKM studies of the reactions of C, CH, and ${ }^{1} \mathrm{CH}_{2}$ with acetylene, J. Phys. Chem., 102, 5857-5866.
Gurwell, M. A., and D. O. Muhleman (1995), CO on Titan-Evidence for a well-mixed vertical profile, Icarus, 117, 375-382.
Gurwell, M. A., and D. O. Muhleman (2000), CO on Titan: More evidence for a well-mixed vertical profile, Icarus, 145, 653-656.
Haddad, G. N., and J. A. R. Samson (1986), Total absorption and photoionization cross sections of water vapor between 100 and 1000 A, J. Chem. Phys., 84, 6623-6626.

Halpern, J. B., G. E. Miller, H. Okabe, and W. Nottingham (1988), The UV photochemistry of cyanoacetylene, J. Photochem. Photobiol. A, 42, 6372.

Halpern, J. B., G. E. Miller, and H. Okabe (1989), The reaction of CN radicals with cyanoacetylene, Chem. Phys. Lett., 155, 347-350.
Ham, D. I., D. W. Trainor, and F. Kaufman (1970), Gas phase kinetics of $\mathrm{H}+\mathrm{H}+\mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2}$, J. Chem. Phys., 53, 4395-4396.
Hanel, R., et al. (1981), Infrared observations of the Saturnian system from Voyager 1, Science, 212, 192-200.
Hanning-Lee, M. A., and M. J. Pilling (1992), Kinetics of the reaction between H atoms and allyl radicals, Int. J. Chem. Kinet., 24, 271-278.
Harich, S., J. J. Lin, Y. T. Lee, and X. Yang (1999), Photodissociation dynamics of methanol at 157 nm , J. Phys. Chem., 103, 10,324-10,332. Hassinen, E., K. Kalliorinne, and J. Koskikallio (1990), Kinetics of reactions between methyl and acetyl radicals in gas phase produced by flash photolysis of acetic anhydride, Int. J. Chem. Kinet., 22, 741-745.
Herbert, L., I. W. M. Smith, and R. D. Spencer (1992), Rate constants for the elementary reactions between CN radicals and $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{3} \mathrm{H}_{6}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ in the range $295 \leq \mathrm{T} / \mathrm{K} \leq 700$, Int. J. Chem. Kinet., 24, 791-802.
Hess, W. P., J. L. Durant Jr., and F. P. Tully (1989), Kinetic study of the reactions of CN with ethane and propane, J. Phys. Chem., 93, 6402-6407.
Hidayat, T., A. Marten, B. Bézard, D. Gautier, T. Owen, H. E. Matthews, and G. Paubert (1997), Millimeter and submillimeter heterodyne observations of Titan: Retrieval of the vertical profile of HCN and the ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratio, Icarus, 126, 170-182.
Hidayat, T., A. Marten, B. Bézard, D. Gautier, T. Owen, H. E. Matthews, and G. Paubert (1998), Millimeter and submillimeter heterodyne observations of Titan: The vertical profile of carbon monoxide in its stratosphere, Icarus, 133, 109-133.
Ho, G. H., M. S. Lin, Y. L. Wang, and T. W. Chang (1998), Photoabsorption and photoionization of propyne, J. Chem. Phys., 109, 5868-5879.
Holland, D. M. P., D. A. Shaw, M. A. Hayes, L. G. Shpinkova, E. E. Rennie, L. Karlsson, P. Baltzer, and B. Wannberg (1997), A photoabsorption, photodissociation and photoelectron spectroscopy study of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{D}_{4}$, Chem. Phys., 219, 91-116.
Homann, K. H., and H. Schweinfurth (1981), Kinetics and mechanism of hydrocarbon formation in the system $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{O} / \mathrm{H}$, Ber. Bunsenges. Phys. Chem., 85, 569-577.
Homann, K. H., and C. Wellmann (1983), Kinetics and mechanism of hydrocarbon formation in the system $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{O} / \mathrm{H}$ at temperatures up to 1300 K, Ber. Bunsenges. Phys. Chem., 87, 609-616.
Hoobler, R. J., and S. R. Leone (1997), Rate coefficients for reactions of ethynyl radical $\left(\mathrm{C}_{2} \mathrm{H}\right)$ with HCN and $\mathrm{CH}_{3} \mathrm{CN}$: Implications for the formation of complex nitriles on Titan, J. Geophys. Res., 102, 28,71728,723.

Hoobler, R. J., and S. R. Leone (1999), Low temperature rate coefficients for reactions of the ethynyl radical $\left(\mathrm{C}_{2} \mathrm{H}\right)$ with $\mathrm{C}_{3} \mathrm{H}_{4}$ isomers methylacetylene and allene, J. Phys. Chem., 103, 1342-1346.
Hoobler, R. J., B. J. Opansky, and S. R. Leone (1997), Low-temperature rate coefficients for reactions of ethynyl radical $\left(\mathrm{C}_{2} \mathrm{H}\right)$ with propane, isobutane, n-butane, and neopentane, J. Phys. Chem., 101, 1338-1342.
Huang, L. C. L., Y. T. Lee, and R. I. Kaiser (1999), Crossed beam reaction of the cyanogen radical, $\mathrm{CN}\left(\mathrm{X}^{2} \Sigma^{+}\right)$, with acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{X}^{1} \Sigma_{\mathrm{g}}^{+}\right)$: Observation of cyanoacetylene, $\mathrm{HCCCN}\left(\mathrm{X}^{1} \Sigma^{+}\right)$, J. Chem. Phys., 110, 7119-7122.
Itikawa, Y., M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamyura, H. Nishimura, and T. Takayanagi (1986), Cross sections for collisions of electrons and photons with nitrogen molecules, J. Phys. Chem. Ref. Data, 15, 985-1010.
Jackson, W. M., D. S. Anex, R. E. Continetti, B. A. Balko, and Y. T. Lee (1991), Molecular beam studies of the photolysis of allene and the secondary photodissociation of the $\mathrm{C}_{3} \mathrm{H}_{\mathrm{x}}$ fragments, J. Chem. Phys., 95, 7327-7336.
Jenkin, M. E., T. P. Murrells, S. J. Shalliker, and G. D. Hayman (1993), Kinetics and product study of the self-reactions of allyl and allyl peroxy radicals at 296 K, J. Chem. Soc. Faraday Trans., 89, 433-446.
Jodkowski, J. T., E. Ratajczak, K. Fagerström, A. Lund, N. D. Stothard, R. Humpfer, and H.-H. Grotheer (1995), Kinetics of the cross reaction between amidogen and methyl radicals, Chem. Phys. Lett., 240, 63-71.
Johnston, G. R., D. R. A. Cuff, and D. Price (1978), Mechanisms for the photochemical production of hydrocarbons in gaseous hydrocarbon systems, Prog. React. Kinet., 8, 231-291.
Jokipii, J. R., and D. A. Kopriva (1979), Effects of particle drift on the transport of cosmic rays. III. Numerical models of galactic cosmic-ray modulation, Astrophys. J., 234, 384-392.
Kameta, K., S. Machida, M. Kitajima, M. Ukai, N. Kouchi, Y. Hatano, and K. Ito (1996), Photoabsorption, photoionization, and neutral-dissociation cross sections of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ in the extreme-uv region, J. Electron Spectrosc., 79, 391-393.
Keller, C. N., T. E. Cravens, and L. Gan (1992), A model of the ionosphere of Titan, J. Geophys. Res., 97, 12,117-12,135.
Keller, C. N., V. G. Anicich, and T. E. Cravens (1998), Model of Titan's ionosphere with detailed hydrocarbon ion chemistry, Planet. Space Sci., 46, 1157-1174.
Kerr, J. A., and M. J. Parsonage (1972), Evaluated Kinetic Data on GasPhase Addition Reactions: Reactions of Atoms and Radicals with Alkenes, Alkynes, and Aromatic Compounds, Butterworth, London.
Kiefer, J. H., and W. A. von Drasek (1990), The mechanism of the homogeneous pyrolysis of acetylene, Int. J. Chem. Kinet., 22, 747-786.
Kloster-Jensen, E., H.-J. Haink, and H. Christen (1974), The electronic spectra of unsubstituted mono- to penta-acetylene in the gas phase and in solution in the range 1100 to $4000 \AA$, Helv. Chim. Acta, 57, 1731 1744.

Koch, E. E., and M. Skibowski (1971), Optical absorption of gaseous methane, ethane, propane and butane and reflection of solid methane and ethane in vacuum ultraviolet, Chem. Phys. Lett., 9, 429-432.
Kreile, J., A. Schweig, and W. Thiel (1982), Experimental and theoretical investigation of the photoionization of hydrogen cyanide, Chem. Phys. Lett., 87, 473-476.
Kunde, V. G., A. C. Aikin, R. A. Hanel, D. E. Jennings, W. C. Maguire, and R. E. Samuelson (1981), $\mathrm{C}_{4} \mathrm{H}_{2}, \mathrm{HC}_{3} \mathrm{~N}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ in Titan's atmosphere, Nature, 292, 686-688.
Langford, A. O., H. Petek, and C. B. Moore (1983), Collisional removal of $\mathrm{CH}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)$: Absolute rate constants for atomic and molecular collisional partners at 295 K, J. Chem. Phys., 78(11), 6650-6659.
Lara, L. M., E. Lellouch, J. Lopez-Moreno, and R. Rodrigo (1996), Vertical distribution of Titan's atmospheric neutral constituents, J. Geophys. Res., 101, 23,261-23,283.
Lara, L. M., E. Lellouch, and V. Shematovich (1999), Titan's atmospheric haze: The case for HCN incorporation, Astron. Astrophys., 341, 312317.

Lara, L. M., M. Banaszkiewicz, R. Rodrigo, and J. J. López-Moreno (2002), The CH_{4} density in the upper atmosphere of Titan, Icarus, 158 , 191-198.
Larson, C. W., P. H. Stewart, and D. M. Golden (1988), Pressure and temperature-dependence of reactions proceeding via a bound com-plex-An approach for combustion and atmospheric chemistry mode-lers-Application to $\mathrm{HO}+\mathrm{CO} \rightarrow[\mathrm{HOCO}] \rightarrow \mathrm{H}+\mathrm{CO}_{2}$, Int. J. Chem. Kinet., 20, 27-40.
Laufer, A. H. (1981), Kinetics of gas phase reactions of methylene, Rev. Chem. Intermed., 4, 225-257.
Laufer, A. H., E. P. Gardner, T. L. Kwok, and Y. L. Yung (1983), Computations and estimates of rate coefficients for hydrocarbon reactions of interest in the atmospheres of the outer solar system, Icarus, 56, 560-567.

Lebonnois, S., D. Toublanc, F. Hourdin, and P. Rannou (2001), Seasona variations of Titan's atmospheric composition, Icarus, 152, 384-406.
Lebonnois, S., E. L. O. Bakes, and C. P. McKay (2002), Transition from gaseous compounds to aerosols in Titan's atmosphere, Icarus, 159, 505517.

Lee, J. H., J. V. Michael, W. A. Payne, and L. J. Stief (1978), Absolute rate of reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure, J. Chem. Phys., 68, 1817-1820.
Lellouch, E., P. N. Romani, and J. Rosenqvist (1994), The vertical distribution and origin of HCN in Neptune's atmosphere, Icarus, 108, 112-136.
Lewis, B. R., and J. H. Carver (1983), Temperature dependence of the carbon dioxide photoabsorption cross section between $1200 \AA$ and 1970 A, J. Quant. Spec. Radiat. Trans., 30, 297-309.
Lightfoot, P. D., and M. J. Pilling (1987), Temperature and pressure dependence of the rate constant for the addition of H to $\mathrm{C}_{2} \mathrm{H}_{4}$, J. Phys. Chem., 91, 3373-3379.
Lin, C. L., and F. Kaufman (1971), Reactions of metastable nitrogen atoms, J. Chem. Phys., 55, 3760-3770.

Lin, J. J., Y. T. Lee, and X. Yang (1998), Crossed molecular beam studies of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CH}_{4}$ reaction: Evidences for the $\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}$ channel, J. Chem. Phys., 109, 2975-2978.

Lindal, G. F., G. E. Wood, H. B. Hotz, D. N. Sweetnam, V. R. Eshleman, and G. L. Tyler (1983), The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements, Icarus, 53, 348-363.
Linder, D. P., X. Duan, and M. Page (1996), Thermal rate constants for R + $\mathrm{N}_{2} \mathrm{H}_{2} \rightarrow \mathrm{RH}+\mathrm{N}_{2} \mathrm{H}\left(\mathrm{R}=\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}\right)$ determined from multireference configuration interaction and variational transition state theory calculations, J. Chem. Phys., 104, 6298-6306.
Livengood, T. A., T. Hewagama, T. Kostiuk, K. E. Fast, and J. J. Goldstein (2002), Improved determination of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ abundance in Titan's stratosphere, Icarus, 157, 249-253.
Maguire, W. C., R. A. Hanel, D. E. Jennings, V. G. Kunde, and R. E. Samuelson (1981), $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{C}_{3} \mathrm{H}_{4}$ in Titan's atmosphere, Nature, 292, 683-686.
Marston, G., F. L. Nesbitt, D. F. Nava, W. A. Payne, and L. J. Stief (1989), Temperature dependence of the reaction of nitrogen atoms with methyl radicals, J. Phys. Chem., 93, 5769-5774.
Marten, A., T. Hidayat, Y. Biraud, and R. Moreno (2002), New millimeter heterodyne observations of Titan: Vertical distributions of $\mathrm{HCN} \mathrm{HC}_{3} \mathrm{~N}$, $\mathrm{CH}_{3} \mathrm{CN}$, and the isotopic ratio ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$ in its atmosphere, Icarus, 158 , 532-544.
Mason, E. A., and T. R. Marrero (1970), The diffusion of atoms and molecules, in Advances in Atomic and Molecular Physics, edited by D. R. Bates and I. Esterman, pp. 155-232, Academic, San Diego, Calif.
Massman, W. J. (1998), A review of the molecular diffusivities of $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{NO}$, and NO_{2} in air, O_{2}, and N_{2} near STP, Atmos. Environ., 32, 1111-1127.
McEwan, M. J., A. B. Denison, W. T. Huntress Jr., V. G. Anicich, J. Snodgrass, and M. T. Bowers (1989), Association reactions at low pressure. 2. The $\mathrm{CH}_{3}^{+} / \mathrm{CH}_{3} \mathrm{CN}$ system, J. Phys. Chem., 93, 4064-4068.
McEwan, M. J., G. B. I. Scott, N. G. Adams, L. M. Babcock, R. Terzieva, and E. Herbst (1999), New H and H_{2} reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds, Astrophys. J., 513, 287-293.
McGrath, M. A., R. Courtin, T. E. Smith, P. D. Feldman, and D. F. Strobel (1998), The ultraviolet albedo of Titan, Icarus, 131, 382-392.

McKay, C. P., A. Coustenis, R. E. Samuelson, M. T. Lemmon, R. D. Lorenz, M. Cabane, P. Rannou, and P. Drossart (2001), Physical properties of the organic aerosols and clouds on Titan, Planet. Space Sci., 49, 79-99.
McNutt, R. L., Jr., and J. D. Richardson (1988), Constraints on Titan's ionosphere, Geophys. Res. Lett., 15, 709-712.
Mebel, A. M., and M. C. Lin (1999), Prediction of absolute rate constants for the reactions of NH_{2} with alkanes from ab initio G2M/TST calculations, J. Phys. Chem., 103, 2088-2096.
Mebel, A. M., M. C. Lin, T. Yu, and K. Morokuma (1997), Theoretical study of potential energy surface and thermal rate constants for the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}$ reactions, J. Phys. Chem., 101, 3189-3196.
Miyoshi, A., H. Matsui, and N. Washida (1989), Reaction of acetaldehyde and acetyl radical with atomic and molecular oxygen, J. Phys. Chem., 93, 5813-5818.
Miyoshi, A., K. Ohmori, K. Tsuchiya, and H. Matsui (1993), Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes at high temperatures, Chem. Phys. Lett., 204, 241-247.
Molina-Cuberos, G. J., J. J. López-Moreno, R. Rodrigo, L. M. Lara, and K. O'Brien (1999), Ionization by cosmic rays of the atmosphere of Titan, Planet. Space Sci., 47, 1347-1354.
Molina-Cuberos, G. J., K. Schwingenschuh, J. J. López-Moreno, R. Rodrigo, L. M. Lara, and V. Anicich (2002), Nitriles produced by ion chemistry in
the lower ionosphere of Titan, J. Geophys. Res., 107(E11), 5099, doi:10.1029/2000JE001480.
Monks, P. S., P. N. Romani, F. L. Nesbitt, M. Scanlon, and L. J. Stief (1993), The kinetics of the formation of nitrile compounds in the atmospheres of Titan and Neptune, J. Geophys. Res., 98, 17,115-17,122.
Monks, P. S., F. L. Nesbitt, W. A. Payne, M. Scanlon, L. J. Stief, and D. E. Shallcross (1995), Absolute rate constants and product branching ratios for the reaction between H and $\mathrm{C}_{2} \mathrm{H}_{3}$ at $\mathrm{T}=213$ and $298 \mathrm{~K}, \mathrm{~J}$. Phys. Chem., 99, 17,151-17,159.
Moortgat, G. K., W. Seiler, and P. Warneck (1983), Photodissociation of HCHO in air- CO and H_{2} quantum yields at 220 K and 300 K , J. Chem. Phys., 78, 1185-1190.
Mordaunt, D. H., I. R. Lambert, G. P. Morley, N. R. Ashfold, R. N. Dixon, C. M. Western, L. Schnieder, and K. H. Welge (1993), Primary product channels in the photodissociation of methane at $121.6 \mathrm{~nm}, J$. Chem. Phys., 98, 2054-2065.
Mordaunt, D. H., M. N. R. Ashfold, and R. N. Dixon (1994), Dissociation dynamics of $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{D}_{2} \mathrm{O}\right)$ following photoexcitation at the Lyman- α wavelength (121.6 nm), J. Chem. Phys., 100, 7360-7375.
Moses, J. I., M. Allen, and Y. L. Yung (1992), Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere, Icarus, 99, 318-346.
Mount, G. H., and H. W. Moos (1978), Photoabsorption cross sections of methane and ethane $1380-1600 \AA$, at $\mathrm{T}=295 \mathrm{~K}$ and $\mathrm{T}=200 \mathrm{~K}$, Astrophys. J., 224, L35-L38.
Mount, G. H., E. S. Warden, and H. W. Moos (1977), Photoabsorption cross sections of methane from 1400 to 1850 A, Astrophys. J., 214, L47-L49.
Muhleman, D. O., G. L. Berge, and R. T. Clancy (1984), Microwave measurements of carbon monoxide on Titan, Science, 223, 393-396.
Nakata, R. S., K. Watanabe, and F. M. Matsunaga (1965), Absorption and photoionization coefficients of CO_{2} in the region 580-1670 A, Sci. Light, 14, 54-71.
Nava, D. F., M. B. Mitchell, and L. J. Stief (1986), The reaction H $+\mathrm{C}_{4} \mathrm{H}_{2}$: Absolute rate constant measurement and implication for atmospheric modeling of Titan, J. Geophys. Res., 91, 4585-4589.
Nesbitt, F. L., G. Marston, and L. J. Stief (1990), Kinetic studies of the reactions of $\mathrm{H}_{2} \mathrm{CN}$ and $\mathrm{D}_{2} \mathrm{CN}$ radicals with N and H, J. Phys. Chem., 94, 4946-4951.
Neubauer, F. M., D. A. Gurnett, J. D. Scudder, and R. E. Hartle (1984), Titan's magnetospheric interaction, in Saturn, edited by T. Gehrels, and M. S. Matthews, pp. 760-787, Univ. of Ariz. Press, Tucson.

Niedzielski, J. P., W. Makulski, and J. Gawlowski (1978), Gas phase photolysis of 1-butene at $147 \mathrm{~nm}(8.4 \mathrm{eV})$, J. Photochem., 9, 519-528.
Niedzielski, J. P., P. Geblewicz, and J. Gawlowski (1979), Gas phase photolysis of 1-butene at $123.7 \mathrm{~nm}(10.0 \mathrm{eV})$, J. Photochem., 10, 287-295.
Noll, K. S., T. R. Geballe, R. F. Knacke, and Y. J. Pendleton (1996), Titan's $5 \mu \mathrm{~m}$ spectral window: Carbon monoxide and the albedo of the surface, Icarus, 124, 625-631.
Nuth, J. A., and S. Glicker (1982), The vacuum ultraviolet spectra of HCN, $\mathrm{C}_{2} \mathrm{~N}_{2}$, and $\mathrm{CH}_{3} \mathrm{CN}$, J. Quant. Spectrosc. Radiat. Transfer, 28, 223-231.
Obi, K., H. Akimoto, Y. Ogata, and I. Tanaka (1971), Photolyses of propane, n-butane, and cyclobutane at Xe and Kr resonance lines, J. Chem. Phys., 55, 3822-3828.
Ogawa, M. (1971), Absorption cross sections of O_{2} and CO_{2} continua in the Schumann and far-UV regions, J. Chem. Phys., 54, 2550-2556.
Ohmori, K., A. Miyoshi, H. Matsui, and N. Washida (1990), Studies on the reaction of acetaldehyde and acetyl radicals with atomic hydrogen, J. Phys. Chem., 94, 3253-3255.

Okabe, H. (1978), Photochemistry of Small Molecules, Wiley-Intersci., New York.
Okabe, H. (1981), Photochemistry of acetylene at 1470 Å, J. Chem. Phys., 75, 2772-2778.
Okabe, H. (1983), Photochemistry of acetylene at 1849 Å, J. Chem. Phys., 78, 1312-1317.
Okabe, H., and D. A. Becker (1963), Vacuum ultraviolet photochemistry. VII. Photolysis of n-butane, J. Chem. Phys., 39, 2549-2555.

Opansky, B. J., and S. R. Leone (1996a), Low-temperature rate coefficients of $\mathrm{C}_{2} \mathrm{H}$ with CH_{4} and CD_{4} from 154 to 359 K , J. Phys. Chem., 100, 4888-4892.
Opansky, B. J., and S. R. Leone (1996b), Rate coefficients of $\mathrm{C}_{2} \mathrm{H}$ with $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and H2 from 150 to 359 K, J. Phys. Chem., 100, 19,90419,910.
Orient, O. J., and S. K. Srivastava (1987), Electron impact ionisation of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{CO}_{2}$, and CH_{4}, J. Phys. B., 20, 3923-3936.
Palenius, H. P., J. L. Kohl, and W. H. Parkinson (1976), Absolute measurement of photoionization cross section of atomic hydrogen with a shock tube for extreme ultraviolet, Phys. Rev. A, 13, 1805-1816.
Pantos, E., J. Philis, and A. Bolovinos (1978), The extinction coefficient of benzene vapor in the region 4.6 to 36 eV, J. Mol. Spectrosc., 72, 36-43.

Park, J., S. Burova, A. S. Rodgers, and M. C. Lin (1999), Experimental and theoretical studies of the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{6} \mathrm{H}_{6}$ reaction, J. Phys. Chem., 103, 9036-9041.
Parkes, D. A., D. M. Paul, C. P. Quinn, and R. C. Robson (1973), The ultraviolet absorption by alkylperoxy radicals and their mutual reactions, Chem. Phys. Lett., 23, 425-429.
Payne, W. A., P. S. Monks, F. L. Nesbitt, and L. J. Stief (1996), The reaction between $\mathrm{N}\left({ }^{4} \mathrm{~S}\right)$ and $\mathrm{C}_{2} \mathrm{H}_{3}$: Rate constant and primary reaction channels, J. Chem. Phys., 104, 9808-9815.
Petrie, S., C. G. Freeman, and M. J. McEwan (1992), The ion-molecule chemistry of acrylonitrile: Astrochemical implications, Mon. Not. R. Astron. Soc., 257, 438-444.
Phillips, L. J. (1978), Reaction of H with $\mathrm{C}_{2} \mathrm{~N}_{2}$ at pressures near 1-torr, Int. J. Chem. Kinet., 10, 899-904.

Piper, L. G., M. E. Donahue, and W. T. Rawlins (1987), Rate coefficients for N(${ }^{2}$ D) reactions, J. Phys. Chem., 97, 3883-3888.
Pitts, W. M., L. Pasternack, and J. R. McDonald (1982), Temperature dependence of the $\mathrm{C}_{2}\left(\mathrm{X}^{1} \Sigma_{\mathrm{g}}^{+}\right.$and a ${ }^{3} \Pi_{\mathrm{u}}$ equlibrated states) with O_{2}, Chem. Phys., 68, 417-422.
Pratt, G. L., and S. W. Wood (1984), Kinetics of the reaction of methyl radicals with oxygen, J. Chem. Soc. Faraday Trans. 1, 80, 3419-3427.
Rabalais, J. W., J. M. McDonald, V. Scherr, and S. P. McGlynn (1971), Electronic spectroscopy of isoelectronic molecules, Chem. Rev., 71, 9495.

Rages, K., and J. B. Pollack (1983), Vertical distribution of scattering hazes in Titan's upper atmosphere, Icarus, 55, 50-62.
Rannou, P., M. Cabane, E. Chassefiere, R. Botet, C. P. McKay, and R. Courtin (1995), Titan's geometric albedo: Role of the fractal structure of the aerosols, Icarus, 118, 355-372.
Rao, M. V. V. S., I. Iga, and S. K. Srivastava (1995), Ionization crosssections for the production of positive ions from $\mathrm{H}_{2} \mathrm{O}$ by electron impact, J. Geophys. Res., 100, 26,421-26,425.

