



Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere Chris R. Webster et al. Science 341, 260 (2013); DOI: 10.1126/science.1237961

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of July 19, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:

http://www.sciencemag.org/content/341/6143/260.full.html

Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2013/07/17/341.6143.260.DC1.html http://www.sciencemag.org/content/suppl/2013/07/18/341.6143.260.DC2.html

A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/341/6143/260.full.html#related

This article cites 32 articles, 10 of which can be accessed free: http://www.sciencemag.org/content/341/6143/260.full.html#ref-list-1

This article has been **cited by** 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/341/6143/260.full.html#related-urls

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2013 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS.

$$MR(B) \equiv \frac{R(B) - R(0)}{R(0)} = \frac{I(0) - I(B)}{I(B)}$$
(3)

where R(B) is the resistance at magnetic field *B* and R(0) the resistance at zero field. We have derived MR<sub>max</sub>(*V*) from the *I-Vs* for different channel lengths at zero magnetic field and maximum magnetic field,  $B_{max}$ , according to MR<sub>max</sub>(*V*) =  $[I(V,0) - I(V,B_{max})]/I(V,B_{max})$ , (Fig. 4C). The MR increases rapidly with decreasing voltage, reaching a maximum value of more than 2000% for 60-nm wire length when approaching 0 V. Because the current levels are below the noise limit close to 0 V, we have not been able to determine MR<sub>max</sub> here.

The MR values in our molecular wires compare favorably with values reported for other systems under similar conditions. The highest room-temperature TMR value reported to date is 600% for an epitaxial CoFeB/MgO/CoFeB magnetic tunnel junction (24). Collosal magnetoresistance (CMR) manganites exhibit very large low-temperature MR at several tesla (25); however, room-temperature, low-field MR values are a few tens of percents (26, 27). For nanocomposites containing magnetic nanoparticles, MR values similar to those in CMR experiments have been demonstrated under comparable experimental conditions (28). A large room-temperature MR effect of a few tens of percents was also reported for a graphene nanoribbon field-effect transistor (29).

We ascribe our very large MR values to the unique 1D character of our system. Indeed, nonstructured DXP thin films show much lower MR values (Fig. 4D). When a ~40-nm DXP film is contacted with a PtSi CP-AFM tip in the same setup, we measure a maximum MC of around -20%. With a Pt wire of 250-um diameter instead of the PtSi tip, the maximum MC is reduced to about -5%. These results strongly suggest that confinement of the current path is crucial for explaining our results, in line with recent numerical studies (9). Explanations based on spin-dependent interactions involving excited states (30, 31) can be ruled out, because the MR is also present-and even more pronouncedbelow the DXP HOMO-LUMO gap (~2 eV). The fact that for DXP the energy required to form doubly negatively charged states is remarkably small [~0.2 eV from cyclic voltammetry measurements (23)] suggests that such states are involved in transport. We therefore propose that the current is carried by electrons and that spin blockade is caused by two electrons residing on neighboring molecules attempting to form a doubly negatively charged molecule in a spin-singlet configuration by hopping of one of the electrons. The energetic disorder generally present in organic systems facilitates formation of doubly charged molecules at favorable locations. Moreover, the presence of a positively charged potassium ion close to a DXP molecule strongly reduces its LUMO level, also facilitating double charging. Simulations show that with these ingredients, MC values close to -100% indeed can be obtained with MC (*B*) curves having the line shape of Eq. 2 (10). Further analysis should provide more insight into the details of the mechanism behind the effect, but the present experimental results clearly point at spin blockade tuned by a competition between the external magnetic field and the random internal hyperfine field.