Reid, R. C., J. M. Prausnitz, and B. E. Poling (1987), The Properties of Gases and Liquids, McGraw-Hill, New York.
Rennie, E. E., C. A. F. Johnson, J. E. Parker, D. M. P. Holland, D. A. Shaw, and M. A. Hayes (1998), A photoabsorption, photodissociation and photoelectron spectroscopy study of $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$, Chem. Phys., 229, 107-123.
Richards, P. G., J. A. Fennelly, and D. G. Torr (1994), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 89818992.

Richter, H., and J. B. Howard (2000), Formation of polycyclic aromatic hydrocarbons and their growth to soot-A review of chemical reaction pathways, Prog. Energy Combust. Sci., 26, 565-608.
Roe, H. G., T. K. Greathouse, M. J. Richter, and J. H. Lacy (2003), Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ on Titan, Astrophys. J. Lett., 597, L65-L68.
Romani, P. N. (1996), Recent rate constant and product measurements of the reactions $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}$-Importance for the photochemical modeling of hydrocarbons on Jupiter, Icarus, 122, 233-241.
Sagan, C., and W. R. Thompson (1984), Production and condensation of organic gases in the atmosphere of Titan, Icarus, 59, 133-161.
Samson, J. A. R., and G. N. Haddad (1994), Total photoabsorption cross sections of H_{2} from 18 to 113 eV , J. Opt. Soc. Am. B Opt. Phys., 11, 277279.

Samson, J. A. R., F. F. Marmo, and K. Watanabe (1962), Absorption and photoionization coefficients of propylene and butene-1 in the vacuum ultraviolet, J. Chem. Phys., 36, 783-786.
Samson, J. A. R., G. N. Haddad, T. Masuoka, P. N. Pareek, and D. A. L. Kilcoyne (1989), Ionization yields, total absorption, and dissociative photoionization cross sections of CH_{4} from $110-950 \mathrm{~A}, ~ J . ~ C h e m . ~ P h y s ., ~$ 90, 6925-6932.
Samuelson, R. E., W. C. Maguire, R. A. Hanel, V. G. Kunde, D. E. Jennings, Y. L. Yung, and A. C. Aikin (1983), CO_{2} on Titan, J. Geophys. Res., 88, 8709-8715.
Samuelson, R., R. A. Nath, and A. Borysow (1997), Gaseous abundances and methane supersaturation in Titan's troposphere, Planet. Space Sci., 45, 959-980.
Sandilands, J. W., and J. C. McConnell (1997), Evaluation of a reduced Jacobian chemical solver, J. Geophys. Res., 102, 19,073-19,087.
Sato, K., K. Misawa, Y. Kobayashi, M. Matsui, S. Tsunashima, Y. Kurosaki, and T. Takayanagi (1999), Measurements of thermal rate constants for the reactions of $\mathrm{N}\left({ }^{2} \mathrm{D},{ }^{2} \mathrm{P}\right)$ with $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{D}_{4}$ between 225 and 292 K , J. Phys. Chem., 103, 8650-8656.

Satyapal, S., J. Park, R. Bersohn, and B. Katz (1989), Dissociation of methanol and ethanol activated by a chemical reaction or by light, J. Chem. Phys., 91, 6873-6879.

Schmitt, R. G., and R. K. Brehm (1966), Double beam spectrophotometry in the far ultraviolet. 1: $1150 \AA$ to $3600 \AA$, Appl. Opt., 5, 1111-1116.
Schwanebeck, W., and J. Warnatz (1975), Reactions of butadiene. I. Reaction with hydrogen atoms, Ber. Bunsen-Ges. Phys. Chem., 79, 530-535.

Scott, G. B. I., D. A. Fairley, C. G. Freeman, M. J. McEwan, and V. G. Anicich (1998), Gas-phase reactions of some positive ions with atomic and molecular nitrogen, J. Chem. Phys., 109, 9010-9014.
Seki, K., and H. Okabe (1993), Photochemistry of acetylene at 193.3 nm , J. Phys. Chem., 97, 5284-5290.

Seki, K., M. Yagi, M. Q. He, J. B. Halpern, and H. Okabe (1996), Reaction rates of the CN radical with diacetylene and dicyanoacetylene, Chem. Phys. Lett., 258, 657-662.
Shah, M. B., D. S. Elliott, and H. B. Gilbody (1987), Pulsed crossed-beam study of the ionisation of atomic hydrogen, J. Phys. B, 20, 3501-3514.
Shaw, D. A., D. M. P. Holland, M. A. MacDonald, A. Hopkirk, M. A. Hayes, and S. M. McSweeney (1992), A study of the absolute photoabsorption cross section and the photoionization quantum efficiency of nitrogen from the ionization threshold to 485 A, Chem. Phys., 166, 379391.

Sillesen, A., E. Ratajczak, and P. Pagsberg (1993), Kinetics of the reaction $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow 2 \mathrm{CH}_{3}, \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow$ products studied by pulse radiolysis combined with infrared diode lase spectroscopy, Chem. Phys. Lett., 201, 171-177.
Simonaitis, R., and J. Heicklen (1972), Kinetics and mechanism of the reaction of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ with carbon monoxide, J. Chem. Phys., 56, 20042011.

Sims, I. R., J.-L. Queffelec, D. Travers, B. R. Rowe, L. B. Herbert, J. Karthäuser, and I. W. M. Smith (1993), Rate constants for the reactions of CN with hydrocarbons at low and ultra-low temperatures, Chem. Phys. Lett., 211, 461-468.
Slagle, I. R., D. Gutman, J. W. Davies, and M. Pilling (1988), Study of the recombination reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$. I. Experiment, J. Phys. Chem., 92, 2455-2462.
Slagle, I. R., J. R. Bernhardt, D. Gutman, M. A. Hanning-Lee, and M. J. Pilling (1990), Kinetics of the reaction between oxygen atoms and allyl radicals, J. Phys. Chem., 94, 3652-3656.
Smith, G. R., D. F. Strobel, A. L. Broadfoot, B. R. Sandel, D. E. Shemansky, and J. B. Holdberg (1982), Titan's upper atmosphere: Composition and temperature from the EUV solar occultation results, J. Geophys. Res., 87, 1351-1359.
Smith, N. S., and F. Raulin (1999), Modeling of methane photolysis in the reducing atmospheres of the outer solar system, J. Geophys. Res., 104, 1873-1876.
Smith, N. S., Y. Bénilan, and P. Bruston (1998), The temperature dependent absorption cross sections of $\mathrm{C}_{4} \mathrm{H}_{2}$ at mid ultraviolet wavelengths, Planet. Space Sci., 46, 1215-1220.
Steiner, G., and S. J. Bauer (1990), Molecular and eddy diffusion in the atmosphere of Titan, Ann. Geophys., 8, 473-476.
Stief, L. J., and W. A. Payne (1976), Absolute rate parameter for the reaction of hydrogen with hydrazine, J. Chem. Phys., 64, 4892-4897.
Stief, L. J., W. A. Payne, and R. B. Klemm (1975), A flash photolysisresonance fluorescence study of the formation of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ in the photolysis of water and the reaction of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ with $\mathrm{H}_{2}, \mathrm{Ar}$, and He, J. Chem. Phys., 62, 4000-4008.
Stief, L. J., F. L. Nesbitt, W. A. Payne, S. C. Kuo, W. Tao, and R. B. Klemm (1995), Rate constant and reaction channels for the reaction of atomic nitrogen with the ethyl radical, J. Chem. Phys., 102, 5309-5316.
Stothard, N., R. Humpfer, and H.-H. Grotheer (1995), The multichannel reaction $\mathrm{NH}_{2}+\mathrm{NH}_{2}$ at ambient temperature and low pressures, Chem. Phys. Lett., 240, 474-480.
Strobel, D. F., M. E. Summers, and X. Zhu (1992), Titan's upper atmosphere: Structure and ultraviolet emissions, Icarus, 100, 512-526.
Sun, Q., D. L. Yang, N. S. Wang, J. M. Bowman, and M. C. Lin (1990), Experimental and reduced dimensionality quantum rate coefficients for $\mathrm{H}_{2}\left(\mathrm{D}_{2}\right)+\mathrm{CN} \rightarrow \mathrm{H}(\mathrm{D}) \mathrm{CN}+\mathrm{H}(\mathrm{D})$, J. Chem. Phys., 93, 4730-4739.
Sun, W., K. Yokoyama, J. C. Robinson, A. G. Suits, and D. M. Neumark (1999), Discrimination of products isomers in the photodissociation of propyne and allene at 193 nm , J. Chem. Phys., 110, 4363-4368.
Suto, M., and L. C. Lee (1985), Photoabsorption cross section of $\mathrm{CH}_{3} \mathrm{CN}$: Photodissociation rates by solar flux and interstellar radiation, J. Geophys. Res., 90, 13,037-13,040.
Suto, M., X. Wang, and L. C. Lee (1985), Fluorescence from VUV excitation of formaldehyde, J. Chem. Phys., 85, 4228-4233.
Suzuki, T., Y. Shihira, T. Sato, H. Umemoto, and S. Tsunashima (1993), Reactions of $\mathrm{N}\left(2^{2} \mathrm{D}\right)$ and $\mathrm{N}\left(2^{2} \mathrm{P}\right)$ with H_{2} and D_{2}, J. Chem. Soc. Faraday Trans., 89, 995-999.
Takayanagi, T., Y. Kurosaki, K. Misawa, M. Sugiura, Y. Kobayashi, K. Sato, and S. Tsunashima (1998), Measurements of thermal rate constants and theoretical calculations for the $\mathrm{N}^{2 \mathrm{~d}, 2 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{D}_{2}$ reactions, J. Phys. Chem., 102, 6251-6258.
Takayanagi, T., Y. Kurosaki, K. Sato, K. Misawa, Y. Kobayashi, and S. Tsunashima (1999), Kinetic studies on the $\mathrm{N}\left({ }^{2} \mathrm{D},{ }^{2} \mathrm{P}\right)+\mathrm{CH}_{4}$ and CD_{4} reactions: The role of nonadiabatic transitions on thermal rate constants, J. Phys. Chem., 103, 250-255.

Tanguy, L., B. Bézard, A. Marten, D. Gautier, E. Gérard, G. Paubert, and A. Lecacheux (1990), Stratospheric profile of HCN on Titan from millimeter observations, Icarus, 85, 43-57.
Teng, L., and W. E. Jones (1972), Kinetics of the reactions of hydrogen atoms with ethylene and vinyl fluoride, J. Chem. Soc. Faraday Trans. 1, 68, 1267-1277.
Thompson, B. A., P. Hartreck, and R. R. Reeves Jr. (1963), Ultraviolet absorption coefficients of $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{NO}, \mathrm{SO}_{2}$, and CH_{4}, between 850 and $4000 \AA$, J. Geophys. Res., 68, 6431-6436.
Tian, C., and C. R. Vidal (1998a), Cross sections of electron impact ionization of ethylene, Chem. Phys. Lett., 288, 499-503.
Tian, C., and C. R. Vidal (1998b), Electron impact dissociative ionization of ethane: Cross sections, appearance potentials, and dissociative pathways, J. Chem. Phys., 109, 1704-1712.

Toublanc, D., J. P. Parisot, J. Brillet, D. Gautier, F. Raulin, and C. P. McKay (1995), Photochemical modeling of Titan's atmosphere, Icarus, 113, 226.

Tsang, W. (1987), Chemical kinetic data base for combustion chemistry. 3. Methanol, J. Phys. Chem. Ref. Data, 16, 471-508.

Tsang, W. (1988), Chemical kinetic data base for combustion chemistry. III. Propane, J. Phys. Chem. Ref. Data, 17, 887-951.

Tsang, W. (1991), Chemical kinetic data base for combustion chemistry. V. Propene, J. Phys. Chem. Ref. Data, 20, 221-274.

Tsang, W., and R. F. Hampson (1986), Chemical kinetic data base for combustion chemistry. Part 1. Methane and related compounds, J. Phys. Chem. Ref. Data, 15, 1087-1279.
Umemoto, H., T. Nakae, H. Hashimoto, and K. Kongo (1998), Reactions of $\mathrm{N}\left(2^{2} \mathrm{D}\right)$ with methane and deuterated methanes, J. Chem. Phys., 109, 5844-5848.
Upadhyaya, H. P., P. D. Naik, U. B. Pavanaja, A. Kumar, R. K. Vatsa, A. V. Sapre, and J. P. Mittal (1997), Reaction kinetics of $\mathrm{O}^{3 \mathrm{p}}$ with acrylonitrile and crotonitrile, Chem. Phys. Lett., 274, 383-389.
Vervack, R. J. (1997), Titan's upper atmosphere structure derived from Voyager ultraviolet spectrometer observations, Ph.D. thesis, Univ. of Ariz., Tuscon.
Veyret, B., P. Roussel, and R. Lesclaux (1984), Absolute rate constant for the disproportionation reaction of formyl radicals from 295 K to 475 K , Chem. Phys. Lett., 103, 389-392.
Wagner, H. G., and R. Zellner (1972), Reactions of hydrogen atoms with unsaturated C_{3} hydrocarbons. II. Reaction of H atoms with methylacetylene, Ber. Bunsen-Ges. Phys. Chem., 76, 518-525.
Wakeham, W. A., and D. H. Slater (1973), Diffusion coefficients for nalkanes in binary gaseous mixtures with nitrogen, J. Phys. B. At. Mol. Phys., 6, 886-896.
Wang, H., and M. Frenklach (1994), Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals, J. Phys. Chem., 98, 1465-1489.
Wang, H., and M. Frenklach (1997), A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combust. Flame, 110, 173-221.
Warnatz, J. (1984), Rate coefficients in the C/H/O system, in Combustion Chemistry, edited by W. C. Gardiner Jr., pp. 197-360, Springer-Verlag, New York.
Washburn, E. W. (1924), The vapor pressure of ice and of water below the freezing point, Mon. Weather, 488-490.
Watanabe, K., and A. S. Jursa (1964), Absorption and photoionization cross sections of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}, J$. Chem. Phys., 41, 1650-1653.
Watanabe, K., M. Zelikoff, and E. C. Y. Inn (1953), Absorption coefficients of several atmospheric gases, Air Force Cambridge Res. Cent. Tech. Rep. 53-23, Boston, Mass.
Watkins, K. W., and W. W. Word (1974), Addition of methyl radicals to carbon monoxide: Chemically and thermally activated decomposition of acetyl radicals, Int. J. Chem. Kinet., 6, 855-873.
Weast, R. C., M. J. Astle, and W. H. Beyer (1987), Handbook of Chemistry and Physics, 67th ed., CRC Press, Boca Raton, Fla.
Weissman, M. A., and S. W. Benson (1988), Rate parameters for the reactions of $\mathrm{C}_{2} \mathrm{H}_{3}$ and $\mathrm{C}_{4} \mathrm{H}_{5}$ with H_{2} and $\mathrm{C}_{2} \mathrm{H}_{2}$, J. Phys. Chem., 92, $4080-$ 4084.

Wendt, H. R., H. Hippler, and H. E. Hunziker (1979), Triplet acetylene: Near infrared electronic absorption spectrum of the cis isomer, and formation from methylene, J. Chem. Phys., 70, 4044-4048.
Westmoreland, P. R., A. M. Dean, J. B. Howard, and J. P. Longwell (1989), Forming benzene in flames by chemically activated isomerization, J. Phys. Chem., 93, 8171-8180.

Whytock, D. A., W. A. Payne, and L. J. Stief (1976), Rate of reaction of atomic hydrogen with propyne over an extended pressure and temperature range, J. Chem. Phys., 65, 191-195.
Wight, G. R., M. J. Van der Wiel, and C. E. Brion (1976), Dipole excitation, ionization and fragmentation of N_{2} and CO in the $10-60 \mathrm{eV}$ region, J. Phys. B, 9, 675-689.

Wilke, C. R. (1950), Diffusional properties of multicomponent gases, Chem. Eng. Prog., 46, 95-104.
Wilson, E. H., and S. K. Atreya (2000a), On the significance of atmospheric parameters on the abundances of hydrocarbons in the atmosphere of Titan, Geophys. Res. Abstr., 74, 255.
Wilson, E. H., and S. K. Atreya (2000b), Sensitivity studies of methane photolysis and its impact on hydrocarbon chemistry in the atmosphere of Titan, J. Geophys. Res., 105, 20,263-20,273.
Wilson, E. H., and S. K. Atreya (2003), Chemical sources of haze formation in Titan's atmosphere, Planet. Space Sci., 51, 1017-1033.
Wilson, E. H., S. K. Atreya, and A. Coustenis (2003), Mechanisms for the formation of benzene in the atmosphere of Titan, J. Geophys. Res., 108(E2), 5014, doi:10.1029/2002JE001896.
Wodtke, A. M., and Y. T. Lee (1987), High-resolution photofragmenta-tion-Translational spectroscopy, in Advances in Gas-Phase Photochemistry and Kinetics, edited by M. N. R. Ashfold and J. E. Baggott, pp. 3159, R. Soc. of Chem., London.
Wong, A.-S., C. G. Morgan, Y. L. Yung, and T. Owen (2002), Evolution of CO on Titan, Icarus, 155, 382-392.
Woods, T. N., et al. (1996), Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements, J. Geophys. Res., 101, 9541-9569.
Wu, C. Y. R., and D. L. Judge (1985), Photoabsorption cross section of acetylene in the EUV region, J. Chem. Phys., 82, 4495-4499.
Wu, C. Y. R., F. Z. Chen, and D. L. Judge (2001), Measurements of temperature-dependent absorption cross sections of $\mathrm{C}_{2} \mathrm{H}_{2}$ in the VUVUV region, J. Geophys. Res., 106, 7629-7636.
Yakowitz, S., and F. Szidarovszky (1989), An Introduction to Numerical Computations, Macmillan, Old Tappan, N. J.
Yang, D. L., T. Yu, M. C. Lin, and C. F. Melius (1992a), CN radical reactions with hydrogen cyanide and cyanogen: Comparison of theory and experiment, J. Chem. Phys., 97, 222-226.
Yang, D. L., T. Yu, N. S. Wang, and M. C. Lin (1992b), Temperature dependence of cyanogen radical reactions with selected alkanes: CN reactivities towards primary, secondary and tertiary C-H bonds, Chem. Phys., 160, 307-315.
Yelle, R. V., D. F. Strobel, E. Lellouch, and D. Gautier (1997), Engineering models for Titan's atmosphere, Eur. Space Agency Spec. Publ., ESA-SP, 1177, 243-256.
Yokoyama, A., X. Zhao, E. J. Hintsa, R. E. Continetti, and Y. T. Lee (1990), Molecular beam studies of the photodissociation of benzene at 193 and 248 nm, J. Chem. Phys., 92, 4222-4233.
Yu, Y. X., S. M. Li, Z. F. Xu, Z. S. Li, and C. C. Sun (1998), An ab initio study on the reaction $\mathrm{NH}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{CH}_{3}$, Chem. Phys. Lett., 296, 131-136.
Yung, Y. L. (1987), An update of nitrile photochemistry, Icarus, 72, 468472.

Yung, Y. L., M. Allen, and J. P. Pinto (1984), Photochemistry of the atmosphere of Titan: Comparison between model and observations, Astrophys. J. Suppl., 55, 465-506.

Zabarnick, S., and M. C. Lin (1989), Kinetics of $\mathrm{CN}\left(\mathrm{X}^{2} \Sigma^{+}\right)$radical reactions with $\mathrm{HCN}, \mathrm{BrCN}$, and $\mathrm{CH}_{3} \mathrm{CN}$, Chem. Phys., 134, 185-191.
Zabarnick, S., J. W. Fleming, and M. C. Lin (1986), Kinetic study of the reaction $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)+\mathrm{H}_{2} \leftrightarrow \mathrm{CH}_{2}\left(\mathrm{X}^{3} \mathrm{~B}_{1}\right)+\mathrm{H}$ in the temperature range 372 to 675 K, J. Chem. Phys., 85, 4373-4376.
Zabarnick, S., J. W. Fleming, and M. C. Lin (1989), Kinetics of methylidyne ($\mathrm{CH} \mathrm{X} \mathrm{X}^{2} \Pi$) radical reactions with ammonia and methylamines, Chem. Phys., 132, 407-411.
Zelikoff, M., and K. Watanabe (1953), Absorption coefficients of ethylene in the vacuum ultraviolet, J. Opt. Soc. Am., 43, 756-759.
Zheng, S.-H., and S. K. Srivastava (1996), Electron impact ionization and dissociative ionization of acetylene, J. Phys. B, 29, 3235-3244.
Zipf, E. C., and R. W. McLaughlin (1978), On the dissociation of nitrogen by electron impact and by EUV photo-absorption, Planet. Space Sci., 26, 449-462.
Zipf, E. C., P. S. Espy, and C. F. Boyle (1980), The excitation and collisional deactivation of metastable $\mathrm{N}\left({ }^{2} \mathrm{P}\right)$ atoms in auroras, J. Geophys. Res., 85, 687-696.
Zwier, T. S., and M. Allen (1996), Metastable diacetylene reactions as routes to large hydrocarbons in Titan's atmosphere, Icarus, 123, 578583.
S. K. Atreya, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan at Ann Arbor, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA.
E. H. Wilson, NASA/Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 169-237, Pasadena, CA 91109-8099, USA. (eric.wilson@jpl.nasa.gov)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, E06002, doi:10.1029/2003JE002181, 2004

Tables

Table 1. List of Neutral and Ionic Compounds Used in the Model

Neutrals		
H	atomic hydrogen	Ions
H_{2}	molecular hydrogen	$\mathrm{H}_{2}{ }^{+}$
C	atomic carbon	$\mathrm{H}_{3}{ }^{+}$
CH	methylidyne	$\mathrm{H}_{2} \mathrm{O}^{+}$
${ }^{1} \mathrm{CH}_{2}$	excited-state methylene	$\mathrm{H}_{3} \mathrm{O}^{+}$
${ }^{3} \mathrm{CH}_{2}$	ground-state methylene	HCO^{+}
CH_{3}	methyl radical	$\mathrm{CH}_{3}{ }^{+}$
CH_{4}	methane	$\mathrm{CH}_{4}{ }^{+}$
C_{2}	molecular carbon	$\mathrm{CH}_{5}{ }^{+}$
$\mathrm{C}_{2} \mathrm{H}^{2}$	ethynyl radical	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	acetylene	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}$
$\mathrm{C}_{2} \mathrm{H}_{3}$	vinyl radical	$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}$
$\mathrm{C}_{2} \mathrm{H}_{4}$	ethylene	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	ethyl radical	$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{+}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	ethane	$c-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$
$\mathrm{C}_{3} \mathrm{H}_{2}$	propadienylidene	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}$
$\mathrm{C}_{3} \mathrm{H}_{3}$	propargyl radical	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	methylacetylene	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$
$\mathrm{CH}_{2} \mathrm{CCH}_{2}$	allene	$\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$
$\mathrm{C}_{3} \mathrm{H}_{5}$	allyl radical	N^{+}
$\mathrm{C}_{3} \mathrm{H}_{6}$	propylene	
$\mathrm{C}_{3} \mathrm{H}_{7}$	isopropyl radical	NH^{+}
$\mathrm{C}_{3} \mathrm{H}_{8}$	propane	$\mathrm{N}_{2} \mathrm{H}^{+}$
$\mathrm{C}_{4} \mathrm{H}$		$\mathrm{NH}_{2}{ }^{+}$
$\mathrm{C}_{4} \mathrm{H}_{2}$	diacetylene	

$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}$	excited-state diacetylene	$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{C}_{4} \mathrm{H}_{3}$		CN^{+}
$\mathrm{C}_{4} \mathrm{H}_{4}$	vinylacetylene	HCN^{+}
$\mathrm{C}_{4} \mathrm{H}_{5}$	1-butyn-3-yl radical	$\mathrm{H}_{2} \mathrm{CN}^{+}$
$\mathrm{C}_{4} \mathrm{H}_{6}$	1,3-butadiene	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}{ }^{+}$
$\mathrm{C}_{4} \mathrm{H}_{8}$	1-butene	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}{ }^{+}$
$\mathrm{C}_{4} \mathrm{H}_{10}$	n-butane	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}{ }^{+}$
$\mathrm{C}_{6} \mathrm{H}$		$\mathrm{N}_{\mathrm{x}}{ }^{+}$
$\mathrm{C}_{6} \mathrm{H}_{2}$	triacetylene	
$\mathrm{C}_{6} \mathrm{H}_{4}$	benzyne	
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{4}$	linear- $\mathrm{C}_{6} \mathrm{H}_{4}$	
$\mathrm{C}_{6} \mathrm{H}_{5}$	phenyl radical	
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{5}$	linear- $\mathrm{C}_{6} \mathrm{H}_{5}$	
$\mathrm{C}_{6} \mathrm{H}_{6}$	benzene	
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{6}$	linear- $\mathrm{C}_{6} \mathrm{H}_{6}$	
$\mathrm{C}_{6} \mathrm{H}_{7}$	cyclized- $\mathrm{C}_{6} \mathrm{H}_{7}$	
n- $\mathrm{C}_{6} \mathrm{H}_{7}$	linear- $\mathrm{C}_{6} \mathrm{H}_{7}$	
$\mathrm{C}_{8} \mathrm{H}_{2}$	tetraacetylene	
$\mathrm{N}^{4 \mathrm{~s}}$	ground-state atomic nitrogen	
$\mathrm{N}^{2 \mathrm{~d}}$	excited-state atomic nitrogen	
N_{2}	molecular nitrogen	
NH	imidogen	
NH_{2}	amino radical	
NH_{3}	ammonia	
$\mathrm{N}_{2} \mathrm{H}_{2}$	diimide	
$\mathrm{N}_{2} \mathrm{H}_{3}$	hydrazinyl radical	
$\mathrm{N}_{2} \mathrm{H}_{4}$	hydrazine	
CN	cyano radical	
HCN	hydrogen cyanide	
$\mathrm{H}_{2} \mathrm{CN}$	methylene-amidogen radical	
CHCN		
$\mathrm{CH}_{2} \mathrm{CN}$	cyanomethyl radical	

$\mathrm{CH}_{3} \mathrm{CN}$	acetonitrile	
$\mathrm{C}_{2} \mathrm{~N}_{2}$	cyanogen	
$\mathrm{HC}_{2} \mathrm{~N}_{2}$		
$\mathrm{C}_{3} \mathrm{~N}$	cyanoethynyl radical	
$\mathrm{HC}_{3} \mathrm{~N}$	cyanoacetylene	
$\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}$	cyanovinyl radical	
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	acrylonitrile	
$\mathrm{C}_{4} \mathrm{~N}_{2}$	dicyanoacetylene	
$\mathrm{O}^{3 \mathrm{p}}$	ground-state atomic oxygen	
$\mathrm{O}^{1 \mathrm{~d}}$	excited-state atomic oxygen	
OH	hydroxyl radical	
$\mathrm{H}_{2} \mathrm{O}$	water	
CO	carbon monoxide	
CO_{2}	carbon dioxide	
HCO	formyl radical	
$\mathrm{H}_{2} \mathrm{CO}$	formaldehyde	
$\mathrm{CH}_{2} \mathrm{OH}$	hydroxymethyl radical	
$\mathrm{CH}_{3} \mathrm{O}$	methoxy radical	
$\mathrm{CH}_{3} \mathrm{OH}$	methanol	
$\mathrm{CH}_{2} \mathrm{CO}$	ketene	
$\mathrm{CH}_{3} \mathrm{CO}$	acetyl radical	
$\mathrm{CH}_{3} \mathrm{CHO}$ ethylene oxide		
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	oxirane	

Table 2. Observations of Constituents in Titan's Atmosphere

Species	Altitude, km	Instrument	Observation	References
$\mathrm{CH}_{4}{ }^{\text {a }}$	1400	Voyager UVS	$20 \pm 2 \%$	Strobel et al. [1992]
	1130		$8 \pm 3 \%$	Smith et al. [1982]
	1000		$6 \pm 1 \%$	Smith et al. [1982]
	>825	Voyager UVS	1-2\%	Smith et al. [1982]
	725		0.1-0.3\%	

$\mathrm{C}_{2} \mathrm{H}_{2}^{\mathrm{a}, \mathrm{~b}}$	300-60 ${ }^{+80}$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 4.7_{-2.1}{ }^{+3.5} \times 10^{-6}$	Coustenis et al. [1991]
	180-30 +50		$\mathrm{NP}^{\mathrm{b}}: 2.3_{-1}{ }^{+1.6} \times 10^{-6}$	
	125-40 ${ }^{+50}$		$\mathrm{EQ}^{\mathrm{b}}: 2.2{ }_{-0.9}{ }^{+0.7} \times 10^{-6}$	Coustenis et al. [1989]
$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{\text {a }}$	180-30 ${ }^{+50}$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 3.0_{-2.1}{ }^{+2.8} \times 10^{-6}$	Coustenis et al. [1991]
	$125_{-35}+55$		EQ ${ }^{\text {b }} 9.00_{-5}{ }^{+3} \times 10^{-8}$	Coustenis et al. [1989]
$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{\text {a }}$	$3000_{-60}+80$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 1.5_{-0.9}{ }^{+2.6} \times 10^{-5}$	Coustenis et al. [1991]
	$180_{-30}+50$		$\mathrm{NP}^{\mathrm{b}}: 1.0_{-0.6}{ }^{+1.4} \times 10^{-5}$	
	$125_{-40}+50$		$\mathrm{EQ}^{\mathrm{b}}: 1.3_{-0.7}{ }^{+0.5} \times 10^{-5}$	Coustenis et al. [1989]
	105-300	IRHS-IRTF	$8.8 \pm 2.2 \times 10^{-6}$	Livengood et al. [2002]
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	$3000_{-60}+80$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 6.2{ }_{-2.5}{ }^{+4} \times 10^{-8}$	Coustenis et al. [1991]
	180-30 +50		$\mathrm{NP}^{\mathrm{b}}: 2.0_{-0.8}{ }^{+1.1} \times 10^{-8}$	
	105-30 ${ }^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: 4.4_{-2.1}{ }^{+1.7} \times 10^{-9}$	Coustenis et al. [1989]
$\mathrm{C}_{3} \mathrm{H}_{8}$	$180_{-30}+50$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 5.0_{-3.5}{ }^{+4} \times 10^{-7}$	Coustenis et al. [1991]
	$105-30^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: 7.0_{-4}{ }^{+4} \times 10^{-7}$	Coustenis et al. [1989]
	90-250	TEXES-IRTF	$6.2 \pm 1.2 \times 10^{-7}$	Roe et al. [2003]
$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{\text {a }}$	$300-60+80$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 4.2{ }_{-2.1}{ }^{+3.3} \times 10^{-8}$	Coustenis et al. [1991]
	$180_{-30}+50$		$\mathrm{NP}^{\mathrm{b}}: 2.7_{-1.2}{ }^{+2} \times 10^{-8}$	
	$105-30^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: 1.4_{-0.7}{ }^{+0.6} \times 10^{-9}$	Coustenis et al. [1989]
$\mathrm{H}_{2} \mathrm{O}$	400	ISO	$8.0-4{ }^{+6} \times 10^{-9} \mathrm{c}$	Coustenis et al. [1998]
	>40		4.0×10^{-10}	
CO	350	IRAM - Pico Veleta, Spain	$4.8{ }_{-1.5}+3.8 \times 10^{-6}$	Hidayat et al. [1998]
	175		$2.4_{-0.5}{ }^{+0.5} \times 10^{-5}$	
	60		$2.9{ }_{-0.5}{ }^{+0.9} \times 10^{-5}$	
	200-300	Owens Valley millimeter array	$5.2 \pm 1.2 \times 10^{-5}$	Gurwell and Muhleman [2000]
	40-200		$5.2 \pm 0.6 \times 10^{-5}$	
CO_{2}	$180-30 \times 50$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: \leq 7.0 \times 10^{-9}$	Coustenis et al. [1991]
	~ 180		$\mathrm{EQ}^{\mathrm{b}, \mathrm{c}}: 1.4 \times 10^{-8}$	Coustenis et al. [1989]
	$105-30^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: 1.4_{-0.5}{ }^{+0.3} \times 10^{-8}$	
$300_{-60}+80$ $180_{-30}+50$ 		Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 2.3_{-1.4}{ }^{+1.8} \times 10^{-7}$	Coustenis et al. [1991]
		$\mathrm{NP}^{\mathrm{b}}: 4.0_{-2.2}{ }^{+2.8} \times 10^{-7}$		

$\mathrm{HCN}^{\text {a }}$	$125-40{ }^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: 1.6_{-0.6}{ }^{+0.4} \times 10^{-7}$	Coustenis et al. [1989]
	350	IRAM - Pico Veleta, Spain	$3.7_{-1.2}{ }^{+1.8} \times 10^{-7}$	Hidayat et al. [1997]
	300		$5.2-3.9{ }^{+6.6} \times 10^{-6}$	Tanguy et al. [1990]
	200		$\begin{gathered} 3.5_{-1.1}^{+1.2} \times \\ 10^{-7} / 6.2_{-2.1}^{+1.9} \times 10^{-7} \end{gathered}$	Hidayat et al. [1997]/Tanguy et al. [1990]
	170		$\begin{gathered} 2.0_{-0.4}{ }^{+0.3} \times \\ 10^{-7} / 3.3_{-0.8}{ }^{+0.9} \times 10^{-7} \end{gathered}$	
	110		$5.0_{-0.9}{ }^{+1.1} \times 10^{-8}$	Hidayat et al. [1997]
	100		$7.5_{-3.0}+8.0 \times 10^{-8}$	Tanguy et al. [1990]
$\mathrm{CH}_{3} \mathrm{CN}$	320	IRAM - Pico Veleta, Spain	$1.0 \times 10^{-8} \mathrm{c}$	Bézard et al. [1993]
	250		$3.5 \times 10^{-9} \mathrm{c}$	
	180		$1.5 \times 10^{-9} \mathrm{c}$	
$\mathrm{HC}_{3} \mathrm{~N}^{\text {a }}$	$300-60{ }^{+80}$	Voyager IRIS	$\mathrm{NP}^{\mathrm{b}}: 2.5{ }_{-1}{ }^{+1.1} \times 10^{-7}$	Coustenis et al. [1991]
	180-30 ${ }^{+50}$		$\mathrm{NP}{ }^{\mathrm{b}}: 8.4_{-3.5}{ }^{+3} \times 10^{-8}$	
	105-30 ${ }^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: \leq 1.5 \times 10^{-9}$	Coustenis et al. [1989]
$\mathrm{C}_{2} \mathrm{~N}_{2}{ }^{\text {a }}$	$300-60{ }^{+80}$	Voyager IRIS	NP: $1.6_{-1}{ }^{+2.6} \times 10^{-8}$	Coustenis et al. [1991]
	$180{ }_{-30}+50$		NP: $5.5{ }_{-2.2}{ }^{+5} \times 10^{-9}$	
	$105-30^{+55}$		$\mathrm{EQ}^{\mathrm{b}}: \leq 1.5 \times 10^{-9}$	Coustenis et al. [1989]

${ }^{\text {a }}$ Vervack [1997] and Vervack et al. [2003] conducted Voyager UVS reanalysis of upper atmosphere observations for these constituents. See text.
${ }^{\text {b }}$ Voyager IRIS observations taken at NP: north polar region, EQ: equatorial region.
${ }^{\mathrm{c}}$ Value obtained by linear fitting of a model-calculated density profile.

Table 3. Rate Coefficients Used in the Model

Rxn	Reactions	Rate Coefficients	References and Comments
1	$\mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{H}_{2}+\mathrm{M}$	$1.5 \times 10^{-29} \mathrm{~T}^{-1.3}$	Tsang and Hampson $[1986] ;$ bath gas N_{2}
2	$\mathrm{C}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$ products	2.6×10^{-10}	Guadagnini et al. $[1998]$
3	$\mathrm{CH}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{3}+\mathrm{M}$	$\mathrm{k}_{0}=4.7 \times 10^{-26} \mathrm{~T}^{-1.6} \mathrm{k}_{\infty}$ $=2.5 \times 10^{-10} \mathrm{~T}^{-0.08}$	Brownsword et al. $[1997]$
	$\mathrm{CH}+\mathrm{H}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{H}$	$3.1 \times 10^{-10} \mathrm{e}^{-1650 / \mathrm{T}}$	

4	$\mathrm{CH}+\mathrm{H} \rightarrow \mathrm{C}+\mathrm{H}_{2}$	1.4×10^{-11}	Becker et al. [1989]
5	$\mathrm{CH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	$\begin{aligned} & 3.96 \times 10^{-8} \mathrm{~T}^{-1.04} \\ & \mathrm{e}^{-36.1 / \mathrm{T}} \end{aligned}$	Canosa et al. [1997]
6	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}$	$1.59 \times 10^{-9} \mathrm{~T}^{-0233} \mathrm{e}^{-16 / \mathrm{T}}$	Canosa et al. [1997]
7	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$\begin{aligned} & 3.87 \times 10^{-9} \mathrm{~T}^{-0.546} \\ & \mathrm{e}^{-29.6 / \mathrm{T}} \end{aligned}$	Canosa et al. [1997]
	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}$	$\begin{aligned} & 3.87 \times 10^{-9} \mathrm{~T}^{-0.546} \\ & \mathrm{e}^{-29.6 / \mathrm{T}} \end{aligned}$	
8	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3}$	$1.9 \times 10^{-8} \mathrm{~T}^{-0.859} \mathrm{e}^{-53.2 / \mathrm{T}}$	Canosa et al. [1997]
	$\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}$	$1.9 \times 10^{-8} \mathrm{~T}^{-0.859} \mathrm{e}^{-53.2 / \mathrm{T}}$	
9	$\mathrm{CH}+\mathrm{C}_{4} \mathrm{H}_{8} \rightarrow$ products	$\begin{aligned} & 8.78 \times 10^{-9} \mathrm{~T}^{-0.529} \\ & \mathrm{e}^{-33.5 / \mathrm{T}} \end{aligned}$	Canosa et al. [1997]
10	${ }^{3} \mathrm{CH}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{3}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=3.1 \times 10^{-30} \mathrm{e}^{457 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=1.5 \times 10^{-10} \end{aligned}$	Gladstone [1983]
	${ }^{3} \mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}+\mathrm{H}_{2}$	$4.7 \times 10^{-10} \mathrm{e}^{-370 / \mathrm{T}}$	Zabarnick et al. [1986]
11	${ }^{3} \mathrm{CH}_{2}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	$2.0 \times 10^{-11} \mathrm{e}^{-400 / \mathrm{T}}$	Baulch et al. [1992]
	${ }^{3} \mathrm{CH}_{2}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}$	$1.8 \times 10^{-11} \mathrm{e}^{-400 / \mathrm{T}}$	
12	${ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	7.0×10^{-11}	Tsang and Hampson [1986]
13	${ }^{3} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}$	$1.5 \times 10^{-11} \mathrm{e}^{-3332 / \mathrm{T}}$	Bohland et al. [1986]
14	${ }^{3} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}$	3.0×10^{-11}	Tsang and Hampson [1986]
15	${ }^{3} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}$	3.0×10^{-11}	Tsang and Hampson [1986]
16	${ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{H}_{2}$	1.26×10^{-11}	Langford et al. [1983]
	${ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{H}$	9.24×10^{-11}	
17	${ }^{1} \mathrm{CH}_{2}+\mathrm{CH}_{4} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{4}$	1.2×10^{-11}	Bohland et al. [1985]
	${ }^{1} \mathrm{CH}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3}$	6.0×10^{-11}	
18	${ }^{1} \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}$	3.6×10^{-10}	Guadagnini et al. [1998]
19	${ }^{1} \mathrm{CH}_{2}+\mathrm{N}_{2} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{N}_{2}$	$2.36 \times 10^{-14} \mathrm{~T}$	Ashfold et al. [1981]
20	$\mathrm{CH}_{3}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{4}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=4.0 \times 10^{-29} \mathrm{k}_{\infty}= \\ & 4.7 \times 10^{-10} \mathrm{~F}_{\mathrm{c}}=0.902- \\ & 1.03 \times 10^{-3} \mathrm{~T} \end{aligned}$	Brouard et al. [1989]
21		$\mathrm{k}_{n}=8.76 \times 10^{-6} \mathrm{~T}^{-7.03}$	Slagle et al. [1988];

	$\mathrm{CH}_{3}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{M}$	$\left\lvert\, \begin{aligned} & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{\infty}=1.5 \times 10^{-6} \\ & \mathrm{~T}^{-1.18} \mathrm{e}^{-329 / \mathrm{T}} \mathrm{~F}_{\mathrm{c}}=0.381 \\ & \mathrm{e}^{-\mathrm{T} / 37.2}-0.619 \mathrm{e}^{-\mathrm{T} / 1180} \end{aligned}\right.$	Rate used is $10 \times$ measured rate - see text
22	$\mathrm{CH}_{4}+\mathrm{C}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{CH}_{3}$	$5.05 \times 10^{-11} \mathrm{e}^{-297 / \mathrm{T}}$	Pitts et al. [1982]
23	$\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.2 \times 10^{-11} \mathrm{e}^{-491 / \mathrm{T}}$	Opansky and Leone [1996a]
24	$\mathrm{CH}_{4}+\mathrm{C}_{4} \mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.2 \times 10^{-11} \mathrm{e}^{-491 / \mathrm{T}}$	estimating that $\mathrm{C}_{4} \mathrm{H}$ reaction rates are equal to their $\mathrm{C}_{2} \mathrm{H}$ analogues; Kiefer and von Drasek [1990]
25	$\mathrm{CH}_{4}+\mathrm{C}_{6} \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.2 \times 10^{-11} \mathrm{e}^{-491 / \mathrm{T}}$	estimating that $\mathrm{C}_{6} \mathrm{H}$ reaction rates are equal to their $\mathrm{C}_{2} \mathrm{H}$ analogues; Kiefer and von Drasek [1990]
26	$\mathrm{C}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$1.77 \times 10^{-12} \mathrm{e}^{-1469 / \mathrm{T}}$	Pitts et al. [1982]
27	$\mathrm{C}_{2} \mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.26 \times 10^{-18} \mathrm{~T}^{-3.1} \\ & \mathrm{e}^{-721 / \mathrm{T}} \mathrm{k}_{\infty}=3.0 \times 10^{-10} \end{aligned}$	Tsang and Hampson [1986]
28	$\mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}$	$9.2 \times 10^{-18} \mathrm{~T}^{2.17} \mathrm{e}^{-478 / \mathrm{T}}$	Opansky and Leone [1996b]
29	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]
30	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4}+\mathrm{H}$	$4.6 \times 10^{-11} \mathrm{e}^{24.6 / \mathrm{T}}$	Opansky and Leone [1996b], Chastaing et al. [1998]
	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{3}$	$4.6 \times 10^{-11} \mathrm{e}^{24.6 / \mathrm{T}}$	
31	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{5}$	$3.5 \times 10^{-11} \mathrm{e}^{2.9 / \mathrm{T}}$	Opansky and Leone [1996b]
32	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{3} \mathrm{H}_{6} \rightarrow$ products	$1.47 \times 10^{-10} \mathrm{e}^{65.3 / \mathrm{T}}$	Chastaing et al. [1998]
33	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{3} \mathrm{H}_{7}$	$7.8 \times 10^{-11} \mathrm{e}^{3 / \mathrm{T}}$	Hoobler et al. [1997]
34	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
35	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{6} \mathrm{H}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
36	$\mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{8} \mathrm{H}_{2} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]

37	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M}$	$\left\lvert\, \begin{aligned} & \mathrm{k}_{0}=3.3 \times 10^{-30} \mathrm{e}^{-740 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=1.4 \times 10^{-11} \mathrm{e}^{-1300 / \mathrm{T}} \end{aligned}\right.$	Baulch et al. [1992]
38	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
39	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{6} \mathrm{H} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
40	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	7.6×10^{-11}	k_{0} estimate; Monks et al. [1995]
	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=5.76 \times 10^{-24} \mathrm{~T}^{-1.3} \\ & \mathrm{k}_{\infty}=8.0 \times 10^{-11} \end{aligned}$	
41	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	$\begin{aligned} & 5.01 \times 10^{-20} \mathrm{~T}^{2.63} \\ & \mathrm{e}^{-4298 / \mathrm{T}} \mathrm{k}_{\min }=1.0 \times \\ & 10^{-23} \end{aligned}$	Tsang and Hampson [1986]
42	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{4}$	3.4×10^{-11}	Fahr et al. [1991]
	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-6} \mathrm{~T}^{-7.03} \\ & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{\infty}=1.2 \times 10^{-10} \end{aligned}$	k_{0} estimated from $\mathrm{k}_{0}\left(\mathrm{CH}_{3}+\mathrm{CH}_{3}\right)$; Fahr et al. [1991]
43	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}$	$2.4 \times 10^{-24} \mathrm{~T}^{4.02} \mathrm{e}^{-2754 / \mathrm{T}}$	Tsang and Hampson [1986]
44	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4}+\mathrm{H}$	$3.32 \times 10^{-12} \mathrm{e}^{-2516 / \mathrm{T}}$	Fahr and Stein [1988]
	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=3.3 \times 10^{-29} \mathrm{e}^{-740 / \mathrm{T}} \\ & \mathrm{k}_{\infty}=4.17 \times 10^{-19} \mathrm{~T}^{1.9} \\ & \mathrm{e}^{-1058 / \mathrm{T}} \end{aligned}$	k_{0} estimated as $10 \times$ $\mathrm{k}_{0}\left(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}\right)$ Weissman and Benson [1988]
45	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{2}$	2.4×10^{-11}	Fahr et al. [1991]
	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-6} \mathrm{~T}^{-7.03} \\ & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{8}=1.2 \times 10^{-10} \end{aligned}$	k_{0} estimated as $\mathrm{k}_{0}\left(\mathrm{CH}_{3}\right.$ $+\mathrm{CH}_{3}$); Fahr et al. [1991]
46	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}$	$1.05 \times 10^{-12} \mathrm{e}^{-1559 / \mathrm{T}}$	Fahr and Stein [1988]
47	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{2}$	2.81×10^{-12}	estimate from Tsang and Hampson [1986]
	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.81×10^{-12}	
	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.9 \times 10^{-27} \mathrm{k}_{8}=2.5 \\ & \times 10^{-11} \end{aligned}$	Fahr et al. [1991]
48	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.39 \times 10^{-29} \mathrm{e}^{-569 / \mathrm{T}} \\ & \mathrm{k}_{8}=3.7 \times 10^{-11} \mathrm{e}^{-1040 / \mathrm{T}} \end{aligned}$	Lightfoot and Pilling [1987]; Lee et al. [1978]
49	$\mathrm{C}_{4} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{3}$	$9.2 \times 10^{-11} \mathrm{e}^{24.6 / \mathrm{T}}$	Chastaing et al. [1998];

			estimated from Kiefer and von Drasek [1990]
50	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3}$	$7.95 \times 10^{-11} \mathrm{e}^{-127 / T}$	Pratt and Wood [1984]
	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	3.0×10^{-12}	Tsang and Hampson [1986]
	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=5.5 \times 10^{-23} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1040 / \mathrm{T}} \mathrm{k}_{8}=1.66 \times \\ & 10^{-10} \end{aligned}$	Teng and Jones [1972]; Sillesen et al. [1993]
51	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{4}$	$3.25 \times 10^{-11} \mathrm{~T}^{-0.5}$	Tsang and Hampson [1986]
	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{5}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.0 \times 10^{19} \mathrm{~T}^{-16.1} \\ & \mathrm{e}^{-1897 / \mathrm{T}} \mathrm{k}_{8}=8.12 \times \\ & 10^{-10} \mathrm{~T}^{-0.5} \end{aligned}$	Laufer et al. [1983]; Tsang and Hampson [1986]
52	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.4×10^{-12}	Baulch et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.6 \times 10^{-6} \mathrm{~T}^{-6.39} \\ & \mathrm{e}^{-301 / \mathrm{T}} \mathrm{k}_{8}=1.9 \times 10^{-11} \end{aligned}$	Laufer et al. [1983], Baulch et al. [1992]
53	$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{4} \mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{5}$	$3.5 \times 10^{-11} \mathrm{e}^{2.9 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
54	$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{5}$	$3.5 \times 10^{-11} \mathrm{e}^{2.9 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
55	$\mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.7 \times 10^{-26} \mathrm{k}_{8}=1.0 \\ & \times 10^{-11} \end{aligned}$	Laufer et al. [1983]; Homann and Schweinfurth [1981]
56	$\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.7 \times 10^{-26} \mathrm{k}_{8}=2.5 \\ & \times 10^{-10} \end{aligned}$	Laufer et al. [1983]; Atkinson and Hudgens [1999]
	$\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.7 \times 10^{-26} \mathrm{k}_{8}=2.5 \\ & \times 10^{-10} \end{aligned}$	
57	$\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-6} \mathrm{~T}^{-7.03} \\ & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{8}=1.5 \times 10^{-10} \end{aligned}$	k_{0} estimated as $\mathrm{k}_{0}\left(\mathrm{CH}_{3}\right.$ $+\mathrm{CH}_{3}$); Fahr and Nayak [2000]
58	$\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{M} \rightarrow n-\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-6} \mathrm{~T}^{-7.03} \\ & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{8}=4.0 \times 10^{-11} \end{aligned}$	k_{0} estimated as $\mathrm{k}_{0}\left(\mathrm{CH}_{3}\right.$ $+\mathrm{CH}_{3}$); Atkinson and Hudgens [1999]; Wang and Frenklach [1994]
59	$\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{C}_{3} \mathrm{H}_{5} \rightarrow$ products	2.9×10^{-11}	Atkinson and Hudgens [1999]
60	$\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$1.29 \times 10^{-11} \mathrm{e}^{-1156 / \mathrm{T}}$	Aleksandrov et al. [1980]