#### **References and Notes**

- 1. M. N. Baibich et al., Phys. Rev. Lett. 61, 2472-2475 (1988).
- 2. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn,
- Phys. Rev. B 39, 4828-4830 (1989).
- M. Jullière, *Phys. Lett.* 54, 225–226 (1975).
  J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, *Phys. Rev. Lett.* 74, 3273–3276 (1995).
- K. Ono, D. G. Austing, Y. Tokura, S. Tarucha, *Science* 297, 1313–1317 (2002).
- R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, L. M. K. Vandersypen, *Rev. Mod. Phys.* 79, 1455–1455 (2007).
- (2007).7. T. Francis, Ö. Mermer, G. Veeraraghavan, M. Wohlgenannt,
- New J. Phys. 6, 185 (2004). 8. W. Wagemans *et al., Spin* 1, 93–108 (2011).
- W. Wagemans et al., spin 1, 95–108 (2011).
  S. P. Kersten, S. Meskers, P. A. Bobbert, *Phys. Rev. B* 86,
- 045210 (2012). 10. Materials and methods are available as supplementary materials on *Science* Online.
- G. Calzaferri, S. Huber, H. Maas, C. Minkowski, Angew. Chem. Int. Ed. 42, 3732–3758 (2003).
- 12. P. Bornhauser, G. Calzaferri, J. Phys. Chem. 100, 2035–2044 (1996).
- 13. P. A. Anderson *et al., Dalton Trans.* **19**, 3122–3128 (2004) and references therein.
- M. J. Kelly, J. Phys. Condens. Matter 7, 5507–5519 (1995).
  T. Bein, in Recent Advances and New Horizons in Zeolite
- Science and Technology, H. Chon, S. I. Woo, S. E. Park, Eds. (Elsevier, Amsterdam, 1996), pp. 295–322.
- 16. D. J. Cardin, Adv. Mater. 14, 553 (2002).
- U. Simon, M. E. Franke, in *Host-Guest-Systems Based on Nanoporous Crystals*, F. Laeri, F. Schüth, U. Simon, M. Wark, Eds. (Wiley, Weinheim, 2003), pp. 364–378.
- 18. M. Álvaro et al., Chem. Mater. 18, 26-33 (2006).
- 19. F. J. Jansen, R. A. Schoonheydt, J. Chem. Soc., Faraday Trans. 69, 1338 (1973).
- 20. Z. K. Tang et al., Science 292, 2462 (2001).

- 21. A. M. Nardes et al., Org. Electron. 9, 727–734 (2008).
- H. Bentmann, A. A. Demkov, R. Gregory, S. Zollner, Phys. Rev. B 78, 205302 (2008).
- 23. S. K. Lee et al., J. Am. Chem. Soc. **121**, 3513–3520 (1999).
- 24. S. Ikeda *et al.*, *Appl. Phys. Lett.* **93**, 082508 (2008).
- 25. G. Q. Gong et al., Appl. Phys. Lett. 67, 1783 (1995).
- 26. P. K. Siwach, H. K. Singh, O. N. Srivastava, *J. Phys.*
- Condens. Matter **20**, 273201 (2008).
- Y.-T. Zhang, Z.-Y. Chen, C.-C. Wang, Q. Jie, H.-B. Lü, J. Magn. Magn. Mater. 321, 1199–1201 (2009).
- 28. F. J. Yue et al., J. Phys. D Appl. Phys. 44, 025001 (2011).
- 29. J. Bai et al., Nat. Nanotechnol. 5, 655-659 (2010).
- V. N. Prigodin, J. D. Bergeson, D. M. Lincoln,
  A. J. Epstein, Synth. Met. 156, 757–761 (2006).
- P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, *Phys. Rev. B* 76, 235202 (2007).

Acknowledgments: We thank B. Koopmans, L. Abelmann, L. P. Kouwenhoven, Y. Tokura, and S. Tarucha for fruitful discussions. We acknowledge financial support from the Netherlands Technology Foundation STW, the European Research Council, ERC Starting Grant nos. 240433 and 280020, ERC Advanced Grant no. 247365, NanoScience Europe program (NanoSci-ERA), grant no. 11003, and the Foundation for Fundamental Research on Matter (FOM), part of the Netherlands Organisation for Scientific Research (NWO). A link to the data reported here is included in the supplementary materials. R.N.M. and M.H.S. carried out the magnetoresistance experiments and performed the data analysis. H.L. performed the zeolite L crystal synthesis and molecular loading. W.G.v.d.W. conceived the experiments and planned and supervised the project. L.D.C. conceived the project together with W.G.v.d.W. and supervised the zeolite synthesis and loading. S.P.K. and P.A.B. performed the theoretical analysis and numerical simulations. M.P.d.]. contributed to planning and supervision. All authors discussed the results, provided important insights, and helped write the manuscript.