	$\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M}$	$\left\lvert\, \begin{aligned} & \mathrm{k}_{0}=8.0 \times 10^{-24} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1225 / \mathrm{T}} \mathrm{k}_{8}=9.7 \times 10^{-13} \\ & \mathrm{e}^{-1550 / \mathrm{T}} \end{aligned}\right.$	Wagner and Zellner [1972]; based on analogy with $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ $+\mathrm{H}$
	$\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}=8.0 \times 10^{-24} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1225 / \mathrm{T}} \mathrm{k}_{8}=6.6 \times 10^{-12} \\ & \mathrm{e}^{-1360 / \mathrm{T}} \end{aligned}$	
61	$\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{3} \mathrm{H}_{3}$	$1.3 \times 10^{-10} \mathrm{e}^{103 / \mathrm{T}}$	Hoobler and Leone [1999]
62	$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.0 \times 10^{-24} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1225 / \mathrm{T}} \mathrm{k}_{8}=9.62 \times \\ & 10^{-12} \mathrm{e}^{-1560 / \mathrm{T}} \end{aligned}$	Whytock et al. [1976], Wagner and Zellner [1972]
	$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.0 \times 10^{-24} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1225 / \mathrm{T}} \mathrm{k}_{8}=6.0 \times 10^{-11} \\ & \mathrm{e}^{-1233 / \mathrm{T}} \end{aligned}$	Whytock et al. [1976]
63	$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{CH}_{3}$	$1.6 \times 10^{-10} \mathrm{e}^{71 / \mathrm{T}}$	Hoobler and Leone [1999]
64	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-24} \mathrm{k}_{8}= \\ & 2.52 \times 10^{-10} \end{aligned}$	Hanning-Lee and Pilling [1992]
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2}$	1.4×10^{-11}	
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}_{2}$	1.4×10^{-11}	
65	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}$	$1.8 \times 10^{-19} \mathrm{~T}^{2.38} \mathrm{e}^{-9557 / \mathrm{T}}$	Tsang [1991]
66	$\mathrm{C}_{3} \mathrm{H}_{5}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}$	4.0×10^{-10}	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{5}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}$	8.0×10^{-11}	
67	$\mathrm{C}_{3} \mathrm{H}_{5}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}$	5.0×10^{-11}	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{5}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}$	1.6×10^{-11}	
68	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{CH}_{4}$	$5.0 \times 10^{-12} \mathrm{~T}^{-0.32} \mathrm{e}^{66 / \mathrm{T}}$	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.28 \times 10^{-30} \mathrm{~T}^{-0.32} \\ & \mathrm{e}^{66 / \mathrm{T}} \mathrm{k}_{8}=1.69 \times 10^{-10} \\ & \mathrm{~T}^{-0.32} \mathrm{e}^{66 / \mathrm{T}} \end{aligned}$	
69	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{5} \mathrm{H}_{6}+2 \mathrm{H}$	8.0×10^{-11}	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{2}$	8.0×10^{-12}	
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.0×10^{-12}	
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.0×10^{-12}	
70	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{C}_{2} \mathrm{H}_{6}$	$1.6 \times 10^{-12} \mathrm{e}^{66 / \mathrm{T}}$	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$	$4.3 \times 10^{-12} \mathrm{e}^{66 / \mathrm{T}}$	

71	$\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{C}_{3} \mathrm{H}_{5} \rightarrow$ products	2.7×10^{-11}	Atkinson and Hudgens [1999]
72	$\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.5 \times 10^{-29} \mathrm{k}_{8}=3.7 \\ & \times 10^{-11} \mathrm{e}^{-1040 / \mathrm{T}} \end{aligned}$	Laufer et al. [1983]
73	$\mathrm{C}_{3} \mathrm{H}_{6}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{CH}_{3}$	8.7×10^{-11}	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{6}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}$	8.1×10^{-11}	
74	$\mathrm{C}_{3} \mathrm{H}_{6}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{CH}_{3}$	$2.7 \times 10^{-12} \mathrm{e}^{-2660 / T}$	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{6}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}$	$1.2 \times 10^{-12} \mathrm{e}^{-3116 / \mathrm{T}}$	
75	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3}$	$\begin{aligned} & 6.0 \times 10^{-11} \exp [-1.32 \\ & +1.533 \times 10^{-3} \mathrm{~T}-4.29 \\ & \left.\times 10^{-4} \mathrm{~T}^{2}\right] \end{aligned}$	Tsang [1988]
76	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-7} \mathrm{~T}^{-7.03} \\ & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{8}=3.2 \times 10^{-10} \\ & \mathrm{~T}^{-0.32} \end{aligned}$	k_{0} estimated as $0.1 \times$ $\mathrm{k}_{0}\left(\mathrm{CH}_{3}+\mathrm{CH}_{3}\right)$; Tsang [1988]
	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4}$	$1.9 \times 10^{-11} \mathrm{~T}^{-0.32}$	Tsang [1988]
77	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{5}$	2.0×10^{-11}	Tsang [1991]
	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.0×10^{-11}	
78	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.0×10^{-12}	Tsang [1988]
	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{C}_{2} \mathrm{H}_{2}$	2.0×10^{-12}	
79	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{6}$	2.4×10^{-12}	Tsang [1988]
	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.0×10^{-12}	
80	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{3} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{3} \mathrm{H}_{6}$	$2.4 \times 10^{-12} \mathrm{e}^{66 / \mathrm{T}}$	Tsang [1988]
	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{3} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{CH}_{2} \mathrm{CCH}_{2}$	$1.2 \times 10^{-12} \mathrm{e}^{66 / \mathrm{T}}$	
81	$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{C}_{3} \mathrm{H}_{7} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{C}_{3} \mathrm{H}_{6}$	2.8×10^{-12}	Tsang [1988]
82	$\mathrm{C}_{4} \mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.26 \times 10^{-18} \mathrm{~T}^{-3.1} \\ & \mathrm{e}^{-721 / \mathrm{T}} \mathrm{k}_{8}=3.0 \times 10^{-10} \end{aligned}$	Tsang and Hampson [1986]; estimated from Kiefer and von Drasek [1990]
83	$\mathrm{C}_{4} \mathrm{H}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}$	$9.2 \times 10^{-18} \mathrm{~T}^{2.17} \mathrm{e}^{-478 / \mathrm{T}}$	Opansky and Leone [1996b]; estimated from Kiefer and von Drasek [1990]
84	$\mathrm{C}_{4} \mathrm{H}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}+\mathrm{H}$	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
85	$\mathrm{C}_{4} \mathrm{H}+\mathrm{C}_{6} \mathrm{H}_{2} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer

			and von Drasek [1990]
86	$\mathrm{C}_{4} \mathrm{H}+\mathrm{C}_{8} \mathrm{H}_{2} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
87	$\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-28} \mathrm{k}_{8}= \\ & 1.39 \times 10^{-10} \mathrm{e}^{-1184 / \mathrm{T}} \end{aligned}$	Schwanebeck and Warnatz [1975]; Nava et al. [1986]
88	$\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}+\mathrm{H}_{2}$	$4.25 \times 10^{-12} \mathrm{~T}^{0.5}$	Bandy et al. [1993]; maximum collision rate; assuming branching ratio $=0.5$ for the two branches
	$\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$	$4.25 \times 10^{-12} \mathrm{~T}^{0.5}$	
89	$\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{C}_{6} \mathrm{H} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
90	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}+\mathrm{N}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{N}_{2}$	1.4×10^{-15}	Zwier and Allen [1996]; Wendt et al. [1979]
91	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}$	$1000 \mathrm{~s}^{-1}$	Wendt et al. [1979]; deexcitation rate
92	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+2 \mathrm{H}$	$1.28 \times 10^{-12} \mathrm{~T}^{0.5}$	Frost et al. [1995]
93	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow$ products	$1.7 \times 10^{-12} \mathrm{~T}^{0.5}$	Frost et al. [1996]
94	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}+\mathrm{C}_{3} \mathrm{H}_{6} \rightarrow$ products	$2.98 \times 10^{-12} \mathrm{~T}^{0.5}$	Frost et al. [1996]
95	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}+\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H} \rightarrow$ products	$2.64 \times 10^{-12} \mathrm{~T}^{0.5}$	Frost et al. [1996]
96	$\mathrm{C}_{4} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$	3.3×10^{-12}	Schwanebeck and Warnatz [1975]
	$\mathrm{C}_{4} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}_{2}$	1.2×10^{-11}	
97	$\mathrm{C}_{4} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=3.3 \times 10^{-29} \mathrm{e}^{-740 / \mathrm{T}} \\ & \mathrm{k}_{8}=5.48 \mathrm{~T}^{-3.89} \mathrm{e}^{4635 / \mathrm{T}} \end{aligned}$	k_{0} estimated as $10 \times$ $\mathrm{k}_{0}\left(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}\right)$ Westmoreland et al. [1989]
98	$\mathrm{C}_{4} \mathrm{H}_{4}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.76 \times 10^{-8} \mathrm{~T}^{-7.03} \\ & \mathrm{e}^{-1390 / \mathrm{T}} \mathrm{k}_{8}=3.3 \times 10^{-12} \end{aligned}$	Schwanebeck and Warnatz [1975]
99	$\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}$	$6.61 \times 10^{-15} \mathrm{~T}^{0.5} \mathrm{e}^{-1864 / \mathrm{T}}$	Weissman and Benson [1988]
100	$\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}$	$\begin{aligned} & 3.16 \times 10^{-17} \mathrm{~T}^{1.47} \\ & \mathrm{e}^{-2471 / \mathrm{T}} \end{aligned}$	Westmoreland et al. [1989]
101	$\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}_{2}$	$1.4 \times 10^{-30} \mathrm{~T}^{5.63} \mathrm{e}^{951 / \mathrm{T}}$	Westmoreland et al. [1989]
102	$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{H} \rightarrow \mathrm{H}_{2}+$ products	$5.14 \times 10^{-10} \mathrm{e}^{-4318 / \mathrm{T}}$	Warnatz [1984]
103	$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{CH} \rightarrow$ products	$4.4 \times 10^{-10} \mathrm{e}^{28 / \mathrm{T}}$	Baulch et al. [1992]

104	$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+$ products	$8.3 \times 10^{-11} \mathrm{e}^{112 / \mathrm{T}}$	Hoobler et al. [1997]
105	$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{OH}+$ products	$\begin{aligned} & 4.07 \times 10^{-21} \mathrm{~T}^{3.43} \\ & \mathrm{e}^{-1166 / \mathrm{T}} \end{aligned}$	Miyoshi et al. [1993]
106	$\mathrm{C}_{6} \mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.26 \times 10^{-18} \mathrm{~T}^{-3.1} \\ & \mathrm{e}^{-721 / \mathrm{T}} \mathrm{k}_{8}=3.0 \times 10^{-10} \end{aligned}$	estimating that $\mathrm{C}_{6} \mathrm{H}$ reaction rates are equal to their $\mathrm{C}_{2} \mathrm{H}$ analogues; Kiefer and von Drasek [1990]
107	$\mathrm{C}_{6} \mathrm{H}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}+\mathrm{H}$	$9.2 \times 10^{-18} \mathrm{~T}^{2.17} \mathrm{e}^{-478 / \mathrm{T}}$	Opansky and Leone [1996b]; estimated from Kiefer and von Drasek [1990]
108	$\mathrm{C}_{6} \mathrm{H}+\mathrm{C}_{6} \mathrm{H}_{2} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
109	$\mathrm{C}_{6} \mathrm{H}+\mathrm{C}_{8} \mathrm{H}_{2} \rightarrow$ polymer	$9.53 \times 10^{-11} \mathrm{e}^{30.8 / \mathrm{T}}$	Chastaing et al. [1998]; estimated from Kiefer and von Drasek [1990]
110	$\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.96 \times 10^{33} \mathrm{~T}^{-18.35} \\ & \mathrm{e}^{-6694 / \mathrm{T}} \mathrm{k}_{8}=1.06 \times \\ & 10^{-14} \mathrm{~T}^{1.11} \mathrm{e}^{-705 / \mathrm{T}} \end{aligned}$	Wang and Frenklach [1994]
111	$\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}$	$\begin{aligned} & 9.48 \times 10^{-20} \mathrm{~T}^{2.43} \\ & \mathrm{e}^{-3159 / \mathrm{T}} \end{aligned}$	Mebel et al. [1997]
112	$\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$ polymer	$9.8 \times 10^{-13} \mathrm{~T}^{0.21} \mathrm{e}^{-2516 / \mathrm{T}}$	Wang and Frenklach [1994]
	$\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ polymer	$\begin{aligned} & \mathrm{k}_{0}=4.97 \times 10^{-19} \mathrm{~T}^{-4.08} \\ & \mathrm{e}^{403 / \mathrm{T}} \mathrm{k}_{8}=6.64 \times 10^{15} \\ & \mathrm{~T}^{-8.94} \mathrm{e}^{-6039 / \mathrm{T}} \end{aligned}$	
113	$n-\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}$	$\begin{aligned} & 1.44 \times 10^{-7} \mathrm{~T}^{-1.34} \\ & \mathrm{e}^{-1762 / \mathrm{T}} \end{aligned}$	Wang and Frenklach [1994]
	$n-\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}+\mathrm{M} \rightarrow n-\mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=8.0 \times 10^{-31} \mathrm{~T}^{-0.52} \\ & \mathrm{e}^{-504 / \mathrm{T}} \mathrm{k}_{8}=1.06 \times 10^{-14} \\ & \mathrm{~T}^{0.86} \mathrm{e}^{-554 / \mathrm{T}} \end{aligned}$	
114	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}_{2}$	$4.15 \times 10^{-10} \mathrm{e}^{-8052 / \mathrm{T}}$	Wang and Frenklach [1997]
	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-28} \mathrm{k}_{8}= \\ & 5.27 \times 10^{-11} \mathrm{e}^{-1605 / \mathrm{T}} \end{aligned}$	k_{0} estimated; Mebel et al. [1997]
115	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H} \rightarrow$ polymer	8.3×10^{-11}	Wang and Frenklach [1994]
116	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{H}_{5} \rightarrow$ polymer	$1.59 \times 10^{-12} \mathrm{e}^{-2168 / \mathrm{T}}$	Park et al. [1999]
117	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{CH} \rightarrow \mathrm{CN}+\mathrm{H}$	$2.67 \times 10^{-10} \mathrm{~T}^{-0.09}$	Brownsword et al.

			[1996]
118	$\mathrm{N}^{4 \mathrm{~s}}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{HCN}+\mathrm{H}$	6.4×10^{-12}	Marston et al. [1989]
119	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{CH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{CN}+\mathrm{H}$	5.76×10^{-11}	Marston et al. [1989]
120	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{CN}+\mathrm{H}$	6.16×10^{-11}	Payne et al. [1996]
	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{NH}$	1.23×10^{-11}	
	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$	3.9×10^{-12}	
121	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{H}_{2} \mathrm{CN}+\mathrm{CH}_{3}$	3.9×10^{-11}	Stief et al. [1995]
	$\mathrm{N}^{4 \mathrm{~s}}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{NH}+\mathrm{C}_{2} \mathrm{H}_{4}$	7.1×10^{-11}	
122	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{N}_{2} \rightarrow \mathrm{~N}^{4 \mathrm{~s}}+\mathrm{N}_{2}$	1.6×10^{-14}	Lin and Kaufman [1971]
123	$\mathrm{N}^{2 \mathrm{~d}} \rightarrow \mathrm{~N}^{4 \mathrm{~s}}$	2.3×10^{-5}	Okabe [1978]
124	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{H}_{2} \rightarrow \mathrm{NH}+\mathrm{H}$	$4.6 \times 10^{-11} \mathrm{e}^{-880 / T}$	Suzuki et al. [1993]
125	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{CH}_{4} \rightarrow \mathrm{NH}+\mathrm{CH}_{3}$	$2.13 \times 10^{-11} \mathrm{e}^{-755 / \mathrm{T}}$	Takayanagi et al. [1999]; Umemoto et al. [1998]
	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{NH}+\mathrm{H}$	$4.97 \times 10^{-11} \mathrm{e}^{-755 / T}$	
126	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CHCN}+\mathrm{H}$	$1.6 \times 10^{-10} \mathrm{e}^{-267 / T}$	Takayanagi et al. [1998]
127	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}$	2.6×10^{-11}	Sato et al. [1999]; Balucani et al. [2000]
128	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{NH}+\mathrm{C}_{2} \mathrm{H}_{5}$	3.0×10^{-12}	estimated by Lellouch et al. [1994] on the basis of $\mathrm{N}^{2 \mathrm{~d}}+\mathrm{CH}_{4} \rightarrow$ $\mathrm{NH}+\mathrm{CH}_{3}$
129	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{CO} \rightarrow$ products	1.7×10^{-12}	Piper et al. [1987]
130	$\mathrm{N}^{2 \mathrm{~d}}+\mathrm{CO}_{2} \rightarrow$ products	3.5×10^{-13}	Piper et al. [1987]
131	$\mathrm{NH}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{~N}_{2}+\mathrm{H}$	$1.1 \times 10^{-11} \mathrm{~T}^{0.5}$	maximum collision rate
132	$\mathrm{NH}+\mathrm{NH}+\mathrm{M} \rightarrow \mathrm{N}_{2}+\mathrm{H}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-33} \mathrm{k}_{8}=1.0 \\ & \times 10^{-14} \end{aligned}$	estimated by Yung et al. [1984]
133	$\mathrm{NH}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{NH}+\mathrm{H}$	4.0×10^{-11}	estimated by Lellouch et al. [1994], averaging the rates of $\mathrm{CH}_{2}+\mathrm{CH}_{3}$, $\begin{aligned} & \mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{CH}_{2}+ \\ & \mathrm{C}_{2} \mathrm{H}_{5} \end{aligned}$
	$\mathrm{NH}+\mathrm{CH}_{3} \rightarrow \mathrm{~N}^{4 \mathrm{~s}}+\mathrm{CH}_{4}$	4.0×10^{-11}	
134	$\mathrm{NH}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow$ products	4.0×10^{-11}	estimated by Lellouch et al. [1994]

135	$\mathrm{NH}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow$ products	4.0×10^{-11}	estimated by Lellouch et al. [1994]
136	$\mathrm{CN}+\mathrm{H}_{2} \rightarrow \mathrm{HCN}+\mathrm{H}$	$2.23 \times 10^{-21} \mathrm{~T}^{3.31} \mathrm{e}^{-756 / \mathrm{T}}$	Sun et al. [1990]
137	$\mathrm{CN}+\mathrm{CH}_{4} \rightarrow \mathrm{HCN}+\mathrm{CH}_{3}$	$5.73 \times 10^{-12} \mathrm{e}^{-675 / T}$	Sims et al. [1993]
138	$\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}$	$2.78 \times 10^{-9} \mathrm{~T}^{-0.428}$	Sims et al. [1993]; Huang et al. [1999]
139	$\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+\mathrm{H}$	$1.96 \times 10^{-10} \mathrm{~T}^{-0.24}$	Herbert et al. [1992]; Monks et al. [1993], assuming from Monks et al., a quantum yield of 0.2
	$\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{3}$	$7.86 \times 10^{-10} \mathrm{~T}^{-0.24}$	Herbert et al. [1992]; Monks et al. [1993], assuming from Monks et al., a quantum yield of 0.8
140	$\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{5}$	$5.91 \times 10^{-12} \mathrm{~T}^{0.22} \mathrm{e}^{58 / \mathrm{T}}$	Sims et al. [1993]
141	$\mathrm{CN}+\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H} \rightarrow$ products	4.1×10^{-10}	Carty et al. [2001]
142	$\mathrm{CN}+\mathrm{CH}_{2} \mathrm{CCH}_{2} \rightarrow$ products	3.75×10^{-10}	Butterfield et al. [1993]
143	$\mathrm{CN}+\mathrm{C}_{3} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CN}+\mathrm{H}$	$1.73 \times 10^{-10} \mathrm{e}^{-102 / \mathrm{T}}$	Sims et al. [1993]
144	$\mathrm{CN}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow$ products	8.34×10^{-11}	Hess et al. [1989]
145	$\mathrm{CN}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{HC}_{5} \mathrm{~N}+\mathrm{H}$	4.2×10^{-10}	Seki et al. [1996]
146	$\mathrm{CN}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow$ products	$1.07 \times 10^{-7} \mathrm{~T}^{-0.82} \mathrm{e}^{-228 / \mathrm{T}}$	Yang et al. [1992b]
147	$\mathrm{CN}+\mathrm{C}_{4} \mathrm{H}_{6} \rightarrow$ products	4.52×10^{-10}	Butterfield et al. [1993]
148	$\mathrm{CN}+\mathrm{HCN} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{H}$	$2.5 \times 10^{-17} \mathrm{~T}^{1.71} \mathrm{e}^{-770 / \mathrm{T}}$	Yang et al. [1992a]
149	$\mathrm{CN}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{H}+\mathrm{C}_{4} \mathrm{~N}_{2}$	1.7×10^{-11}	Halpern et al. [1989]
150	$\mathrm{CN}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{CH}_{3}$	$6.46 \times 10^{-11} \mathrm{e}^{-1190 / \mathrm{T}}$	$\begin{aligned} & \text { Zabarnick and Lin } \\ & \text { [1989] } \end{aligned}$
151	$\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN} \rightarrow$ polymer	4.23×10^{-11}	Butterfield et al. [1993]
152	$\mathrm{CN}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow$ polymer	$2.19 \times 10^{-21} \mathrm{~T}^{2.7} \mathrm{e}^{-325 / \mathrm{T}}$	Yang et al. [1992a]
153	$\mathrm{CN}+\mathrm{C}_{4} \mathrm{~N}_{2} \rightarrow$ polymer	5.4×10^{-13}	Seki et al [1996]
154	$\mathrm{HCN}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{CN}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.4 \times 10^{-25} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1200 / \mathrm{T}} \mathrm{k}_{8}=9.2 \times 10^{-12} \\ & \mathrm{e}^{-1200 / \mathrm{T}} \end{aligned}$	$\begin{aligned} & \text { estimated by analogy } \\ & \text { with } \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2} \text { by Yung } \\ & \text { et al. }[1984] \end{aligned}$
155	$\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}$	$5.3 \times 10^{-12} \mathrm{e}^{-770 / \mathrm{T}}$	Hoobler and Leone [1997]
156	$\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+\mathrm{H}$	$1.1 \times 10^{-12} \mathrm{e}^{-900 / \mathrm{T}}$	Monks et al. [1993]

157	$\mathrm{H}_{2} \mathrm{CN}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{HCN}+\mathrm{NH}$	3.98×10^{-11}	Nesbitt et al. [1990]
158	$\mathrm{H}_{2} \mathrm{CN}+\mathrm{H} \rightarrow \mathrm{HCN}+\mathrm{H}_{2}$	7.0×10^{-11}	Nesbitt et al. [1990]
159	$\mathrm{H}_{2} \mathrm{CN}+\mathrm{HCN} \rightarrow$ polymer	$1.1 \times 10^{-15} \mathrm{e}^{-900 / \mathrm{T}}$	Wilson and Atreya [2003]
160	$\mathrm{CHCN}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{H}+\mathrm{C}_{2} \mathrm{~N}_{2}$		
161	$\mathrm{CHCN}+\mathrm{CHCN} \rightarrow \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{~N}_{2}$	5.0×10^{-11}	estimated by Yung [1987]
162	$\mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{HC}_{2} \mathrm{~N}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.4 \times 10^{-25} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1200 / \mathrm{T}} \mathrm{k}_{8}=1.5 \times 10^{-15} \end{aligned}$	Phillips [1978]
163	$\mathrm{HC}_{2} \mathrm{~N}_{2}+\mathrm{H} \rightarrow \mathrm{HCN}+\mathrm{HCN}$	$1.7 \times 10^{-13} \mathrm{e}^{-110 / \mathrm{T}}$	Yung [1987]
164	$\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{HCN}$	1.5×10^{-11}	estimated by analogy with $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2}$ by Yung et al. [1984]
165	$\mathrm{C}_{3} \mathrm{~N}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{~N}_{2}$	5.0×10^{-14}	estimated by Yung [1987]
166	$\mathrm{C}_{3} \mathrm{~N}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{HC}_{3} \mathrm{~N}+\mathrm{C}_{2} \mathrm{H}_{5}$	1.0×10^{-11}	estimated by Yung [1987]
167	$\mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.4 \times 10^{-25} \mathrm{~T}^{-2} \\ & \mathrm{e}^{-1200 / \mathrm{T}} \mathrm{k}_{8}=9.2 \times 10^{-12} \\ & \mathrm{e}^{-1200 / \mathrm{T}} \end{aligned}$	estimated by analogy with $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2}$ by Yung et al. [1984]
168	$\mathrm{HC}_{3} \mathrm{~N}+\mathrm{C}_{2} \mathrm{H} \rightarrow$ products	$3.3 \times 10^{-12} \mathrm{e}^{-2516 / \mathrm{T}}$	estimated, $\mathrm{k}\left(\mathrm{C}_{2} \mathrm{H}_{2}+\right.$ $\mathrm{C}_{2} \mathrm{H}$) from Chastaing et al. [1998]
169	$\mathrm{HC}_{3} \mathrm{~N}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow$ products	$4.2 \times 10^{-19} \mathrm{~T}^{1.9} \mathrm{e}^{-1058 / \mathrm{T}}$	estimated, $\mathrm{k}\left(\mathrm{C}_{2} \mathrm{H}_{2}+\right.$ $\mathrm{C}_{2} \mathrm{H}_{3}$) from Weissman and Benson [1988]
170	HC3N + C2H5 \rightarrow products	$8.32 \times 10^{-14} \mathrm{e}^{-3520 / \mathrm{T}}$	Estimated, $\mathrm{k}\left(\mathrm{C}_{2} \mathrm{H}_{2}+\right.$ $\mathrm{C}_{2} \mathrm{H}_{5}$) from Kerr and Parsonage [1972]
171	$\mathrm{HC}_{3} \mathrm{~N}+\mathrm{C}_{6} \mathrm{H}_{5} \rightarrow$ polymer	$3.7 \times 10^{-13} \mathrm{e}^{-1560 / T}$	estimated, $\mathrm{k}\left(\mathrm{C}_{6} \mathrm{H}_{5}+\right.$ $\mathrm{C}_{2} \mathrm{H}_{2}$)
172	$\mathrm{NH}_{2}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{NH}_{3}+\mathrm{M}$	$\begin{aligned} & 6.0 \times 10^{-30}[\mathrm{M}] /(1.0+ \\ & \left.3.0 \times 10^{-20}[\mathrm{M}]\right) \end{aligned}$	Gorden et al. [1971]
173	$\mathrm{NH}_{2}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{NH}_{3}+\mathrm{H}$	$2.1 \times 10^{-12} \mathrm{e}^{-4277 / \mathrm{T}}$	Demissy and Lesclaux [1980]
174	$\mathrm{NH}_{2}+\mathrm{NH}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	1.3×10^{-12}	Fagerström et al. [1995]
	$\mathrm{NH}_{2}+\mathrm{NH}_{2}+\mathrm{M} \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.3 \times 10^{-20} \mathrm{~T}^{-3.9} \mathrm{k}_{8} \\ & =2.5 \times 10^{-11} \mathrm{~T}^{0.27} \end{aligned}$	Stothard et al. [1995]

175	$\mathrm{NH}_{2}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.2 \times 10^{-18} \mathrm{~T}^{-3.85} \\ & \mathrm{k}_{8}=1.2 \times 10^{-11} \mathrm{~T}^{0.42} \end{aligned}$	Jodkowski et al. [1995]
176	$\mathrm{NH}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{CH}_{3}$	$5.1 \times 10^{-23} \mathrm{~T}^{3.59} \mathrm{e}^{-4540 / \mathrm{T}}$	Mebel and Lin [1999]
177	$\mathrm{NH}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$ products	$1.1 \times 10^{-13} \mathrm{e}^{-1852 / \mathrm{T}}$	Bosco et al. [1984]
178	$\mathrm{NH}_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow$ products	$3.4 \times 10^{-14} \mathrm{e}^{-1318 / \mathrm{T}}$	Bosco et al. [1984]
179	$\mathrm{NH}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow$ products	4.2×10^{-11}	Demissy and Lesclaux [1982]
180	$\mathrm{NH}_{3}+\mathrm{CH} \rightarrow$ products	$8.6 \times 10^{-11} \mathrm{e}^{230 / \mathrm{T}}$	Zabarnick et al. [1989]
181	$\mathrm{NH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{NH}_{2}+\mathrm{CH}_{4}$	$4.2 \times 10^{-21} \mathrm{~T}^{2.86} \mathrm{e}^{-7340 / \mathrm{T}}$	Yu et al. [1998]
182	$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{N}_{2} \mathrm{H}_{3}+\mathrm{H}_{2}$	$9.9 \times 10^{-12} \mathrm{e}^{-1198 / \mathrm{T}}$	Stief and Payne [1976]
183	$\mathrm{N}_{2} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{NH}_{2}+\mathrm{NH}_{2}$	2.7×10^{-12}	Ham et al. [1970]
184	$\mathrm{N}_{2} \mathrm{H}_{3}+\mathrm{N}_{2} \mathrm{H}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2}+\mathrm{H}_{2}$	6.0×10^{-11}	Atreya [1986]
185	$\mathrm{N}_{2} \mathrm{H}_{2}+\mathrm{NH}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{N}_{2} \mathrm{H}$	$1.5 \times 10^{-25} \mathrm{~T}^{4.05} \mathrm{e}^{810 / \mathrm{T}}$	Linder et al. [1996]
186	$\mathrm{N}_{2} \mathrm{H}_{2}+\mathrm{H} \rightarrow \mathrm{N}_{2} \mathrm{H}+\mathrm{H}_{2}$	$1.4 \times 10^{-19} \mathrm{~T}^{2.63} \mathrm{e}^{115 / \mathrm{T}}$	Linder et al. [1996]
187	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CH} \rightarrow$ products	$3.1 \times 10^{-10} \mathrm{e}^{170 / \mathrm{T}}$	Zabarnick et al. [1989]
188	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CH}_{3} \rightarrow$ products	$1.6 \times 10^{-13} \mathrm{e}^{-4378 / \mathrm{T}}$	Gray and Thynne [1965]
189	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{CH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}$	1.41×10^{-10}	Fockenberg et al. [1999]
	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{CH}_{3} \rightarrow \mathrm{CO}+\mathrm{H}_{2}+\mathrm{H}$	2.89×10^{-11}	
190	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{CH}_{4} \rightarrow \mathrm{OH}+\mathrm{CH}_{3}$	$1.7 \times 10^{-15} \mathrm{~T}^{1.5} \mathrm{e}^{-4550 / \mathrm{T}}$	Tsang and Hampson [1986]
191	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CO}+{ }^{3} \mathrm{CH}_{2}$	$2.9 \times 10^{-11} \mathrm{e}^{-1600 / T}$	De More et al. [1987]
192	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow$ products	5.0×10^{-11}	Baulch et al. [1992]
193	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{H}$	$1.13 \times 10^{-17} \mathrm{~T}^{1.88} \mathrm{e}^{-92 / \mathrm{T}}$	Baulch et al. [1994]; Endo et al. [1986]
	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HCO}+\mathrm{CH}_{3}$	$9.0 \times 10^{-18} \mathrm{~T}^{1.88} \mathrm{e}^{-92 / \mathrm{T}}$	
	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CO}+{ }^{3} \mathrm{CH}_{2}$	$2.25 \times 10^{-18} \mathrm{~T}^{1.88} \mathrm{e}^{-92 / \mathrm{T}}$	
194	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}$	1.3×10^{-10}	Baulch et al. [1994]
195	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5}$	$1.66 \times 10^{-15} \mathrm{~T}^{1.5} \mathrm{e}^{-2920 / \mathrm{T}}$	Baulch et al. [1992]
196	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{3} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{CO}+\mathrm{H}$	1.13×10^{-10}	Homann and Wellmann [1983]
197	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{3} \mathrm{H}_{3} \rightarrow$ products	2.3×10^{-10}	Slagle et al. [1990]
198	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{3} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}$	3.0×10^{-10}	Slagle et al. [1990]

199	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{CN} \rightarrow \mathrm{CO}+\mathrm{N}^{4 \mathrm{~s}}$	1.7×10^{-11}	Baulch et al. [1992]
200	$\mathrm{O}^{3 \mathrm{p}}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN} \rightarrow$ products	4.9×10^{-13}	Upadhyaya et al. [1997]
201	$\mathrm{O}^{1 \mathrm{~d}}+\mathrm{N}_{2} \rightarrow \mathrm{O}^{3 \mathrm{p}}+\mathrm{N}_{2}$	$1.8 \times 10^{-11} \mathrm{e}^{-107 / \mathrm{T}}$	Atkinson et al. [1997]
202	$\mathrm{O}^{\text {dd }}+\mathrm{H}_{2} \rightarrow \mathrm{OH}+\mathrm{H}$	1.1×10^{-10}	De More et al. [1987]
203	$\mathrm{O}^{1 \mathrm{~d}} \rightarrow \mathrm{O}^{3 \mathrm{p}}$	6.7×10^{-3}	Okabe [1978]
204	$\mathrm{O}^{1 \mathrm{~d}}+\mathrm{CH}_{4} \rightarrow \mathrm{OH}+\mathrm{CH}_{3}$	3.0×10^{-10}	Satyapal et al. [1989]; Lin et al. [1998]
	$\mathrm{O}^{1 \mathrm{~d}}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}$	7.5×10^{-11}	
	$\mathrm{O}^{1 \mathrm{~d}}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{H}$	2.5×10^{-11}	
205	$\mathrm{O}^{1 \mathrm{~d}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH}$	2.2×10^{-10}	Atkinson et al. [1997]
206	$\mathrm{OH}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}$	$6.1 \times 10^{-12} \mathrm{e}^{-2030 / \mathrm{T}}$	De More et al. [1987]
207	$\mathrm{OH}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2}+\mathrm{H}$	5.0×10^{-12}	estimated from Fenimore [1969]
208	$\mathrm{OH}+\mathrm{CH}_{3} \rightarrow{ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \mathrm{k}_{0}=1.80 \times 10^{-8} \mathrm{~T}^{-0.91} \\ & \mathrm{e}^{-275 / \mathrm{T}} \mathrm{k}_{8}=6.44 \times 10^{-8} \\ & \mathrm{~T}^{5.8} \mathrm{e}^{485 / \mathrm{T}} \mathrm{~F}_{\mathrm{c}}=0.664 \\ & \mathrm{e}^{-\mathrm{T} / 3569}+0.336 \mathrm{e}^{-\mathrm{T} / 108}+ \\ & \mathrm{e}^{-3240 / \mathrm{T}} \end{aligned}$	De Avillez Pereira et al. [1997]
	$\mathrm{OH}+\mathrm{CH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2}$	$\begin{aligned} & \mathrm{k}_{0}=3.76 \times 10^{-14} \mathrm{~T}^{-0.12} \\ & \mathrm{e}^{209 / \mathrm{T}} \mathrm{k}_{8}=1.14 \times 10^{-17} \\ & \mathrm{~T}^{8} \mathrm{e}^{1240 / \mathrm{T}} \mathrm{~F}_{\mathrm{c}}=0.295 \\ & \mathrm{e}^{-\mathrm{T} / 3704}+0.705 \mathrm{e}^{-\mathrm{T} / 312}+ \\ & \mathrm{e}^{-1238 / \mathrm{T}} \end{aligned}$	
	$\mathrm{OH}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.06 \times 10^{-10} \mathrm{~T}^{-6.21} \\ & \mathrm{e}^{-671 / \mathrm{T}} \mathrm{k}_{8}=7.24 \times 10^{-9} \\ & \mathrm{~T}^{-0.79} \mathrm{~F}_{\mathrm{c}}=-0.756 \\ & \mathrm{e}^{-70.7 / \mathrm{T}}+\mathrm{e}^{-\mathrm{T} / 5646} \end{aligned}$	
209	$\mathrm{OH}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}$	$1.88 \times 10^{-12} \mathrm{e}^{-1695 / \mathrm{T}}$	Gierczak et al. [1997]
210	$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=2.6 \times 10^{-26} \mathrm{~T}^{-1.5} \mathrm{k}_{8} \\ & =1.0 \times 10^{-17} \mathrm{~T}^{2.0} \end{aligned}$	Atkinson et al. [1992]
211	$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-27} \mathrm{k}_{8}=5.0 \\ & \times 10^{-11} \end{aligned}$	k_{0} estimate; Baulch et al. [1994]
212	$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5}$	$1.42 \times 10^{-17} \mathrm{~T}^{2.0} \mathrm{e}^{-461 / \mathrm{T}}$	Atkinson et al. [1997]
213	$\mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}^{3 \mathrm{p}}$	$4.2 \times 10^{-12} \mathrm{e}^{-240 / \mathrm{T}}$	De More et al. [1987]
214	$\mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{OH}$	$5.34 \times 10^{-9} \mathrm{~T}^{-0.7}$	k_{0} estimate; Carstensen and Wagner [1995]

	$\mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{CH}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{M}$	$\left\lvert\, \begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-26} \mathrm{k}_{8}= \\ & 2.67 \times 10^{-9} \mathrm{~T}^{-0.7} \end{aligned}\right.$	
215	$\mathrm{H}_{2} \mathrm{O}+\mathrm{O}^{1 \mathrm{~d}} \rightarrow \mathrm{OH}+\mathrm{OH}$	2.2×10^{-10}	Atkinson et al. [1997]
216	$\mathrm{CO}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{HCO}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.9 \times 10^{-33} \mathrm{e}^{-842 / \mathrm{T}} \\ & \mathrm{k}_{8}=1.96 \times 10^{-13} \\ & \mathrm{e}^{-1366 / \mathrm{T}} \end{aligned}$	Warnatz [1984]; Arai et al. [1981]
217	$\mathrm{CO}+{ }^{3} \mathrm{CH}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-28} \mathrm{k}_{8}=1.0 \\ & \times 10^{-15} \end{aligned}$	estimated by Yung et al. [1984]; Laufer [1981]
218	$\mathrm{CO}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.26 \times 10^{-33} \\ & \mathrm{e}^{-1636 / \mathrm{T}} \mathrm{k}_{8}=2.63 \times \\ & 10^{-13} \mathrm{e}^{-3007 / \mathrm{T}} \end{aligned}$	Anastasi and Maw [1982]; Watkins and Word [1974]
219	$\mathrm{CO}+\mathrm{OH} \rightarrow \mathrm{CO}_{2}+\mathrm{H}$	$2.0 \times 10^{-17} \mathrm{~T}^{1.35} \mathrm{e}^{365 / \mathrm{T}}$	Larson et al. [1988]
220	$\mathrm{CO}+\mathrm{O}^{3 \mathrm{p}}+\mathrm{M} \rightarrow \mathrm{CO}_{2}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=6.5 \times 10^{-33} \mathrm{e}^{-2180 / \mathrm{T}} \\ & \mathrm{k}_{8}=2.66 \times 10^{-14} \\ & \mathrm{e}^{-1459 / \mathrm{T}} \end{aligned}$	De More et al. [1987]; Simonaitis and Heicklen [1972]
221	$\mathrm{CO}_{2}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{CO}$	3.9×10^{-14}	Laufer [1981]
222	$\mathrm{HCO}+\mathrm{H} \rightarrow \mathrm{H}_{2}+\mathrm{CO}$	6.64×10^{-11}	Cherian et al. [1981]
223	$\mathrm{HCO}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{M}$	$\begin{aligned} & \mathrm{k}_{0}=1.0 \times 10^{-27} \mathrm{k}_{8}= \\ & 3.01 \times 10^{-11} \end{aligned}$	k_{0} estimate; Baulch et al. [1994]
224	$\mathrm{HCO}+\mathrm{C}_{3} \mathrm{H}_{5} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CO}$	1.0×10^{-10}	Tsang [1991]
225	$\mathrm{HCO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{OH}+\mathrm{CO}$	5.0×10^{-11}	Baulch et al [1992]
	$\mathrm{HCO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{CO}_{2}+\mathrm{H}$	5.0×10^{-11}	
226	$\mathrm{HCO}+\mathrm{HCO} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{CO}$	3.35×10^{-11}	Veyret et al. [1984]
227	$\mathrm{H}_{2} \mathrm{CO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{OH}+\mathrm{HCO}$	$6.9 \times 10^{-13} \mathrm{~T}^{0.57} \mathrm{e}^{-1390 / \mathrm{T}}$	Baulch et al. [1992]
228	$\mathrm{H}_{2} \mathrm{CO}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}$	$5.7 \times 10^{-15} \mathrm{~T}^{1.18} \mathrm{e}^{225 / \mathrm{T}}$	Tsang and Hampson [1986]
229	$\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$	$3.0 \times 10^{-11} \mathrm{e}^{-1700 / \mathrm{T}}$	Baulch et al. [1992]
230	$\mathrm{CH}_{2} \mathrm{CO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow$ products	$3.8 \times 10^{-12} \mathrm{e}^{-680 / \mathrm{T}}$	Baulch et al. [1992]
231	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}_{2}$	1.92×10^{-11}	Ohmori et al. [1990]
	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{H} \rightarrow \mathrm{HCO}+\mathrm{CH}_{3}$	3.57×10^{-11}	Bartels et al. [1991]
232	$\mathrm{CH}_{3} \mathrm{CO}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{3}$	3.0×10^{-11}	Tsang and Hampson [1986]
233	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{4}$	1.0×10^{-11}	Hassinen et al. [1990]
	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{CH}_{3} \rightarrow \mathrm{CO}+\mathrm{C}_{2} \mathrm{H}_{6}$	4.9×10^{-11}	Adachi et al. [1981]
234	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{C}_{2} \mathrm{H}_{2}$	3.0×10^{-11}	Tsang and Hampson

			[1986]
235	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow 236 \mathrm{CO}_{2}+\mathrm{CH}_{3}$	2.4×10^{-10}	Miyoshi et al. [1989]
	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{OH}+\mathrm{CH}_{2} \mathrm{CO}$	7.0×10^{-11}	
236	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{CO}$	2.0×10^{-11}	Tsang and Hampson [1986]
237	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{HCO} \rightarrow \mathrm{CO}+\mathrm{CH}_{3} \mathrm{CHO}$	1.5×10^{-11}	Tsang and Hampson [1986]
238	$\mathrm{CH}_{3} \mathrm{CO}+\mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{3} \mathrm{CHO}$	1.5×10^{-11}	Tsang and Hampson [1986]
239	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2}$	3.3×10^{-11}	Tsang and Hampson [1986]
240	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{OH}$	1.0×10^{-11}	Tsang and Hampson [1986]
241	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$	1.0×10^{-11}	Tsang and Hampson [1986]
242	$\mathrm{CH}_{3} \mathrm{O}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{CO}$	3.0×10^{-11}	Tsang and Hampson [1986]
243	$\mathrm{CH}_{3} \mathrm{O}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{CO}$	3.0×10^{-11}	Tsang and Hampson [1986]
244	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3}$	$2.6 \times 10^{-13} \mathrm{e}^{-4450 / \mathrm{T}}$	Tsang and Hampson [1986]
245	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{C}_{2} \mathrm{H}_{2}$	4.0×10^{-11}	Tsang and Hampson [1986]
246	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{C}_{2} \mathrm{H}_{4}$	4.0×10^{-11}	Tsang and Hampson [1986]
247	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{C}_{2} \mathrm{H}_{6}$	4.0×10^{-11}	Tsang and Hampson [1986]
248	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5}$	$4.0 \times 10^{-13} \mathrm{e}^{-3570 / \mathrm{T}}$	Tsang and Hampson [1986]
249	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}_{2}$	$2.6 \times 10^{-11} \mathrm{e}^{-5940 / \mathrm{T}}$	Tsang and Hampson [1986]
250	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{HCO} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CO}$	1.5×10^{-10}	Tsang and Hampson [1986]
251	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{H}_{2} \mathrm{CO} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}$	$1.7 \times 10^{-13} \mathrm{e}^{-1500 / \mathrm{T}}$	Tsang and Hampson [1986]
252	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2}$	1.0×10^{-11}	Tsang [1987]
	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{3}+\mathrm{OH}$	1.6×10^{-10}	
253	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}$	$1.12 \times 10^{-18} \mathrm{~T}^{2} \mathrm{e}^{-6722 / \mathrm{T}}$	Tsang [1987]
254	$\mathrm{CH}_{2} \mathrm{OH}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}$	4.0×10^{-11}	Tsang [1987]
	$\mathrm{CH}_{2} \mathrm{OH}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{CO}$	2.0×10^{-12}	

255	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{CO}$	4.0×10^{-12}	Tsang [1987]
256	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3}$	$3.6 \times 10^{-23} \mathrm{~T}^{3.1} \mathrm{e}^{-8166 / \mathrm{T}}$	Tsang [1987]
257	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{CO}$	6.0×10^{-11}	Tsang [1987]
	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{OH}$	2.0×10^{-11}	
258	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{CO}$	5.0×10^{-11}	Tsang [1987]
	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{OH}$	2.0×10^{-11}	
259	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{CO}$	$\begin{aligned} & 8.0 \times 10^{-14} \mathrm{e}^{-5550 / \mathrm{T}} /[1+ \\ & \left.\mathrm{e}^{-2000 / \mathrm{T}}\right] \end{aligned}$	Tsang [1987]
260	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{CO}$	4.0×10^{-12}	Tsang [1987]
	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3} \mathrm{OH}$	4.0×10^{-12}	
261	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \mathrm{OH}$	$3.3 \times 10^{-22} \mathrm{~T}^{3} \mathrm{e}^{-7033 / \mathrm{T}}$	Tsang [1987]
262	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{OH}$	7.0×10^{-11}	Tsang [1987]
263	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$	4.0×10^{-11}	Tsang [1987]
264	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCO} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CO}$	2.0×10^{-10}	Tsang [1987]
	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCO} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{CO}$	3.0×10^{-10}	
265	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{CO} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}$	$9.1 \times 10^{-21} \mathrm{~T}^{2.8} \mathrm{e}^{-2950 / \mathrm{T}}$	Tsang [1987]
266	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{CO}$	4.0×10^{-11}	Tsang [1987]
267	$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{CO}$	8.0×10^{-12}	Tsang [1987]
268	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2}$	$2.8 \times 10^{-17} \mathrm{~T}^{2.1} \mathrm{e}^{-2450 / \mathrm{T}}$	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{H}_{2}$	$7.0 \times 10^{-18} \mathrm{~T}^{2.1} \mathrm{e}^{-2450 / \mathrm{T}}$	
269	$\mathrm{CH}_{3} \mathrm{OH}+{ }^{1} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{OH}$	2.5×10^{-12}	Tsang [1987]
270	$\mathrm{CH}_{3} \mathrm{OH}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{OH}$	$5.3 \times 10^{-23} \mathrm{~T}^{3.2} \mathrm{e}^{-3609 / \mathrm{T}}$	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+{ }^{3} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{O}$	$2.4 \times 10^{-23} \mathrm{~T}^{3.1} \mathrm{e}^{-3490 / \mathrm{T}}$	
271	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{4}$	$5.3 \times 10^{-23} \mathrm{~T}^{3.2} \mathrm{e}^{-3609 / \mathrm{T}}$	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{4}$	$2.4 \times 10^{-23} \mathrm{~T}^{3.1} \mathrm{e}^{-3490 / \mathrm{T}}$	
272	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.0×10^{-11}	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{2}$	2.0×10^{-12}	
273	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{4}$	$5.3 \times 10^{-23} \mathrm{~T}^{3.2} \mathrm{e}^{-3609 / \mathrm{T}}$	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{4}$	$2.4 \times 10^{-23} \mathrm{~T}^{3.1} \mathrm{e}^{-3490 / \mathrm{T}}$	
274	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{6}$	$5.3 \times 10^{-23} \mathrm{~T}^{3.2} \mathrm{e}^{-4610 / \mathrm{T}}$	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{6}$	$2.4 \times 10^{-23} \mathrm{~T}^{3.1} \mathrm{e}^{-4500 / \mathrm{T}}$	
275	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{OH}$	$3.2 \times 10^{-19} \mathrm{~T}^{2.5} \mathrm{e}^{-1550 / \mathrm{T}}$	Tsang [1987]

	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$3.2 \times 10^{-19} \mathrm{~T}^{2.5} \mathrm{e}^{-1550 / \mathrm{T}}$	
276	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$	$4.1 \times 10^{-19} \mathrm{~T}^{2.5} \mathrm{e}^{-537 / \mathrm{T}}$	Tsang [1987]
	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$	$1.1 \times 10^{-19} \mathrm{~T}^{2.5} \mathrm{e}^{483 / \mathrm{T}}$	
277	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{CO}$	$4.1 \times 10^{-19} \mathrm{~T}^{2.9} \mathrm{e}^{-6596 / \mathrm{T}}$	Tsang [1987]
278	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$	$5.0 \times 10^{-13} \mathrm{e}^{-2050 / \mathrm{T}}$	Tsang [1987]
279	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{O}$	$1.3 \times 10^{-14} \mathrm{e}^{-6070 / \mathrm{T}}$	Tsang [1987]
280	$\mathrm{CH}_{3} \mathrm{CHO}+{ }^{3} \mathrm{CH}_{2} \rightarrow$ products	$2.8 \times 10^{-12} \mathrm{e}^{-1770 / \mathrm{T}}$	Tsang [1987]
281	$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{CH}_{4}$	$1.4 \times 10^{-13} \mathrm{e}^{-3020 / \mathrm{T}}$	Tsang [1987]
282	$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{H}_{2}$	$2.2 \times 10^{-11} \mathrm{e}^{-1660 / \mathrm{T}}$	Tsang [1987]
283	$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{N}^{43} \rightarrow \mathrm{HCN}+\mathrm{HCO}+\mathrm{H}_{2}$	1.9×10^{-14}	Tsang [1987]
284	$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O}^{3 \mathrm{p}} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{OH}$	$1.8 \times 10^{-11} \mathrm{e}^{-1100 / \mathrm{T}}$	Tsang [1987]
285	$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$	$5.6 \times 10^{-12} \mathrm{e}^{270 / \mathrm{T}}$	Tsang [1987]
286	$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CO}$	8.3×10^{-15}	Tsang [1987]
287	$\mathrm{N}^{+}+\mathrm{HCN} \rightarrow \mathrm{HCN}^{+}+\mathrm{N}$	2.41×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{N}^{+}+\mathrm{HCN} \rightarrow \mathrm{CH}^{+}+\mathrm{N}_{2}$	1.29×10^{-9}	
288	$\mathrm{N}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{C}_{3} \mathrm{H}^{+}+\mathrm{N}_{2}$	1.6×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{N}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCN}^{+}+\mathrm{N}$	2.6×10^{-9}	
289	$\mathrm{N}^{+}+\mathrm{CO} \rightarrow \mathrm{CO}^{+}+\mathrm{N}$	5.6×10^{-10}	Anicich and McEwan [1997]
290	$\mathrm{N}_{2}{ }^{+}+\mathrm{N}_{2}+\mathrm{M} \rightarrow$ products	6.3×10^{-29}	Anicich and McEwan [1997]
291	$\mathrm{N}_{2}^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{~N}_{3}^{+}$	1.4×10^{-11}	Scott et al. [1998]
292	$\mathrm{N}_{2}{ }^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{N}_{2}+\mathrm{H}$	1.0×10^{-9}	Keller et al. [1992]
293	$\mathrm{N}_{2}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{H}$	2.0×10^{-9}	Anicich and McEwan [1997]
294	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{N}_{2}$	1.48×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{HCN}^{+}+\mathrm{HCN}$	1.2×10^{-11}	
	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}$	2.4×10^{-10}	
295	$\mathrm{N}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{N}_{2}+\mathrm{H}$	6.5×10^{-10}	Anicich and McEwan [1997]