#### **Supplementary Materials**

www.sciencemag.org/cgi/content/full/science.1237242/DC1 Materials and Methods Figs. S1 to S4 Data Files References (*32–37*)

1 March 2013; accepted 14 June 2013 Published online 4 July 2013; 10.1126/science.1237242

## Isotope Ratios of H, C, and O in $CO_2$ and $H_2O$ of the Martian Atmosphere

Chris R. Webster,<sup>1</sup>\* Paul R. Mahaffy,<sup>2</sup> Gregory J. Flesch,<sup>1</sup> Paul B. Niles,<sup>6</sup> John H. Jones,<sup>7</sup> Laurie A. Leshin,<sup>3</sup> Sushil K. Atreya,<sup>4</sup> Jennifer C. Stern,<sup>2</sup> Lance E. Christensen,<sup>1</sup> Tobias Owen,<sup>5</sup> Heather Franz,<sup>2</sup> Robert O. Pepin,<sup>8</sup> Andrew Steele,<sup>9</sup> the MSL Science Team<sup>†</sup>

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and  ${}^{18}O/{}^{16}O$  in water and  ${}^{13}C/{}^{12}C$ ,  ${}^{18}O/{}^{16}O$ ,  ${}^{17}O/{}^{16}O$ , and  ${}^{13}C/{}^{12}C^{16}O$  in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO<sub>2</sub> and H<sub>2</sub>O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

The Sample Analysis at Mars (SAM) suite (1) on the Curiosity rover that landed in August 2012 is conducting a search for

organic compounds and volatiles in rocks and soils and characterizing the chemical and isotopic composition of the modern atmosphere. Atmospheric characterization is one of the exploration goals of the Mars Science Laboratory (MSL) mission (2), and it is accomplished using SAM's tunable laser spectrometer (TLS) and its quadrupole mass spectrometer (QMS). Here we focus on TLS measurements; a companion paper (3) focuses on those from the QMS. Results for nondetection by TLS of atmospheric methane are reported elsewhere (4).

Previous measurements of isotopes of H, N, and noble gases in the martian atmosphere to date (5) have indicated enrichment in the heavier isotopes, consistent with the idea of atmospheric loss to space of the lighter isotopes (6, 7). Although meteoritic analyses of  $\delta^{13}$ C and  $\delta^{18}$ O (8) in shergottite, nakhlite, and chassigny (SNC)class meteorites are made at higher precision than the atmospheric measurements to date, they are challenged to correctly account for possible terrestrial contamination (9). Measurements of CO<sub>2</sub> isotopes at Mars and in particular  $\delta^{13}$ C values have not been consistent with atmospheric loss (10). Viking (11) measured  $\delta^{13}$ C and  $\delta^{18}$ O values of  $23 \pm 43$  per mil (‰) and  $7 \pm 44$ ‰. Earth-based spectroscopy has suggested depleted values for  $\delta^{13}$ C of  $-22 \pm 20\%$  and  $\delta^{18}$ O of  $18 \pm 18\%$  (9). The recent Phoenix lander measured  $\delta^{13}C$  and  $\delta^{18}$ O values for CO<sub>2</sub> in the martian atmosphere of  $-2.5 \pm 4.3\%$  and  $31 \pm 5.7\%$ , respectively (12). Although uncertainties in these earlier atmospheric measurements of  $\delta^{13}C$  and  $\delta^{18}O$  overlap (Table 1), their  $\delta^{13}$ C values are in marked contrast to measurements of trapped CO<sub>2</sub> in martian meteorite EETA 79001, generally considered to be closest to the true martian atmosphere and which yielded a  $\delta^{13}$ C of 36 ± 10‰ (8).

For D/H in water, the difference in groundstate energies of HDO and its parent HHO are large enough to cause large changes in  $\delta D$  in equilibrium and nonequilibrium (kinetic) processes (13, 14), especially where condensation or freezing occurs. For this reason, D/H has become a universally important ratio to identify planetary origin and history (7, 15). The 1988 telescopic observation of D/H values in the martian atmosphere that were  $\sim 6$  times that of Earth (7) were pivotal in the idea of atmospheric loss to space from a dense, warm, ancient atmosphere. Initial measurements in meteorites (16) gave a wide range of D/H values that may have included terrestrial contributions. A more recent analysis (17) of the ancient meteorite ALH84001 (~4 billion years old) and young meteorite Shergotty (0.17 billion years old) produced δD values of 3000

\*Corresponding author. E-mail: chris.r.webster@jpl.nasa.gov †Mars Science Laboratory (MSL) Science Team authors and affiliations are listed in the supplementary materials. and 4600, respectively. These results have been interpreted (17) as evidence for a two-stage evolution for Martian water—a significant early loss of water to space [before 3.9 billion years ago (Ga)], followed by only modest loss to space during the past 4 billion years. Until Curiosity landed, there had been no in situ measurements of the water isotopic species HDO and  $H_2^{18}O$ .

Oxygen isotopes in carbonates and sulfates from martian meteorites do not show any enrichment in  $\delta^{18}$ O and therefore have not been used as indicators of atmospheric escape (18, 19). It has been suggested that they are buffered by interaction with a larger O reservoir such as the silicates in the crust, or crustal ice deposits (20), although this is complicated by evidence for disequilibrium between the crust and the atmosphere (21). Oxygen isotopes in  $CO_2$  and  $H_2O$  are therefore likely indicators of more complex interactions between the large reservoir of O in the hydrosphere, lithosphere, and atmosphere of Mars.

TLS is a two-channel tunable laser spectrometer that uses direct and second harmonic detection of infrared (IR) laser light absorbed after

Table 1. Carbon dioxide isotope ratios  $\% \pm 2$  SEM (standard error of the mean). \*, not measured.

| Measurement                                   | $\delta^{13}$ C               | $\delta^{18}$ 0                    | $\delta^{17}0$              | $\delta^{13}\text{C}^{18}\text{O}$   |
|-----------------------------------------------|-------------------------------|------------------------------------|-----------------------------|--------------------------------------|
| SAM-TLS                                       | 46 ± 4                        | 48 ± 5                             | $24\pm5$                    | 109 ± 31                             |
| SAM-QMS (3)                                   | $\textbf{45} \pm \textbf{12}$ | *                                  | *                           | *                                    |
| Phoenix lander (12)                           | $-2.5~\pm~4.3$                | 31.0 ± 5.7                         | *                           | *                                    |
| Viking Neutral Mass Spectrometer (11)         | $\textbf{23}\pm\textbf{43}$   | $7 \pm 44$                         | *                           | *                                    |
| SNC meteorites (8, 12, 32)                    | $\textbf{36} \pm \textbf{10}$ | $\textbf{3.95.4} \pm \textbf{0.1}$ | $\sim 0.53^{*} \delta^{18}$ | $0 \sim \delta^{13}C + \delta^{18}O$ |
| ALH84001 meteoritic carbonate range (30, 31)  | 27 to 64                      | -9 to 26                           | $\sim 0.53^{*} \delta^{18}$ | $0 \sim \delta^{13}C + \delta^{18}O$ |
| ALH84001 meteoritic carbonate mean value (31) | $\textbf{46} \pm \textbf{8}$  | 4.6 ± 1.2                          | *                           | *                                    |
| Earth telescopes (9)                          | -22 $\pm$ 21                  | $\textbf{18} \pm \textbf{18}$      | *                           | *                                    |

Fig. 1. Spectral scan regions used by the TLS instrument. Calculated spectra from the HITRAN database (36) for measuring CO<sub>2</sub> (A and B) and H<sub>2</sub>O isotope ratios (B). The HDO line intensity has been increased by a factor of 6 to better represent the martian environment.



<sup>&</sup>lt;sup>1</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. <sup>2</sup>NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. <sup>3</sup>Rensselaer Polytechnic Institute, Troy, NY 12180, USA. <sup>4</sup>University of Michigan, Ann Arbor, MI 48105, USA. <sup>5</sup>University of Hawaii, Honolulu, HI 96822, USA. <sup>6</sup>NASA Johnson Space Center, Houston, TX 77058, USA. <sup>7</sup>University of Arizona, Tucson, AZ 85721, USA. <sup>8</sup>University of Minnesota, Minneapolis, MN 55455, USA. <sup>9</sup>Carnegie Institution of Washington, Washington, DC 20015, USA.