	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{N}_{2}+\mathrm{H}_{2}$	2.6×10^{-10}	
	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HNC}^{+}+\mathrm{HCN}+\mathrm{H}_{2}$	1.3×10^{-10}	
	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HC}_{2} \mathrm{~N}^{+}+\mathrm{HCN}+\mathrm{H}$	1.3×10^{-10}	
	$\mathrm{N}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3}$	1.3×10^{-10}	
296	$\mathrm{N}_{2}^{+}+\mathrm{HCN} \rightarrow \mathrm{HCN}^{+}+\mathrm{N}_{2}$	3.9×10^{-10}	Keller et al. [1992]
297	$\mathrm{N}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{N}_{2}$	1.9×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{N}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{OH}$	5.0×10^{-10}	
298	$\mathrm{N}_{2}{ }^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}^{+}+\mathrm{N}_{2}$	4.2×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{N}_{2}{ }^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{CH}_{2} \mathrm{CN}^{+}+\mathrm{N}_{2}+\mathrm{H}$	1.37×10^{-9}	
	$\mathrm{N}_{2}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{CH}_{2} \mathrm{CN}_{2} \mathrm{H}^{+}+\mathrm{N}_{2}+\mathrm{H}$	3.1×10^{-10}	
299	$\mathrm{N}_{2}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{N}+\mathrm{N}$	$3.5 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
300	$\mathrm{NH}^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{~N}_{2}^{+}+\mathrm{H}$	1.3×10^{-9}	Keller et al. [1992]
301	$\mathrm{NH}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2}+\mathrm{H}$	6.7×10^{-10}	Keller et al. [1992]
	$\mathrm{NH}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{NH}_{2}^{+}+\mathrm{CH}_{3}$	1.9×10^{-10}	
	$\mathrm{NH}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{5}^{+}+\mathrm{N}$	9.6×10^{-11}	
302	$\mathrm{NH}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{2}^{+}+\mathrm{H}$	1.1×10^{-9}	Keller et al. [1992]
	$\mathrm{NH}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{3}^{+}+\mathrm{N}$	2.3×10^{-10}	
303	$\mathrm{NH}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	3.0×10^{-10}	Keller et al. [1992]
	$\mathrm{NH}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{NH}$	3.8×10^{-10}	
	$\mathrm{NH}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{NH}_{2}$	3.8×10^{-10}	
	$\mathrm{NH}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{NH}_{3}$	1.5×10^{-10}	
	$\left.\mathrm{NH}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{Z}^{2} \mathrm{H}_{3} \mathrm{CN}^{+}, \mathrm{CH}_{3} \mathrm{CN}^{+}\right]$	3.0×10^{-10}	
304	$\mathrm{NH}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{N}$	1.8×10^{-9}	Keller et al. [1992]
305	$\mathrm{NH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{2}^{+}+\mathrm{OH}$	8.8×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{NH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}^{+}+\mathrm{O}$	1.7×10^{-10}	
	$\mathrm{NH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{N}$	1.1×10^{-9}	
	$\mathrm{NH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{N}$	1.1×10^{-9}	
	$\mathrm{NH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}^{+}+\mathrm{H}_{2}$	3.5×10^{-10}	
306	$\mathrm{NH}^{+}+\mathrm{CO} \rightarrow \mathrm{HCO}^{+}+\mathrm{N}$	4.4×10^{-10}	Anicich and McEwan

			[1997]
	$\mathrm{NH}^{+}+\mathrm{CO} \rightarrow \mathrm{NCO}^{+}+\mathrm{H}$	5.4×10^{-10}	
307	$\mathrm{NH}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{N}+\mathrm{H}$	$8.6 \times 10^{-8}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
308	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{N}_{2}+\mathrm{M} \rightarrow$ products	4.0×10^{-30}	Anicich and McEwan [1997]
309	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	4.0×10^{-30}	Anicich and McEwan [1997]
310	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{N}_{2}$	8.9×10^{-10}	Keller et al. [1992]
311	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{H}_{2}$	1.4×10^{-9}	Keller et al. [1992]
312	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{N}_{2}+\mathrm{H}_{2}$	1.1×10^{-9}	Keller et al. [1992]
	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{Z}\left[\mathrm{C}_{2} \mathrm{H}_{7}{ }^{+}\right]$	1.7×10^{-10}	
313	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{N}_{2}$	1.1×10^{-9}	Anicich and McEwan [1997]
314	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}^{+}+\mathrm{N}_{2}$	1.6×10^{-9}	McEwan et al. [1999]
315	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{N}_{2}$	2.6×10^{-9}	Anicich and McEwan [1997]
316	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{CO} \rightarrow \mathrm{HCO}^{+}+\mathrm{N}_{2}$	8.8×10^{-10}	Anicich and McEwan [1997]
317	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{~N}_{2}^{+}+\mathrm{N}_{2}$	1.2×10^{-9}	Anicich and McEwan [1997]
318	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{N}_{2}$	4.2×10^{-9}	Anicich and McEwan [1997]
319	$\mathrm{N}_{2} \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{N}_{2}+\mathrm{H}$	$7.5 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
320	$\mathrm{CN}^{+}+\mathrm{N} \rightarrow \mathrm{N}_{2}^{+}+\mathrm{C}$	6.1×10^{-10}	Scott et al. [1998]
321	$\mathrm{CN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{4}^{+}+\mathrm{CN}$	1.4×10^{-10}	Keller et al. [1992]
	$\mathrm{CN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{HCN}$	3.3×10^{-10}	
	$\mathrm{CN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{HCN}^{+}+\mathrm{CH}_{3}$	2.8×10^{-10}	
	$\mathrm{CN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+{ }^{3} \mathrm{CH}_{2}$	4.3×10^{-10}	
	$\mathrm{CN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2}$	9.0×10^{-11}	
322	$\mathrm{CN}^{+}+\mathrm{H} \rightarrow \mathrm{H}^{+}+\mathrm{CN}$	6.4×10^{-10}	Anicich and McEwan [1997]
323	$\mathrm{CN}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{HCN}^{+}+\mathrm{H}$	1.1×10^{-9}	Keller et al. [1992]
324	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CN}$	1.4×10^{-9}	Keller et al. [1992]
	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{Z}\left[\mathrm{HC}_{3} \mathrm{~N}^{+}\right]$	1.5×10^{-10}	
325	$\mathrm{CN}^{+}+\mathrm{C}_{3} \mathrm{H}_{4} \rightarrow \mathrm{HCN}^{+}+\mathrm{C}_{3} \mathrm{H}_{3}$	3.3×10^{-10}	Anicich and McEwan

	- - -		[1997]
	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{CN}$	9.1×10^{-10}	
	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{Z}\left[\mathrm{CHCCNH}^{+}\right]$	6.5×10^{-11}	
326	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{HCN}$	3.8×10^{-10}	Keller et al. [1992]
	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{HCN}+\mathrm{H}$	1.2×10^{-9}	
	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{HCN}+\mathrm{H}_{2}$	2.9×10^{-10}	
327	$\mathrm{CN}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{CN}$	7.3×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{CN}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{HC}_{5} \mathrm{~N}^{+}+\mathrm{H}$	2.4×10^{-10}	
328	$\mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{CN}$	3.2×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}^{+}+\mathrm{OH}$	1.6×10^{-9}	
	$\mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{O}$	4.8×10^{-10}	
	$\mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}^{+}+\mathrm{NH}$	1.6×10^{-10}	
	$\mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNCO}^{+}+\mathrm{H}$	6.4×10^{-10}	
329	$\mathrm{CN}^{+}+\mathrm{CO} \rightarrow \mathrm{CO}^{+}+\mathrm{CN}$	4.4×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{CN}^{+}+\mathrm{CO}+\mathrm{M} \rightarrow$ products	1.0×10^{-28}	
330	$\mathrm{CN}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{C}_{3} \mathrm{~N}^{+}+\mathrm{HCN}$	9.2×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{CN}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCN}^{+}+\mathrm{CN}$	3.7×10^{-9}	
331	$\mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}^{+}+\mathrm{CN}$	1.75×10^{-9}	Anicich and McEwan [1997]
332	$\mathrm{CN}^{+}+\mathrm{HCN} \rightarrow \mathrm{HCN}^{+}+\mathrm{CN}$	2.4×10^{-9}	Keller et al. [1992]
	$\left.\mathrm{CN}^{+}+\mathrm{HCN} \rightarrow \mathrm{Z}^{2} \mathrm{C}_{2} \mathrm{~N}_{2}{ }^{+}\right]$	4.7×10^{-10}	
333	$\mathrm{CN}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}+\mathrm{N}$	$5.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
334	$\mathrm{HCN}^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{CH}^{+}+\mathrm{N}_{2}$	2.2×10^{-10}	Scott et al. [1998]
335	$\mathrm{HCN}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}$	9.4×10^{-10}	Keller et al. [1992]
336	$\mathrm{HCN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{NH}_{2}$	1.27×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{HCN}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{3}$	1.14×10^{-9}	
337	$\mathrm{HCN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{CN}$	2.0×10^{-10}	Keller et al. [1992]

	$\mathrm{HCN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{HCN}$	8.0×10^{-10}	
338	$\mathrm{HCN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{HCN}$	1.8×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{HCN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}$	1.8×10^{-9}	
339	$\mathrm{HCN}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCN}^{+}+\mathrm{HCN}$	2.4×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{HCN}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{CN}$	2.2×10^{-9}	
340	$\mathrm{HCN}^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{C}_{2} \mathrm{~N}_{2}^{+}+\mathrm{HCN}$	1.1×10^{-9}	Anicich and McEwan [1997]
341	$\mathrm{HCN}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{CN}+\mathrm{H}$	$5.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
342	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	5.0×10^{-29}	Anicich and McEwan [1997]
343	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M} \rightarrow$ products	7.0×10^{-27}	Anicich and McEwan [1997]
344	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{HCN}$	1.8×10^{-9}	Anicich and McEwan [1997]
345	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{HCN}+\mathrm{M} \rightarrow$ products	4.2×10^{-28}	Anicich and McEwan [1997]
346	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{C}_{3} \mathrm{NH}^{+}+\mathrm{HCN}$	3.4×10^{-9}	Anicich and McEwan [1997]
347	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{CH}_{3} \mathrm{CNH}^{+}+\mathrm{HCN}$	3.8×10^{-9}	McEwan et al. [1989]
348	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCN}$	8.8×10^{-13}	Anicich and McEwan [1997]
349	$\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{HCN}+\mathrm{H}$	$6.4 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
350	$\mathrm{CH}_{3}{ }^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{HCN}^{+}+\mathrm{H}_{2}$	3.4×10^{-11}	Keller et al. [1992]
	$\mathrm{CH}_{3}{ }^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}$	3.4×10^{-11}	
351	$\mathrm{CH}_{3}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}$	1.2×10^{-9}	Keller et al. [1992]
352	$\mathrm{CH}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}+\mathrm{H}_{2}$	1.12×10^{-9}	Keller et al. [1992]
353	$\mathrm{CH}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{CH}_{4}$	4.9×10^{-10}	Keller et al. [1992]
	$\mathrm{CH}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}+2 \mathrm{H}_{2}$	4.1×10^{-11}	
	$\mathrm{CH}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{Z}\left[\mathrm{C}_{3} \mathrm{H}^{+}, \mathrm{C}_{3} \mathrm{H}_{2}^{+}\right]$	5.3×10^{-10}	
354	$\mathrm{CH}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{4}$	1.5×10^{-9}	Keller et al. [1992]
355	$\mathrm{CH}_{3}{ }^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.17×10^{-9}	Anicich and McEwan [1997]

	$\mathrm{CH}_{3}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{3}^{+}+\mathrm{H}_{2}$	1.3×10^{-10}	
356	$\mathrm{CH}_{3}{ }^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{M}$	1.1×10^{-28}	Anicich and McEwan [1997]
357	$\mathrm{CH}_{3}^{+}+\mathrm{NH} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2}$	7.4×10^{-10}	Keller et al. [1992]
358	$\mathrm{CH}_{3}{ }^{+}+\mathrm{HCN} \rightarrow$ products	2.0×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{CH}_{3}^{+}+\mathrm{HCN}+\mathrm{M} \rightarrow$ products	1.07×10^{-23}	
359	$\mathrm{CH}_{3}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}^{+}+\mathrm{HCN}$	1.5×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{CH}_{3}^{+}+\mathrm{HC}_{3} \mathrm{~N}+\mathrm{M} \rightarrow$ products +HCN	3.8×10^{-23}	
360	$\mathrm{CH}_{3}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	1.13×10^{-9}	McEwan et al. [1989]
	$\mathrm{CH}_{3}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{HCN}$	6.7×10^{-10}	
	$\mathrm{CH}_{3}{ }^{+}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{M} \rightarrow$ products	1.9×10^{-22}	
361	$\mathrm{CH}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN} \rightarrow$ products	5.4×10^{-9}	Anicich and McEwan [1997]
362	$\mathrm{CH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow$ products	6.0×10^{-25}	Anicich and McEwan [1997]
363	$\mathrm{CH}_{3}{ }^{+} \mathrm{CO}+\mathrm{M} \rightarrow$ products	2.3×10^{-27}	Anicich and McEwan [1997]
364	$\mathrm{CH}_{3}^{+}+\mathrm{e}^{-} \rightarrow{ }^{3} \mathrm{CH}_{2}+\mathrm{H}$	$7.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
365	$\mathrm{CH}_{4}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{CH}_{3}$	1.14×10^{-9}	Keller et al. [1992]
366	$\mathrm{CH}_{4}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{H}$	3.7×10^{-11}	Keller et al. [1992]
367	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{CH}_{3}$	1.14×10^{-9}	Keller et al. [1992]
	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CH}_{4}$	1.5×10^{-9}	
	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{H}+\mathrm{H}_{2}$	1.5×10^{-10}	
368	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$	2.8×10^{-10}	Keller et al. [1992]
	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{CH}_{4}$	2.0×10^{-9}	
	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{H}+\mathrm{H}_{2}$	5.5×10^{-11}	
369	$\mathrm{CH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{CH}_{4}+\mathrm{H}_{2}$	1.9×10^{-9}	Keller et al. [1992]
370	$\mathrm{CH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3}$	2.5×10^{-9}	Anicich and McEwan [1997]
371	$\mathrm{CH}_{4}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{3}$	2.7×10^{-9}	Anicich and McEwan [1997]
372	$\mathrm{CH}_{4}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{CH}_{3}$	2.5×10^{-9}	Anicich and McEwan [1997]

373	$\mathrm{CH}_{4}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}+\mathrm{H}$	$7.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
374	$\mathrm{CH}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{CH}_{4}$	1.5×10^{-9}	Keller et al. [1992]
375	$\mathrm{CH}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{4}$	1.5×10^{-9}	Keller et al. [1992]
376	$\mathrm{CH}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{4}+\mathrm{H}_{2}$	2.0×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{CH}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{7}^{+}+\mathrm{CH}_{4}$	1.15×10^{-9}	
377	$\mathrm{CH}_{5}^{+}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}^{+}+\mathrm{CH}_{4}$	2.0×10^{-9}	McEwan et al. [1999]
378	$\mathrm{CH}_{5}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{4}$	3.7×10^{-9}	Anicich and McEwan [1997]
379	$\mathrm{CH}_{5}^{+}+\mathrm{CO} \rightarrow \mathrm{HCO}^{+}+\mathrm{CH}_{4}$	9.9×10^{-10}	Anicich and McEwan [1997]
380	$\mathrm{CH}_{5}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{CH}_{4}$	1.2×10^{-9}	Keller et al. [1992]
381	$\mathrm{CH}_{5}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{CH}_{4}$	4.5×10^{-9}	Anicich and McEwan [1997]
382	$\mathrm{CH}_{5}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{CH}_{4}+\mathrm{H}$	$7.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
383	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{4}^{+}+\mathrm{H}_{2}$	1.9×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{H}$	7.0×10^{-10}	
384	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{H}_{2}$	4.5×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{H}$	9.5×10^{-10}	
	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	1.6×10^{-26}	
385	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	4.8×10^{-10}	Keller et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}+\mathrm{CH}_{3}$	5.8×10^{-10}	
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{Z}\left[\mathrm{C}_{4} \mathrm{H}_{5}^{+}\right]$	3.0×10^{-10}	
386	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.6×10^{-10}	Keller et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}+\mathrm{CH}_{5}$	8.8×10^{-11}	
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$	7.9×10^{-10}	
387	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.4×10^{-9}	Anicich and McEwan [1997]
388	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{M}$	1.3×10^{-27}	Anicich and McEwan [1997]
389	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}, ~ \mathrm{H}$	2.2×10^{-10}	Anicich and McEwan

	- - - -		[1997]
390	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}$	2.57×10^{-10}	Keller et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{HCN} \rightarrow$ products	1.33×10^{-10}	
	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{HCN}+\mathrm{M} \rightarrow$ products	1.0×10^{-27}	
391	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{HCN}$	1.55×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}^{+}$	1.90×10^{-9}	
392	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}$	8.4×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{C}_{3} \mathrm{H}_{4}^{+}+\mathrm{HCN}$	1.06×10^{-9}	
	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{HCN}$	1.06×10^{-9}	
393	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$5.4 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
394	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}+\mathrm{H}_{2}$	1.9×10^{-10}	Keller et al. [1992]
395	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{H}_{2}$	2.4×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5}{ }^{+}$	2.98×10^{-25}	
396	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	9.3×10^{-10}	Keller et al. [1992]
397	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{3}$	1.3×10^{-10}	Keller et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.6×10^{-10}	
	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}^{+}+\mathrm{CH}_{5}$	8.8×10^{-11}	
	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$	7.9×10^{-10}	
398	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.6×10^{-9}	McEwan et al. [1989]
399	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{M}$	2.0×10^{-29}	Anicich and McEwan [1997]
400	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.11×10^{-9}	Anicich and McEwan [1997]
401	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	2.3×10^{-9}	Anicich and McEwan [1997]
402	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	3.8×10^{-9}	Anicich and McEwan [1997]
403	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{~N}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	5.5×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{~N}_{2}+\mathrm{M} \rightarrow$ products	5.3×10^{-28}	
404	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}$	$9.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
405	$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}+\mathrm{H} \rightarrow \mathrm{C}, \mathrm{H}_{3}{ }^{+}+\mathrm{H}_{2}$	3.0×10^{-10}	Anicich and McEwan

	~ - -		[1997]
406	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}{ }^{+}+\mathrm{M}$	1.0×10^{-30}	
407	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}^{+}+\mathrm{CH}_{3}$	6.5×10^{-10}	Keller et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{Z}\left[\mathrm{C}_{4} \mathrm{H}_{5}{ }^{+}\right]$	2.0×10^{-10}	
408	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$	7.5×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M} \rightarrow$ products	6.3×10^{-26}	
409	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{HCN}+\mathrm{M} \rightarrow$ products	2.45×10^{-29}	
410	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}^{+}+\mathrm{C}_{2} \mathrm{H}_{3}$	1.2×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{~N}^{+}+\mathrm{H}$	2.0×10^{-10}	
411	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	$1.9 \times 10^{-6}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
412	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}^{+}+\mathrm{H}_{2}$	9.0×10^{-14}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{4}+\mathrm{M} \rightarrow$ products	1.0×10^{-30}	
413	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}-\mathrm{C}_{3} \mathrm{H}_{3}^{+}+\mathrm{CH}_{4}$	3.55×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{4} \mathrm{H}_{7}^{+}+\mathrm{M}$	1.3×10^{-25}	
414	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{CH}_{4}$	3.55×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M} \rightarrow$ products	5.0×10^{-29}	
415	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow$ products	3.0×10^{-11}	Keller et al. [1992]
416	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}^{+}+\mathrm{C}_{2} \mathrm{H}_{6}$	6.3×10^{-10}	Anicich and McEwan [1997]
417	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	1.0×10^{-30}	Anicich and McEwan [1997]
418	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	1.86×10^{-9}	Anicich and McEwan [1997]
419	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	2.7×10^{-9}	Keller et al. [1992]
420	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	3.55×10^{-9}	Anicich and McEwan [1997]
421	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{~N}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4}$	8.0×10^{-11}	Anicich and McEwan [1997]
422	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Z}$	$1.9 \times 10^{-6}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
423	$\mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}$	1.0×10^{-10}	Keller et al. [1992]

424	$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{3}$	2.5×10^{-10}	Keller et al. [1992]
	$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$	9.1×10^{-10}	
	$\mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{7}^{+}+\mathrm{H}$	1.4×10^{-10}	
425	$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{6}$	1.15×10^{-9}	Keller et al. [1992]
426	$\mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow$ products	1.9×10^{-11}	Keller et al. [1992]
427	$\mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{5}$	2.95×10^{-9}	Anicich and McEwan [1997]
428	$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{+} \mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{C}_{2} \mathrm{H}_{5}$	1.2×10^{-9}	Anicich and McEwan [1997]
429	$\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}$	$1.0 \times 10^{-6}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
430	$\mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}$	3.8×10^{-10}	Keller et al. [1998]
431	$\mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{5} \mathrm{H}_{7}^{+}+\mathrm{H}_{2}$	1.19×10^{-10}	Keller et al. [1998]
432	$\mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$	$5.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]; assuming quantum yield of 0.5
	$\mathrm{C}_{3} \mathrm{H}_{5}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}$	$5.0 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]; assuming quantum yield of 0.5
433	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{H} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{h} v$	$7.0 \times 10^{-11}[300 / \mathrm{T}]^{0.1}$	McEwan et al. [1999]
434	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}^{+}+\mathrm{H}$	1.4×10^{-11}	Anicich and McEwan [1997]
	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}^{+}+h \nu$	2.66×10^{-10}	
	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	2.3×10^{-26}	
435	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.16×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{2}^{+}+\mathrm{H}_{2}$	2.38×10^{-10}	
	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{3}^{+}+\mathrm{H}$	1.4×10^{-11}	
	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}+\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	4.7×10^{-28}	
436	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4}^{+}+\mathrm{C}_{4} \mathrm{H}_{2}$	1.82×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	1.12×10^{-9}	
	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow \mathrm{C}_{8} \mathrm{H}_{4}^{+}+\mathrm{H}_{2}$	8.4×10^{-11}	
437	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{HC}_{3} \mathrm{~N} \rightarrow \mathrm{H}_{3} \mathrm{C}_{7} \mathrm{~N}^{+}$	1.7×10^{-9}	Anicich and McEwan [1997]

438	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{CO}+\mathrm{M} \rightarrow$ products	2.3×10^{-27}	Anicich and McEwan [1997]
439	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$	$1.0 \times 10^{-6}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Banaszkiewicz et al. [2000]
440	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}^{+}+\mathrm{h} v$	2.2×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	1.5×10^{-26}	
441	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H} \rightarrow$ products	7.4×10^{-10}	Anicich and McEwan [1997]
442	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	$7.4 \times{ }^{-10}$	Anicich and McEwan [1997]
	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}+\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	3.6×10^{-28}	
443	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5}^{+}+\mathrm{C}_{4} \mathrm{H}_{2}$	2.75×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}$	7.15×10^{-10}	
	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{C}_{4} \mathrm{H}_{4} \rightarrow \mathrm{C}_{8} \mathrm{H}_{6}^{+}+\mathrm{H}$	1.1×10^{-10}	
444	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}_{2}$	$1.0 \times 10^{-6}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Banaszkiewicz et al. [2000]
445	$\mathrm{H}^{+}+\mathrm{NH} \rightarrow \mathrm{NH}^{+}+\mathrm{H}$	2.1×10^{-9}	Keller et al. [1992]
446	$\mathrm{H}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{4}^{+}+\mathrm{H}$	1.3×10^{-9}	Keller et al. [1992]
	$\mathrm{H}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{H}_{2}$	3.0×10^{-9}	
447	$\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}^{+}+\mathrm{H}_{2}$	4.3×10^{-9}	Keller et al. [1992]
448	$\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow$ products	3.9×10^{-9}	Anicich and McEwan [1997]
449	$\mathrm{H}^{+}+\mathrm{HCN} \rightarrow \mathrm{HCN}^{+}+\mathrm{H}$	1.0×10^{-8}	Keller et al. [1992]
450	$\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{H}$	8.2×10^{-9}	Anicich and McEwan [1997]
451	$\mathrm{H}_{2}^{+}+\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{H}$	1.98×10^{-9}	Keller et al. [1992]
452	$\mathrm{H}_{2}^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{NH}^{+}+\mathrm{H}$	1.9×10^{-9}	Keller et al. [1992]
453	$\mathrm{H}_{2}^{+}+\mathrm{H} \rightarrow \mathrm{H}^{+}+\mathrm{H}_{2}$	6.4×10^{-10}	Keller et al. [1992]
	$\mathrm{H}_{2}^{+}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{H}_{3}^{+}+\mathrm{M}$	3.0×10^{-29}	
454	$\mathrm{H}_{2}{ }^{+}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{3}^{+}+\mathrm{H}$	2.04×10^{-9}	Anicich and McEwan [1997]
455	$\mathrm{H}_{2}{ }^{+} \mathrm{CH}_{4} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{H}$	1.1×10^{-10}	Keller et al. [1992]
	$\mathrm{H}_{2}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{4}^{+}+\mathrm{H}_{2}$	1.4×10^{-9}	
	$\mathrm{H}_{2}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{H}_{2}+\mathrm{H}$	2.3×10^{-9}	

456	$\mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{H}$	4.8×10^{-10}	Keller et al. [1992]
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{H}_{2}$	4.8×10^{-9}	
457	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{H}_{2}$	2.2×10^{-9}	Keller et al. [1992]
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{H}_{2}+\mathrm{H}$	1.8×10^{-9}	
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{H}_{2}$	8.8×10^{-10}	
458	$\mathrm{H}_{2}{ }^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{H}_{2}$	2.9×10^{-10}	Keller et al. [1992]
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}+\mathrm{H}$	1.4×10^{-9}	
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{H}_{2}$	2.4×10^{-9}	
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+2 \mathrm{H}_{2}+\mathrm{H}$	6.9×10^{-10}	
	$\mathrm{H}_{2}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+3 \mathrm{H}_{2}$	2.0×10^{-10}	
459	$\mathrm{H}_{2}^{+}+\mathrm{NH} \rightarrow \mathrm{NH}^{+}+\mathrm{H}_{2}$	7.6×10^{-10}	Keller et al. [1992]
	$\mathrm{H}_{2}{ }^{+}+\mathrm{NH} \rightarrow \mathrm{Z}\left[\mathrm{NH}_{2}{ }^{+}\right]$	7.6×10^{-10}	
460	$\mathrm{H}_{2}^{+}+\mathrm{HCN} \rightarrow \mathrm{HCN}^{+}+\mathrm{H}_{2}$	2.7×10^{-9}	Keller et al. [1992]
461	$\mathrm{H}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{H}_{2}$	3.9×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{H}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}$	3.4×10^{-9}	
462	$\mathrm{H}_{2}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{H}+\mathrm{H}$	$2.3 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
463	$\mathrm{H}_{3}{ }^{+}+\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}^{+}+\mathrm{H}_{2}$	1.7×10^{-9}	Keller et al. [1992]
464	$\mathrm{H}_{3}{ }^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{NH}_{2}^{+}+\mathrm{H}$	1.0×10^{-9}	
465	$\mathrm{H}_{3}^{+}+\mathrm{NH} \rightarrow \mathrm{Z}\left[\mathrm{NH}_{2}{ }^{+}\right]$	1.3×10^{-9}	Keller et al. [1992]
466	$\mathrm{H}_{3}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{5}^{+}+\mathrm{H}_{2}$	2.4×10^{-9}	Keller et al. [1992]
467	$\mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{H}_{2}$	2.8×10^{-9}	Keller et al. [1992]
468	$\mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2}$	8.7×10^{-10}	Keller et al. [1992]
	$\mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+2 \mathrm{H}_{2}$	2.0×10^{-9}	
469	$\mathrm{H}_{3}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+2 \mathrm{H}_{2}$	2.6×10^{-9}	Keller et al. [1992]
470	$\mathrm{H}_{3}^{+}+\mathrm{C}_{4} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{3}^{+}+\mathrm{H}_{2}$	2.6×10^{-9}	Keller et al. [1992]
471	$\mathrm{H}_{3}^{+}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}^{+}+\mathrm{H}_{2}$	3.9×10^{-9}	McEwan et al. [1999]
472	$\mathrm{H}_{3}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2}$	7.4×10^{-9}	Keller et al. [1992]
473	$\mathrm{H}_{3}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2}$	5.3×10^{-9}	Anicich and McEwan [1997]
474	$\mathrm{H}_{3}{ }^{+}+\mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	9.0×10^{-30}	Anicich and McEwan [1997]

475	$\mathrm{H}_{3}^{+}+\mathrm{CO} \rightarrow \mathrm{HCO}^{+}+\mathrm{H}_{2}$	1.85×10^{-9}	Anicich and McEwan [1997]
476	$\mathrm{H}_{3}^{+}+\mathrm{H}_{3} \mathrm{CN} \rightarrow \mathrm{CHC}_{2} \mathrm{NH}^{+}+\mathrm{H}_{2}$	9.8×10^{-9}	Anicich and McEwan [1997]
477	$\mathrm{H}_{3}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{CH}_{3} \mathrm{CNH}^{+}+\mathrm{H}_{2}$	8.9×10^{-9}	Anicich and McEwan [1997]
478	$\mathrm{H}_{3}{ }^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{~N}_{2}{ }^{+}+\mathrm{H}_{2}$	2.8×10^{-9}	Anicich and McEwan [1997]
479	$\mathrm{H}_{3}{ }^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+\mathrm{H}$	$2.3 \times 10^{-7}\left[300 / \mathrm{T}_{\mathrm{e}}\right]^{0.5}$	Keller et al. [1992]
480	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{N}_{2}+\mathrm{M} \rightarrow$ products	1.1×10^{-28}	Anicich and McEwan [1997]
481	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{N}^{45} \rightarrow \mathrm{NOH}^{+}+\mathrm{H}$	1.1×10^{-10}	Scott et al. [1998]
	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{N}^{4 \mathrm{~s}} \rightarrow \mathrm{NO}^{+}+\mathrm{H}_{2}$	2.8×10^{-11}	
482	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}$	7.6×10^{-10}	Anicich and McEwan [1997]
483	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3}$	1.12×10^{-9}	Anicich and McEwan [1997]
484	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow$ products	1.6×10^{-9}	Anicich and McEwan [1997]
485	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{5}$	1.3×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}$	1.9×10^{-10}	
	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}$	1.6×10^{-11}	
	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{H}_{2} \mathrm{O}$	6.4×10^{-11}	
486	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}$	1.85×10^{-9}	Anicich and McEwan [1997]
487	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}$	1.05×10^{-10}	Anicich and McEwan [1997]
	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{OH}$	1.05×10^{-10}	
488	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{~N}_{2}^{+}+\mathrm{OH}$	1.0×10^{-9}	Anicich and McEwan [1997]
489	$\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{CO} \rightarrow \mathrm{HCO}^{+}+\mathrm{OH}$	4.25×10^{-10}	Anicich and McEwan [1997]
490	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow$ products	8.0×10^{-28}	Anicich and McEwan [1997]
491	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M} \rightarrow$ products	2.0×10^{-27}	Anicich and McEwan [1997]
492	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}^{+}+\mathrm{H}_{2} \mathrm{O}$	1.8×10^{-9}	McEwan et al. [1999]

493	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow$ products	3.4×10^{-27}	Anicich and McEwan [1997]
494	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCN} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2} \mathrm{O}$	3.8×10^{-9}	Anicich and McEwan [1997]
495	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{3} \mathrm{CN} \rightarrow \mathrm{CHCCNH}^{+}+\mathrm{H}_{2} \mathrm{O}$	4.5×10^{-9}	Anicich and McEwan [1997]
496	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{CH}_{3} \mathrm{CNH}^{+}+\mathrm{H}_{2} \mathrm{O}$	3.9×10^{-9}	Anicich and McEwan [1997]
497	$\mathrm{N}^{+}+\mathrm{N}_{2}+\mathrm{M} \rightarrow$ products	4.0×10^{-29}	Anicich and McEwan [1997]
498	$\mathrm{N}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{4}^{+}+\mathrm{N}$	5.5×10^{-11}	Keller et al. [1992]
	$\mathrm{N}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{NH}$	5.7×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{HCN}^{+}+\mathrm{H}_{2}+\mathrm{H}$	1.1×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{H}_{2}+\mathrm{H}$	4.1×10^{-10}	
499	$\mathrm{N}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{NH}^{+}+\mathrm{H}$	5.0×10^{-10}	Anicich and McEwan [1997]
500	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{N}$	1.05×10^{-9}	Anicich and McEwan [1997]
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CNC}^{+}+\mathrm{H}_{2}$	2.25×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{CHNC}^{+}+\mathrm{H}$	2.25×10^{-10}	
501	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HCN}^{+}+\mathrm{CH}_{3}$	1.45×10^{-10}	Keller et al. [1992]
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CN}^{+}+{ }^{3} \mathrm{CH}_{2}$	4.06×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{N}$	4.35×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{NH}$	1.89×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{NH}_{2}$	1.89×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CHNC}^{+}+\mathrm{H}_{2}+\mathrm{H}$	1.16×10^{-10}	
502	$\mathrm{N}^{+}+\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{HCN}+\mathrm{H}$	2.8×10^{-10}	Petrie et al. [1992]
	$\mathrm{N}^{+}+\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{HC}_{2} \mathrm{~N}^{+}+\mathrm{CH}_{3}$	6.9×10^{-10}	
	$\mathrm{N}^{+}+\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{H}_{4}^{+}+\mathrm{N}$	4.2×10^{-10}	
503	$\mathrm{N}^{+}+\mathrm{NH} \rightarrow \mathrm{N}_{2}^{+}+\mathrm{H}$	3.7×10^{-10}	Anicich and McEwan [1997]

Table 4. Absorption Cross Sections and Quantum Yields Used in the Model

Pathways	Branching Ratios	Cross Sections	Yields
[J1] $\mathrm{H}+h v \rightarrow \mathrm{H}^{+}+\mathrm{e}^{-}$	1.0	Palenius et al. [1976]	
$\left.[\mathrm{J} 2] \mathrm{H}_{2}+h v \rightarrow \mathrm{a}\right) \mathrm{H}_{2}^{+}+\mathrm{e}^{-}$ b) $\mathrm{H}^{+}+\mathrm{H}+\mathrm{e}^{-}$	see Quantum Yields	Chan et al. [1992]; Samson and Haddad [1994]	Ford et al. [1975]
[J3] $\mathrm{CH}_{3}+h v \rightarrow{ }^{1} \mathrm{CH}_{2}+\mathrm{H}$	1.0 (2160 Å)	Parkes et al. [1973]	
[J4] $\mathrm{CH}_{4}+h v \rightarrow$ a) $\mathrm{CH}_{3}+\mathrm{H}$ b) ${ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2}$ c) ${ }^{1} \mathrm{CH}_{2}+2 \mathrm{H}$ d) ${ }^{3} \mathrm{CH}_{2}+2 \mathrm{H}$ e) $\mathrm{CH}+\mathrm{H}_{2}+\mathrm{H}$ f) $\mathrm{CH}_{4}^{+}+\mathrm{e}^{-}$ g) $\mathrm{CH}_{3}{ }^{+}+\mathrm{H}+\mathrm{e}^{-}$ h) $\mathrm{H}^{+}+\mathrm{H}+\mathrm{e}^{-}+\ldots$	$\begin{gathered} \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<950 \AA) ; 1.0(>950 \AA) ; 0.41(\mathrm{Ly} \alpha) \\ 0.28(\mathrm{Ly} \alpha) \\ 0.0 \\ 0.21(\mathrm{Ly} \alpha) \\ 0.10(\mathrm{Ly} \alpha) \\ \text { see Quantum Yields; Au et al. [1993] } \end{gathered}$	Au et al. [1993]; Mount et al. [1977], Mount and Moos [1978] at 200 K	Au et al. [1993]; Romani [1996]; Samson et al. [1989]; see text
$\left.[\mathrm{J} 5] \mathrm{C}_{2} \mathrm{H}_{2}+h v \rightarrow \mathrm{a}\right) \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$ b) $\mathrm{C}_{2}+\mathrm{H}_{2}$ c) $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{*} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}$ d) $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}+\mathrm{e}^{-}$ e) $\mathrm{C}_{2} \mathrm{H}+\mathrm{H}^{+}+\mathrm{e}^{-}$	$\begin{array}{\|c\|} 0.3 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1100 \AA) ; 0.3(1100-1660 \AA) ; \\ 0.06(1660-1900 \AA) ; 0.3(1900-2400 \AA) \\ 0.1 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1100 \AA) ; 0.1(1100-1660 \AA) ; 0.1 \\ (1660-1900 \AA) ; 0.1(1900-2400 \AA) \\ 0.6 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1100 \AA) ; 0.6(1100-1660 \AA) ; \\ 0.84(1660-1900 \AA) ; 0.6(1900-2400 \AA) \\ \text { see Quantum Yields; Zheng and Srivastava }[1996] \end{array}$	$\begin{gathered} \text { Wu and Judge } \\ \text { [1985]; Cooper } \\ \text { et al. [1995]; } \\ \text { Wu et al. } \\ \text { [2001] at } 150 \\ \text { K; Seki and } \\ \text { Okabe [1993] } \end{gathered}$	50-1100 \AA quantum yields are taken from electron impact quantum yields Zheng and Srivastava [1996]; Okabe [1981, 1983]; Seki and Okabe [1993]
[J6] $\mathrm{C}_{2} \mathrm{H}_{3}+h v \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}$	1.0	Fahr et al. [1998]	
$[\mathrm{J} 7] \mathrm{C}_{2} \mathrm{H}_{4}+h v \rightarrow \text { a) } \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$ b) $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}$ c) $\mathrm{C}_{2} \mathrm{H}_{4}^{+}+e^{-}$ d) $\mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{H}+e^{-}$ e) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+e^{-}+.$. f) $\mathrm{H}_{2}^{+}+e^{-}+.$.	$\begin{gathered} 0.58 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1180 \AA) ; 0.58(1180-1750 \AA) ; \\ 0.73(1750-2100 \AA) \\ 0.42 \times \mathrm{q}_{\text {neu }} \mathrm{a}^{2}(<1180 \AA) ; \\ 0.42(1180-1750 \AA \AA) ; 0.27(1750-2100 \AA) \\ \text { see Quantum Yields; Tian and Vidal }[1998 \mathrm{a}] \end{gathered}$	Holland et al. [1997]; Zelikoff and Watanabe [1953]; Schmitt and Brehm [1966]; F. Raulin (personal communication, 1995)	500-1200 Å quantum yields are taken from electron impact quantum yields Tian and Vidal [1998a]; Holland et al [1997]; Chang et al. [1998]
[J8] $\mathrm{C}_{2} \mathrm{H}_{5}+h \nu \rightarrow \mathrm{CH}_{3}+{ }^{1} \mathrm{CH}_{2}$	1.0	Adachi et al. [1979]	

[J9] $\mathrm{C}_{2} \mathrm{H}_{6}+h v \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$ b) $\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}$ c) $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}_{2}$ d) $\mathrm{CH}_{4}+{ }^{1} \mathrm{CH}_{2}$ e) $2 \mathrm{CH}_{3}$ f) $\mathrm{C}_{2} \mathrm{H}_{6}^{+}+\mathrm{e}^{-}$ g) $\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}+\mathrm{e}^{-}$ h) $\mathrm{C}_{2} \mathrm{H}_{4}^{+}+\mathrm{e}^{-}+\ldots$ i) $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{e}^{-}+\ldots$ j) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{e}^{-}+\ldots$ k) $\mathrm{H}^{+}+\mathrm{e}^{-}+\ldots$ l) $\mathrm{H}_{2}^{+}+\mathrm{e}^{-}+\ldots$ m) $\mathrm{H}_{3}{ }^{+}+\mathrm{e}^{-}+\ldots$ n) $\mathrm{CH}_{3}{ }^{+}+\mathrm{e}^{-}+\ldots$	$\begin{gathered} 0.56 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1130 \AA) ; \\ 0.56(1130-1700 \AA) ; 0.12(\mathrm{Ly} \alpha) \\ 0.14 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1130 \AA) ; 0.14(1130-1700 \AA) ; 0.30 \\ (\mathrm{Ly} \alpha) \\ 0.27 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1130 \AA) ; 0.27(1130-1700 \AA) ; 0.25 \\ (\mathrm{Ly} \alpha) 0.02 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1130 \AA) ; \\ 0.02(1130-1700 \AA) ; 0.25(\mathrm{Ly} \alpha) 0.01 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}} \\ (<1130 \AA) ; \\ 0.01(1130-1700 \AA) ; 0.08(\text { Ly } \alpha) \\ \text { see Quantum Yields; Tian and Vidal }[1998 \mathrm{~b}] \end{gathered}$	Au et al. [1993]; Mount and Moos [1978] at 200 K	60-1200 Å taken from electron impact quantum yields Tian and Vidal [1998b]; Kameta et al. [1996]; Mount et al. [1977]
$\left.[\mathrm{J} 10] \mathrm{C}_{3} \mathrm{H}_{3}+h v \rightarrow \mathrm{a}\right) \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}$ b) $\mathrm{C}_{3} \mathrm{H}+\mathrm{H}_{2}$	$\begin{aligned} & 0.96 \\ & 0.04 \end{aligned}$	Fahr et al. [1997]	Jackson et al. [1991]
$\begin{array}{r} \text { [J11] } \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+h v \rightarrow \text { a) } \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H} \\ \text { b) } \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}_{2} \end{array}$	$\begin{aligned} & 0.56 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1200 \AA) ; 0.56(1200-2200 \AA) \\ & 0.44 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1200 \AA) ; 0.44(1200-2200 \AA \AA) \end{aligned}$	Ho et al. [1998]; Chen et al. [2000] at 200 K	$\begin{gathered} \text { Sun et al. } \\ \text { [1999]; Ho } \\ \text { et al. } \\ \text { [1998] } \end{gathered}$
$\begin{array}{r} {[\mathrm{J} 12] \mathrm{CH}_{2} \mathrm{CCH}_{2}+h v \rightarrow \text { a) } \mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{H}} \\ \text { b) } \mathrm{C}_{3} \mathrm{H}_{2}+\mathrm{H}_{2} \end{array}$	$\begin{aligned} & 0.64 \\ & 0.36 \end{aligned}$	Rabalais et al. [1971]; Chen et al. [2000] at 200 K	Rabalais et al. [1971]
$\left.[\mathrm{J} 13] \mathrm{C}_{3} \mathrm{H}_{5}+h v \rightarrow \mathrm{a}\right) \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{3}$ b) $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}$ c) $\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}$	$\begin{aligned} & 0.79 \\ & 0.16 \\ & 0.01 \end{aligned}$	Jenkin et al. [1993]	Gierczak et al. [1988]
$\begin{gathered} {[\mathrm{J} 14] \mathrm{C}_{3} \mathrm{H}_{6}+h v \rightarrow \text { a) } \mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{H}} \\ \text { b) } \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \\ \text { c) } \mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{H}_{2} \\ \text { d) } \mathrm{C}_{2} \mathrm{H}_{4}+{ }^{1} \mathrm{CH}_{2} \\ \text { e) } \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{3} \\ \text { f) } \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CH}_{4} \end{gathered}$	$0.0(1000-1350 \AA) ; 0.0$ $(1350-1550 \AA) ; 0.565(1550-1750 \AA) ; 0.41$ $(1750-1950 \AA)$ $0.11(1000-1350 \AA) ; 0.11(1350-1550 \AA) ;$ $0.01(1550-1750 \AA) ; 0.01(1750-1950 \AA)$ $0.17(1000-1350 \AA) ; 0.22(1350-1550 \AA) ;$ $0.01(1550-1750 \AA) ; 0.01(1750-1950 \AA)$ $0.06(1000-1350 \AA) ; 0.04(1350-1550 \AA) ;$ $0.02(1550-1750 \AA) ; 0.03(1750-1950 \AA)$ $0.21(1000-1350 \AA) ; 0.27(1350-1550 \AA) ;$ $0.335(1550-1750 \AA) ; 0.4(1750-1950 \AA)$ $0.05(1000-1350 \AA) ; 0.03(1350-1550 \AA) ;$ $0.05(1550-1750 \AA) ; 0.04(1750-1950 \AA)$	Samson et al. [1962]; Fahr and Nayak [1996] at 223 K	$\begin{aligned} & \text { Collin } \\ & {[1988]} \end{aligned}$
$[\mathrm{J} 15] \mathrm{C}_{3} \mathrm{H}_{8}+h v \rightarrow$ a) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}_{2}$ b) $\mathrm{C}_{2} \mathrm{H}_{6}+{ }^{1} \mathrm{CH}_{2}$ c) $\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{CH}_{3}$ d) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{4}$	0.19 (1000-1150 \AA); 0.34 (1150-1350 Å); 0.66 (1350-1540 Å); 0.94 (1540-1630 Å) 0.09 (1000-1150 A) ; 0.09 (1150-1350 Å); $0.04(1350-1540 \AA) ; 0.00(1540-1630 \AA)$ 0.40 ($1000-1150 \AA$); 0.35 ($1150-1350 \AA$); 0.19 (1350-1540 A); $0.00(1540-1630 \AA)$ 0.32 ($1000-1150 \AA$); 0.22 ($1150-1350 \AA$);	Koch and Skibowski [1971]; Okabe and Becker [1963]	Johnston et al. [1978]

	0.11 (1350-1540 \AA); 0.06 ($1540-1630 \AA$)		
[J16] $\mathrm{C}_{4} \mathrm{H}_{2}+h v \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}+\mathrm{H}$ b) $2 \mathrm{C}_{2} \mathrm{H}$ c) $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2}$ d) $\mathrm{C}_{4} \mathrm{H}_{2}{ }^{*}$	$\begin{aligned} & 0.20(1200-1640 \AA) ; 0.00(1640-2640 \AA) \\ & 0.03(1200-1640 \AA) ; 0.01(1640-2640 \AA) \\ & 0.10(1200-1640 \AA) ; 0.06(1640-2640 \AA) \\ & 0.67(1200-1640 \AA) ; 0.93(1640-2640 \AA) \end{aligned}$	Okabe [1981]; Fahr and Nayak [1994] at 223 K; Smith et al. [1998] at 193 K.	Glicker and Okabe [1987]
[J17] $\mathrm{C}_{4} \mathrm{H}_{4}+h v \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{2}+\mathrm{H}_{2}$ b) $2 \mathrm{C}_{2} \mathrm{H}_{2}$	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	Fahr and Nayak [1996] at 233 K.	Gladstone et al. [1996]
[J18] $\mathrm{C}_{4} \mathrm{H}_{6}+h v \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{4}+\mathrm{H}_{2}$ b) $2 \mathrm{C}_{2} \mathrm{H}_{3}$ c) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{2}$ d) $\mathrm{C}_{3} \mathrm{H}_{3}+\mathrm{CH}_{3}$ e) $\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}$	$\begin{aligned} & 0.05 \\ & 0.10 \\ & 0.17 \\ & 0.40 \\ & 0.28 \end{aligned}$	Samson et al. [1962]	Bergmann and Demtröder [1968]
[J19] $\mathrm{C}_{4} \mathrm{H}_{8}+h v \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{6}+2 \mathrm{H}$ b) $\mathrm{C}_{3} \mathrm{H}_{5}+\mathrm{CH}_{3}$ c) $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}+\mathrm{CH}_{4}$ d) $\mathrm{CH}_{2} \mathrm{CCH}_{2}+\mathrm{CH}_{4}$ e) $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{3}$ f) $2 \mathrm{C}_{2} \mathrm{H}_{4}$ g) $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{CH}_{3}$ h) $\mathrm{C}_{3} \mathrm{H}_{6}+{ }^{1} \mathrm{CH}_{2}$	$0.23(1050-1350 \AA) ; 0.14(1350-1600 \AA) ; 0.06$ $(1600-1980 \AA)$ $0.12(1050-1350 \AA) ; 0.39(1350-1600 \AA) ; 0.66$ $(1600-1980 \AA)$ $0.03(1050-1350 \AA) ; 0.02(1350-1600 \AA) ; 0.00$ $(1600-1980 \AA)$ $0.14(1050-1350 \AA) ; 0.10(1350-1600 \AA) ; 0.00$ $(1600-1980 \AA)$ $0.25(1050-1350 \AA) ; 0.14(1350-1600 \AA) ; 0.04$ $(1600-1980 \AA)$ $0.02(1050-1350 \AA) ; 0.04(1350-1600 \AA) ; 0.05$ $(1600-1980 \AA)$ $0.02(1050-1350 \AA) ; 0.00(1350-1600 \AA) ; 0.04$ $(1600-1980 \AA)$ $0.02(1050-1350 \AA) ; 0.02(1350-1600 \AA) ; 0.00$ $(1600-1980 \AA)$	Samson et al. [1962]	Niedzielski et al. [1978, 1979]; Collin and Wieckowski [1978]
[J20] $\mathrm{C}_{4} \mathrm{H}_{10}+h v \rightarrow$ a) $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$ b) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$ c) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{3}+\mathrm{H}$ d) $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	$\begin{aligned} & 0.48(1000-1350 \AA) ; 0.31(1350-1650 \AA) \\ & 0.15(1000-1350 \AA) ; 0.17(1350-1650 \AA) \\ & 0.28(1000-1350 \AA) ; 0.41(1350-1650 \AA) \\ & 0.09(1000-1350 \AA) ; 0.11(1350-1650 \AA) \end{aligned}$	Koch and Skibowski [1971]; Okabe and Becker [1963]	Obi et al. [1971]
$\left.[\mathrm{J} 21] \mathrm{C}_{6} \mathrm{H}_{2}+h v \rightarrow \mathrm{a}\right) \mathrm{C}_{6} \mathrm{H}+\mathrm{H}$ b) $\mathrm{C}_{4} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}$	$\begin{aligned} & \hline 0.20(1150-1640 \AA) ; 0.00(1640-3000 \AA) \\ & 0.13(1150-1640 \AA) ; 0.07(1640-3000 \AA) \end{aligned}$	Kloster-Jensen et al. [1974]; Bénilan et al. [1995] at 233 K	Wilson and Atreya [2003]
$[\mathrm{J} 22] \mathrm{C}_{8} \mathrm{H}_{2}+h v \rightarrow \text { a) } 2 \mathrm{C}_{4} \mathrm{H}$ b) $\mathrm{C}_{6} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}$	$\begin{aligned} & 0.20(1150-1640 \AA) ; 0.00(1640-3000 \AA) \\ & 0.13(1150-1640 \AA) ; 0.07(1640-3000 \AA) \end{aligned}$	Assumed same as $\mathrm{C}_{6} \mathrm{H}_{2}+h v$	Wilson and Atreya [2003]
$\begin{array}{r} {[\mathrm{J} 23] \mathrm{C}_{6} \mathrm{H}_{6}+h v \rightarrow \text { a) } \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}} \\ \text { b) } \mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{H}_{2} \\ \text { c) } \mathrm{C}_{5} \mathrm{H}_{3}+\mathrm{CH}_{3} \end{array}$	$\begin{aligned} & 0.8 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1300 \AA) ; 0.8(1300-2200 \AA) ; 0.0 \\ & (2200-2700 \AA) \\ & 0.16 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<1300 \AA) ; 0.16(1300-2200 \AA) ; 0.96 \\ & (2200-2700 \AA) \end{aligned}$	Rennie et al. [1998]; Pantos et al. [1978]	Yokoyama et al. [1990]; Rennie et al. [1998]