#### REPORTS

multipassing a sample cell (1). One laser source is a near-IR tunable diode laser at 2.78 µm that can scan two spectral regions containing CO2 and H<sub>2</sub>O isotopic lines; the second laser source is an interband cascade laser at 3.27 µm used for methane detection alone (4). The near-IR laser makes 43 passes of a 20-cm-long sample (Herriott) cell that is evacuated with a turbomolecular pump for background scans, then filled to 0.7 mbar using volume expansion of Mars air originally at ~7 mbar. TLS scans over individual rovibrational lines in two spectral regions near 2.78 µm; one centered at 3590 cm<sup>-1</sup> for CO<sub>2</sub> isotopes and a second centered at 3594 cm<sup>-1</sup> for both CO<sub>2</sub> and H<sub>2</sub>O isotopes (Figs. 1 and 2). The lines used in both regions have no significant interferences. In the 3594 cm<sup>-1</sup> region, the CO<sub>2</sub> and H<sub>2</sub>O lines we used interleave across the spectrum without interference, allowing the determination of accurate isotope ratios across widely varying CO<sub>2</sub> and H<sub>2</sub>O abundances in both atmospheric and evolved gas experiments. The laser scans every second through the target spectral regions. Each 1-s spectrum is then co-added on board in 2-min periods, and the averaged spectra are then downlinked as raw data during a given run, typically of ~30 min duration. Data reported here were collected from 6 days (martian sols 28, 53, 73, 79, 81, and 106). During data collection, the Herriott cell and other optics are kept at  $47^{\circ} \pm 3^{\circ}C$ using a ramped heater that also serves to increase the signal-to-noise ratio in spectra by reducing the effect of interference fringes occurring during the 2-min sample period. The measured background amounts (empty cell) of both CO2 and H2O are negligible and also reflect an insignificant contribution to the signal from the instrument foreoptics. TLS is calibrated using certified isotopic standards (22) that improve the accuracy of isotope ratios over using the more uncertain HITRAN (high-resolution transmission molecular absorption) database spectral parameters.

Our CO<sub>2</sub> isotope ratios (Table 1, table S1, and Fig. 3) are given relative to Vienna Pee Dee belmnite (VPDB) for  $\delta^{13}$ C and relative to Vienna standard mean ocean water (VSMOW) for all oxygen isotopes (13). The measured value of  $\delta^{13}C^{18}O$  agrees within uncertainty to the sum of the individual  $\delta^{13}$ C and  $\delta^{18}$ O measurements, providing a valuable check-sum on our results. Also, our measured value for  $\delta^{17}$ O is half that of  $\delta^{18}$ O, as predicted from mass-dependent fractionation ( $\delta^{17}O = 0.528 \times \delta^{18}O$ ) and consistent with previous SNC meteorite analysis. The independent SAM QMS result for  $\delta^{13}$ C of 45 ± 12‰ (3) agrees well with that from TLS at  $46 \pm 4\%$ , both values notably disagreeing with the much lower Phoenix lander result (12) of  $-2.5 \pm 4.3\%$ . The sol-by-sol data plotted in Fig. 3 is not over a sufficiently long period to assess possible seasonal variation in  $\delta^{13}$ C or  $\delta^{18}$ O.

Our measured water abundances of up to 1% by volume in our Herriott cell after atmospheric intake exceed those expected (~150 parts per

Fig. 2. Observed versus calculated spectra. A single spectrum (middle section) downloaded from Curiosity (black), showing observed enrichment in <sup>13</sup>CO<sub>2</sub> and <sup>18</sup>OCO compared to the calculated HITRAN spectrum (red) based on terrestrial (VPDB and VSMOW) isotope ratios (36). Both spectra are normalized in depth to the <sup>16</sup>O<sup>12</sup>C<sup>16</sup>O line near 3590.1 cm<sup>-1</sup> (Fig. 1). Ringing to the left side of the lines is explained in (22).