	(2200-2700 Å)		
[J24] $\mathrm{N}+h v \rightarrow \mathrm{~N}^{+}+\mathrm{e}^{-}$	1.0	Fennelly and Torr [1992]	
$\left.[\mathrm{J} 25] \mathrm{N}_{2}+h v \rightarrow \mathrm{a}\right) \mathrm{N}^{4 \mathrm{~s}}+\mathrm{N}^{2 \mathrm{~d}}$ b) $\mathrm{N}_{2}{ }^{+}+\mathrm{e}^{-}$ c) $\mathrm{N}^{+}+\mathrm{N}^{4 \mathrm{~s}}+\mathrm{e}^{-}$	see Quantum Yields	Chan et al. [1993]	Shaw et al. [1992]; Zipf and McLaughlin [1978]; Gallagher et al. [1988]
$[\mathrm{J} 26] \mathrm{HCN}+h v \rightarrow \mathrm{a}) \mathrm{CN}+\mathrm{H}$ b) $\mathrm{HCN}+\mathrm{e}^{-}$ c) $\mathrm{CN}^{+}+\mathrm{H}+\mathrm{e}^{-}$ d) $\mathrm{H}^{+}+\mathrm{e}^{-}+\ldots$	$\mathrm{q}_{\text {neu }}{ }^{\text {a }}$ see Quantum Yields; Kreile et al. [1982]	180-620 Å assumed equal to $\mathrm{C}_{2} \mathrm{H}_{2}$; Nuth and Glicker [1982]; F. Raulin (personal communication, 1995)	Kreile et al. [1982]; Nuth and Glicker [1982]
$\begin{array}{r} \text { [J27] } \mathrm{HC}_{3} \mathrm{~N}+h v \rightarrow \text { a) } \mathrm{C}_{3} \mathrm{~N}+\mathrm{H} \\ \text { b) } \mathrm{CN}^{2}+\mathrm{C}_{2} \mathrm{H} \\ \text { c) } \mathrm{HC}_{3} \mathrm{~N}^{*} \end{array}$	$\begin{aligned} & 0.09 \\ & 0.05 \\ & 0.24 \end{aligned}$	Connors et al. [1974]; Clarke and Ferris [1996]; Andrieux et al. [1995]; Bénilan et al. [1994]; Bruston et al. [1989]	Clarke and Ferris [1995]; Halpern et al. [1988]; see text
[J28] $\mathrm{CH}_{3} \mathrm{CN}+h v \rightarrow \mathrm{CN}+\mathrm{CH}_{3}$	1.0	Nuth and Glicker [1982]; Suto and Lee [1985]	
$\left.[\mathrm{J} 29] \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}+h v \rightarrow \mathrm{a}\right) \mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{3}$ b) $\mathrm{HCN}+\mathrm{C}_{2} \mathrm{H}_{2}$ c) $\mathrm{HC}_{3} \mathrm{~N}+\mathrm{H}_{2}$ d) $\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}+\mathrm{H}$	$\begin{aligned} & 0.01 \\ & 0.15 \\ & 0.59 \\ & 0.25 \end{aligned}$	F. Raulin (personal communication, 1995), Wilson and Atreya [2003]	Derecskei- Kovacs and North [1999]
[J30] $\mathrm{C}_{2} \mathrm{~N}_{2}+h v \rightarrow 2 \mathrm{CN}$	1.0	Nuth and Glicker [1982]; F. Raulin (personal communication, 1995)	
$[\mathrm{J} 31] \mathrm{C}_{4} \mathrm{~N}_{2}+h v \rightarrow \mathrm{C}_{3} \mathrm{~N}+\mathrm{CN}$	1.0	Connors et al. [1974]; Bénilan et al. [1996] at 233 K	
$[\mathrm{J} 22] \mathrm{CO}+h v \rightarrow \mathrm{C}+\mathrm{O}^{3 \mathrm{p}}$	$\mathrm{q}_{\text {neu }}{ }^{\text {a }}$	Wight et al. [1976]; Gallagher et al. [1988]	Wight et al. [1976]; Okabe [1978]

$\left.[\mathrm{J} 33] \mathrm{CO}_{2}+h v \rightarrow \mathrm{a}\right) \mathrm{CO}+\mathrm{O}^{3 \mathrm{p}}$ b) $\mathrm{CO}+\mathrm{O}^{1 \mathrm{~d}}$	$\begin{aligned} & 1.0(1000-1670 \AA) ; 0.0(1670-2150 \AA) \\ & 0.0(1000-1670 \AA) ; 1.0(1670-2150 \AA) \end{aligned}$	Nakata et al. [1965]; Ogawa [1971]; Lewis and Carver [1983] at 200 K	Okabe [1978]
[J34] $\mathrm{H}_{2} \mathrm{O}+h v \rightarrow$ a) $\mathrm{OH}+\mathrm{H}$ b) $\mathrm{O}^{1 \mathrm{~d}}+\mathrm{H}_{2}$ c) $\mathrm{O}^{3 \mathrm{p}}+\mathrm{H}_{2}$ d) $\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{e}^{-}$ e) $\mathrm{H}^{+}+\mathrm{e}^{-}+\ldots$	$\begin{aligned} & 0.78 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<990 \AA) ; 0.78(990-1450 \AA) ; 1.0 \\ & (1450-1980 \AA) \\ & 0.11 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<990 \AA) ; 0.11(990-1450 \AA) ; 0.0 \\ & \quad(1450-1980 \AA) \\ & 0.11 \times \mathrm{q}_{\text {neu }}{ }^{\mathrm{a}}(<990 \AA) ; 0.11(990-1450 \AA) ; 0.0 \\ & \quad(1450-1980 \AA) \end{aligned}$ see Quantum Yields; Haddad and Samson [1986]	Haddad and Samson [1986]; Watanabe and Jursa [1964]; Watanabe et al. [1953]; Thompson et al. [1963]	Haddad and Samson [1986]; Stief et al. [1975]; Mordaunt et al. [1994]
$\begin{array}{r} {[\mathrm{J} 35] \mathrm{H}_{2} \mathrm{CO}+h v \rightarrow \text { a) } \mathrm{CO}+\mathrm{H}_{2}} \\ \text { b) } \mathrm{CO}+2 \mathrm{H} \end{array}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	Gentieu and Mentall [1970]; Suto et al. [1985]	Glicker and Stief [1971]; Moortgat et al. [1983]
[J36] $\mathrm{CH}_{2} \mathrm{CO}+h v \rightarrow \mathrm{CO}+{ }^{1} \mathrm{CH}_{2}$	1.0	Braun et al. [1970]; Rabalais et al. [1971]	
$\left.[\mathrm{J} 37] \mathrm{CH}_{3} \mathrm{OH}+h v \rightarrow \mathrm{a}\right) \mathrm{CH}_{3} \mathrm{O}+\mathrm{H}$ b) $\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2}$	$\begin{aligned} & 0.83 \\ & 0.17 \end{aligned}$	Harich et al. [1999]	
$[E 1] \mathrm{H}+\mathrm{e}^{-} \rightarrow \mathrm{H}^{+}+2 \mathrm{e}^{-}$	1.0	Shah et al. [1987]	
[E2] $\mathrm{H}_{2}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{H}_{2}+2 \mathrm{e}^{-}$ b) $\mathrm{H}^{+}+\mathrm{H}+2 \mathrm{e}^{-}$ c) $2 \mathrm{H}+\mathrm{e}^{-}$	see Quantum Yields	Backx et al. [1976]	
[E3] $\mathrm{CH}_{4}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{CH}_{4}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{CH}_{3}{ }^{+}+\mathrm{H}+2 \mathrm{e}^{-}$	see Quantum Yields	Orient and Srivastava [1987]	
[E4] $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{C}_{2} \mathrm{H}+\mathrm{H}^{+}+2 \mathrm{e}^{-}$	see Quantum Yields	Zheng and Srivastava [1996]	
[E5] $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{H}+2 \mathrm{e}^{-}$ c) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ d) $\mathrm{H}^{+}+2 \mathrm{e}^{-}+\ldots$ e) $\mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ f) $\mathrm{H}_{3}{ }^{+}+2 \mathrm{e}^{-}+\ldots$ g) $\mathrm{CH}_{3}{ }^{+}+2 \mathrm{e}^{-}+\ldots$	see Quantum Yields	Tian and Vidal [1998a]	
[E6] $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{C}_{2} \mathrm{H}_{6}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}+2 \mathrm{e}^{-}$ c) $\mathrm{C}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{e}^{-}+\ldots$ d) $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+2 \mathrm{e}^{-}+\ldots$ e) $\mathrm{C}_{2} \mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ f) $\mathrm{H}^{+}+2 \mathrm{e}^{-}+\ldots$	see Quantum Yields	Tian and Vidal [1998b]	

g) $\mathrm{H}_{2}^{+}+2 \mathrm{e}^{-}+\ldots$ h) $\mathrm{H}_{3}{ }^{+}+2 \mathrm{e}^{-}+\ldots$ i) $\mathrm{CH}_{3}{ }^{+}+2 \mathrm{e}^{-}+\ldots$		
[E7] $\mathrm{N}+\mathrm{e}^{-} \rightarrow \mathrm{N}^{+}+2 \mathrm{e}^{-}$	1.0	Brook et al. [1978]
$[E 8] \mathrm{N}_{2}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{N}^{4 \mathrm{~s}}+\mathrm{N}^{4 \mathrm{~s}}+\mathrm{e}^{-}$ b) $\mathrm{N}^{4 \mathrm{~s}}+\mathrm{N}^{2 \mathrm{~d}}+\mathrm{e}^{-}$ c) $\mathrm{N}^{2 \mathrm{~d}}+\mathrm{N}^{2 \mathrm{~d}}+\mathrm{e}^{-}$ d) $\mathrm{N}_{2}^{+}+2 \mathrm{e}^{-}$ e) $\mathrm{N}^{+}+\mathrm{N}^{4 \mathrm{~s}}+2 \mathrm{e}^{-}$	see Quantum Yields	Zipf et al. [1980]; Itikawa et al. [1986]
[E9] $\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \rightarrow$ a) $\mathrm{H}_{2} \mathrm{O}^{+}+2 \mathrm{e}^{-}$ b) $\mathrm{H}^{+}+2 \mathrm{e}^{-}+\ldots$	see Quantum Yields	Rao et al. [1995]
${ }^{\text {a }} \mathrm{q}_{\text {neu }}$ is the neutral quantum yield.		

Table 5. Boundary Conditions Used in the Model

Physical Quantity	Boundary Constraint
Lower Boundary Conditions	
Pressure	$\mathrm{p}_{0}=1496 \mathrm{mb}$
Methane mole fraction Methane supersaturation	$\xi_{\mathrm{CH}_{4}}=5.6 \% 1.37$
Molecular hydrogen mole fraction	$\xi_{\mathrm{H}_{2}}=1.1 \times 10^{-3}$
Carbon monoxide mole fraction	$\xi_{\mathrm{CO}}=5.0 \times 10^{-5}$
Upper Boundary Conditions	
Atomic hydrogen escape velocity	$\mathrm{H}_{\mathrm{vel}}{ }^{\text {esc }}=2.7 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1}$
Molecular hydrogen escape velocity	$\mathrm{H}_{2 \text { vel }}{ }^{\text {esc }}=7 \times 10^{3} \mathrm{~cm} \mathrm{~s}^{-1}$
Water influx from micrometeorites	$\Phi_{\mathrm{H}_{2} \mathrm{O}}{ }^{\mathrm{a}}=5 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
${ }^{\text {a }}$ Flux referred to the surface.	

Table 6. Binary Molecular Diffusion Coefficients Used in the Model

Binary Mixture	$\mathbf{A , c m} \mathbf{c m}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{s}}$	\mathbf{s}	References
$\mathrm{N}_{2}-\mathrm{N}_{2}$	5.09×10^{16}	0.810	Massman [1998]
$\mathrm{CH}_{4}-\mathrm{N}_{2}$	7.34×10^{16}	0.750	Banks and Kockarts [1973]
$\mathrm{H}-\mathrm{N}_{2}$	4.87×10^{17}	0.698	Banks and Kockarts [1973]

$\mathrm{H}_{2}-\mathrm{N}_{2}$	1.88×10^{17}	0.820	Mason and Marrero [1970]
$\mathrm{N}-\mathrm{N}_{2}$	9.69×10^{16}	0.774	Mason and Marrero [1970]
$\mathrm{O}-\mathrm{N}_{2}$	9.69×10^{16}	0.774	Banks and Kockarts [1973]
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	5.15×10^{16}	0.810	Massman $[1998]$
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	4.08×10^{16}	0.810	Massman $[1998]$
$\mathrm{H}_{2} \mathrm{O}-\mathrm{N}_{2}$	6.26×10^{16}	0.810	Massman $[1998]$
$\mathrm{C}_{2} \mathrm{H}_{6}-\mathrm{N}_{2}$	7.64×10^{16}	0.730	Wakeham and Slater $[1973]$
$\mathrm{C}_{3} \mathrm{H}_{8}-\mathrm{N}_{2}$	6.54×10^{16}	0.660	Wakeham and Slater $[1973]$
$\mathrm{C}_{4} \mathrm{H}_{10}-\mathrm{N}_{2}$	7.34×10^{16}	0.610	Wakeham and Slater $[1973]$
$\mathrm{CH}_{4}-\mathrm{CH}_{4}$	5.73×10^{16}	0.500	estimated from Lennard-Jones correlation; Reid et al. $[1987]$
$\mathrm{H}_{2}-\mathrm{CH}_{4}$	2.30×10^{17}	0.765	Mason and Marrero [1970]

Table 7. Production and Loss Rates and Chemical Lifetimes of Various Stable Species

Species $^{\mathbf{a}}$	Production $(\mathbf{P}), \mathbf{c m}^{\mathbf{- 2}}$ $\mathbf{s}^{\mathbf{- 1}}$	Loss $(\mathbf{L}), \mathbf{c m}^{\mathbf{- 2}}$ $\mathbf{s}^{\mathbf{- 1}}$	$\mathbf{P}-\mathbf{L}, \mathbf{c m}^{\mathbf{- 2}}$ $\mathbf{s}^{\mathbf{- 1}}$	Chemical Lifetime at $\mathbf{3 0 0} \mathbf{~ k m}$, \mathbf{s}
N_{2}	1.1×10^{7}	2.9×10^{8}	-2.8×10^{8}	8.4×10^{15}
H_{2}	3.2×10^{9}	3.9×10^{7}	3.2×10^{9}	8.7×10^{12}
CH_{4}	1.1×10^{8}	4.9×10^{9}	-4.8×10^{9}	8.4×10^{11}
$\mathrm{C}_{2} \mathrm{H}_{2}$	3.3×10^{9}	2.9×10^{9}	3.7×10^{8}	3.1×10^{8}
$\mathrm{C}_{2} \mathrm{H}_{4}$	6.7×10^{8}	7.6×10^{8}	-9.3×10^{7}	3.7×10^{7}
$\mathrm{C}_{2} \mathrm{H}_{6}$	1.7×10^{9}	1.3×10^{8}	1.6×10^{9}	2.3×10^{10}
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	1.9×10^{8}	2.0×10^{8}	-7.6×10^{6}	2.8×10^{7}
$\mathrm{CH}_{2} \mathrm{CCH}_{2}$	1.5×10^{8}	1.5×10^{8}	-1.1×10^{6}	2.5×10^{6}
$\mathrm{C}_{3} \mathrm{H}_{6}$	1.1×10^{8}	1.1×10^{8}	6.6×10^{5}	3.9×10^{6}
$\mathrm{C}_{3} \mathrm{H}_{8}$	3.7×10^{7}	4.1×10^{6}	3.3×10^{7}	1.0×10^{10}
$\mathrm{C}_{4} \mathrm{H}_{2}$	1.8×10^{9}	1.8×10^{9}	-2.2×10^{6}	1.4×10^{6}
$\mathrm{C}_{4} \mathrm{H}_{6}$	9.8×10^{7}	9.8×10^{7}	6.5×10^{4}	4.4×10^{4}
$\mathrm{C}_{4} \mathrm{H}_{8}$	2.7×10^{6}	2.6×10^{6}	9.2×10^{4}	3.9×10^{6}
$\mathrm{C}_{4} \mathrm{H}_{10}$	3.6×10^{7}	6.2×10^{6}	3.0×10^{7}	5.5×10^{9}
$\mathrm{C}_{6} \mathrm{H}_{2}$	3.7×10^{6}	3.7×10^{6}	2.5×10^{4}	3.4×10^{6}
$\mathrm{C}_{6} \mathrm{H}_{6}$	2.0×10^{8}	2.0×10^{8}	4.6×10^{5}	4.8×10^{5}

$\mathrm{C}_{8} \mathrm{H}_{2}$	5.7×10^{4}	5.8×10^{4}	-1.0×10^{3}	3.4×10^{6}
CO^{2}	1.8×10^{7}	2.2×10^{7}	-4.1×10^{6}	7.8×10^{11}
CO_{2}	3.3×10^{6}	2.0×10^{5}	3.1×10^{6}	2.2×10^{10}
$\mathrm{H}_{2} \mathrm{O}$	3.9×10^{6}	7.3×10^{6}	-3.4×10^{6}	1.3×10^{8}
$\mathrm{H}_{2} \mathrm{CO}$	1.3×10^{6}	3.7×10^{5}	9.1×10^{5}	7.7×10^{7}
$\mathrm{CH}_{3} \mathrm{OH}$	4.3×10^{3}	4.6×10^{3}	-2.6×10^{2}	1.0×10^{8}
$\mathrm{CH}_{2} \mathrm{CO}$	4.6×10^{6}	4.6×10^{6}	9.3×10^{3}	1.9×10^{6}
HCN^{2}	4.1×10^{8}	4.0×10^{8}	2.1×10^{6}	1.4×10^{9}
$\mathrm{CH}_{3} \mathrm{CN}$	8.5×10^{6}	8.5×10^{6}	-3.4×10^{4}	1.3×10^{9}
$\mathrm{C}_{2} \mathrm{~N}_{2}$	2.4×10^{6}	3.5×10^{5}	2.0×10^{6}	8.0×10^{6}
$\mathrm{HC}_{3} \mathrm{~N}$	2.0×10^{8}	1.9×10^{8}	1.3×10^{7}	2.5×10^{7}
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	2.5×10^{8}	2.3×10^{8}	1.6×10^{7}	1.6×10^{6}
$\mathrm{C}_{4} \mathrm{~N}_{2}$	7.3×10^{6}	6.4×10^{6}	9.7×10^{5}	3.7×10^{6}
$\mathrm{~N}^{+}$	4.7×10^{7}	4.7×10^{7}		
$\mathrm{~N}_{2}{ }^{+}$	1.6×10^{8}	1.6×10^{8}		
$\mathrm{CH}_{3}{ }^{+}$	1.5×10^{8}	1.5×10^{8}		
$\mathrm{CH}_{4}{ }^{+}$	1.0×10^{7}	1.0×10^{7}		
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$	9.3×10^{7}	9.3×10^{7}		
$\mathrm{H}_{2} \mathrm{CN}^{+}$	1.5×10^{8}	1.5×10^{8}		
e^{-}	1.8×10^{8}	1.8×10^{8}		
${ }^{\text {a }} \mathrm{Species}^{2}$ that have long lifetimes compared to a solar cycle are italicized.				

Table 8. A Comparison of Model-Generated Species Abundances Along With Available Observations ${ }^{\text {a }}$

Species	Altitude, km	Observational Limits	$\mathbf{Y 8 4}$	T95	La96/B00	Le01/Le02	Nominal With Fractal/Mie Haze
$\mathrm{C}_{2} \mathrm{H}_{2}$	125	$1.3-2.9(-6)$ (IRIS)	$4.3(-5)$	$2.2(-6)$	$3.0(-6)^{\mathrm{b}}$	$1.9(-6)$	$1.9(-6) / 1.1(-6)$
$\mathrm{C}_{2} \mathrm{H}_{4}$	125	$0.4-1.2(-7)$ (IRIS)	$3.1(-7)$	$3.2(-9)$	$8.3(-8)$	$2.1(-8)$	$9.4(-9) / 1.5(-8)$
$\mathrm{C}_{2} \mathrm{H}_{6}$	125	$0.6-1.8(-5)$ (IRIS)	$2.0(-4)$	$1.2(-5)$	$8.7(-6)$	$2.7(-6)$	$5.8(-6) / 1.2(-5)$
$\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$	105	$2.3-6.1(-9)$ (IRIS)	$9.5(-7)$	$1.4(-8)$	$2.3(-11) /<1.0(-11)$	$9.8(-10)$	$1.8(-9) / 6.6(-10)$

$\mathrm{C}_{3} \mathrm{H}_{8}$	105	$0.3-1.1(-6)$ (IRIS)	4.2(-6)	2.8(-7)	$1.0(-7)^{\text {c }}$	2.4(-7)	6.3(-8)/2.8(-7)
$\mathrm{C}_{4} \mathrm{H}_{2}$	105	$0.7-2.0(-9)$ (IRIS)	1.6(-10)	6.8(-9)	$4.7(-9)^{\text {d }}$	3.9(-9)	6.2(-10)/1.9(-9)
$\mathrm{C}_{6} \mathrm{H}_{6}$	110	$\begin{gathered} 1.0-7.0(-10) \\ \text { (ISO) } \end{gathered}$	-	-	-	$<1.0(-13)$	6.1(-10)/5.8(-11)
CO_{2}	105	$0.9-1.7(-8)$ (IRIS)	5.7(-9)	4.6(-13)	5.5(-9)	-	6.2(-9)/5.8(-9)
$\mathrm{H}_{2} \mathrm{O}$	400	$\begin{gathered} 0.4-1.4(-8) \\ \text { (ISO) } \end{gathered}$	1.2(-9)	3.1(-9)	1.9(-8)	-	1.1(-8)/1.0(-8)
HCN	110	$\begin{gathered} 0.5-1.6(-7) \\ \text { (IRAM) } \end{gathered}$	3.8(-6)	1.6(-7)	1.2(-7)/4.0(-8)	1.3(-7)	1.4(-7)/3.2(-7)
	300	$\begin{gathered} 0.03-1.2(-5) \\ (\text { IRAM }) \end{gathered}$	9.7(-6)	2.2(-6)	6.4(-6)/2.3(-6)	7.9(-7)	1.3(-6)/2.0(-6)
$\mathrm{CH}_{3} \mathrm{CN}$	450	$\begin{gathered} 2.2-6.2(-8) \\ (\text { IRAM }) \end{gathered}$	-	1.2(-7)	$7.3(-9)^{\text {e }}$	7.8(-7)	9.6(-9)/8.0(-9)
$\mathrm{HC}_{3} \mathrm{~N}$	105	$\begin{gathered} 1.5-8.5(-10) \\ \text { (ISO) } \end{gathered}$	3.3(-7)	<1.0(-12)	2.4(-8)/1.4(-8)	3.2(-8)	1.2(-8)/1.2(-10)
	450	$\begin{gathered} 2.2-6.2(-8) \\ (\text { IRAM }) \end{gathered}$	3.1(-6)	4.1(-6)	$3.9(-6) / 3.1(-6)$	1.3(-6)	4.0(-8)/3.7(-8)
$\mathrm{C}_{2} \mathrm{~N}_{2}$	105	$\begin{gathered} \leq 1.0(-9) \\ \text { (IRIS) } \end{gathered}$	1.1(-7)	$<1.0(-12)$	4.5(-12)/1.6(-11)	1.5(-9)	1.1(-9)/1.6(-13)
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}^{\mathrm{f}}$	105	-	-	-	-	6.6(-9)	$2.1(-8) / 8.8(-12)$
$\mathrm{C}_{4} \mathrm{~N}_{2}{ }^{\text {f }}$	105	-	-	-	1.2(-11)/1.7(-12)	-	1.4(-9)/6.2(-12)
$\mathrm{H}_{2} \mathrm{CO}^{\text {f }}$	120	-	<1.0(-11)	9.1(-12)	-	-	1.0(-9)/4.1(-9)
$\mathrm{CH}_{3} \mathrm{OH}^{\mathrm{f}}$	120	-	-	1.6(-9)	-	-	4.5(-13)/1.0(-14)
$\mathrm{CH}_{2} \mathrm{CO}^{\text {f }}$	120	-	$<1.0(-11)$	3.2(-9)	-	-	2.4(-11)/2.2(-11)

${ }^{\text {a }}$ Read $1.0(-9)$ as $1.0 \times 10^{-9} . \mathrm{Y} 84=$ Yung et al. [1984]; T95 $=$ Toublanc et al. $[1995] ;$ La96 $=$ Lara et al. [1996];
B00 = Banaszkiewicz et al. [2000]; Le01/Le02 = Lebonnois et al. [2001] (equator), Lebonnois et al. [2002].
${ }^{\mathrm{b}}$ Mixing ratio at 130 km .
${ }^{\text {c }}$ Mixing ratio at 110 km .
${ }^{\mathrm{d}}$ Mixing ratio at 125 km .
${ }^{\mathrm{e}}$ Mixing ratio at 400 km .
${ }^{\mathrm{f}}$ This species has not yet been observed in Titan's atmosphere.

Citation: Wilson, E. H., and S. K. Atreya (2004), Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere, J. Geophys. Res., 109, E06002, doi: 10.1029/2003JE002181.

Copyright 2004 by the American Geophysical Union.

[^0]: ${ }^{a} \mathrm{q}_{\text {neu }}$ is the neutral quantum yield.