Fig. 3. Sol-by-sol mean values for CO<sub>2</sub> isotope ratios. The mean values for all sols combined (dashed lines) are given in Table 1. See (22) for values and uncertainties of the individual sol data

milion by volume) in martian air, and allowed us to retrieve a value for atmospheric  $\delta D$ , although with high uncertainty. Because our measured highly enriched  $\delta D$  values (Table 2 and table S2) are clearly martian and not terrestrial, we attribute the high water mixing ratios to either high nearsurface humidity (natural or from enhanced temperatures in the vicinity of the rover) or to water entrained from frozen or liquid sources on or near the heated inlet valve. Also, in evolved gas experiments from pyrolysis of Rocknest fines (23), water was seen coming off at relatively low temperatures that we here identify as representative of the  $\delta D$  and  $\delta^{18}O$  values of the martian atmosphere. The TLS measurement of  $\delta D$  agrees well with observations from ground-based telescopes (24), but the contribution from expected

plotted.

seasonal cycling (25) is unknown. The enriched atmospheric values contrast with the low primordial D/H values postulated for the martian mantle (26) and are higher than those from our Rocknest higher-temperature studies (23).

Modeling estimates of escape processes and atmospheric stability during Mars' initial history point to catastrophic loss of atmospheric mass, and suggest that many atmospheric species carrying records of early isotopic evolution did not survive beyond approximately 3.7 to 4 Ga (27, 28). Carbonates in the ALH 84001 meteorite derived from an alteration event that occurred at ~3.9 Ga (29) preserve our best record of these events. Measurements of ALH 84001 carbonates show enriched isotopic values of  $\delta^{13}C = +27$  to +64%(30, 31), δD values of ~3000‰ (16, 17), and low

#### Table 2. Water isotope ratios $\% \pm$ 2 SEM. \*, not measured.

| Measurement                                              | δD            | $\delta^{18}0$ |
|----------------------------------------------------------|---------------|----------------|
| SAM-TLS atmosphere                                       | 4950 ± 1,080  | *              |
| SAM-TLS evolved water: Rocknest fines 230° to 430°C (23) | $5880 \pm 60$ | $84~\pm~10$    |
| Meteoritic crustal reservoirs (26)                       | ~5000         | *              |
| Earth telescopes (24)                                    | 1700-8900     | *              |
| ALH 84001 (17)                                           | 3000          | *              |
| Shergotty USNM 321-1 (17)                                | 4600          | *              |

 $δ^{18}$ O values (32). These values are similar to the composition of the modern martian atmosphere, suggesting that the  $δ^{13}$ C, δD, and  $δ^{18}$ O of the martian atmosphere were enriched early and have not changed much over ~4 billion years. Our higher values of δD and  $δ^{18}$ O measured in the atmosphere suggest that escape processes may have also continued since 4.0 Ga, in accordance with a two-stage evolutionary process (17) described above.

We observe large enrichments of  $\delta^{18}O$  in atmospheric water vapor and CO<sub>2</sub>. The  $\delta^{18}$ O values of the water vapor are much larger than the  $\delta^{18}$ O observed in carbonates and sulfates in martian meteorites and suggest that the oxygen in water vapor in the martian atmosphere is not in equilibrium with the crust (33, 34) and could have been enriched in heavy isotopes through atmospheric loss. Another possibility is that the elevated oxygen isotope values in the more abundant martian CO2 are being transferred to the water vapor through photochemical reactions in the atmosphere. However,  $\delta^{18}$ O values of CO<sub>2</sub> in Earth's atmosphere are similarly elevated because of low-temperature equilibration between CO2 and H<sub>2</sub>O, and this process could also be operative on Mars (12).

In addition to atmospheric loss, other processes such as volcanic degassing and weathering might act to change the isotopic composition of the atmosphere through time. Estimates for the magnitude of these two contributions over the ~4-billion-year history of Mars vary widely (30, 34, 35), yet could have a strong impact on the isotopic composition of the atmosphere and challenge the status quo model described above.

#### **References and Notes**

- P. R. Mahaffy et al., Space Sci. Rev. 170, 401–478 (2012).
- J. P. Grotzinger et al., Space Sci. Rev. 170, 5–56 (2012).
- 3. P. R. Mahaffy *et al.*, *Science* **341**, 263–266 (2013).
- C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, K. A. Farley, *Lunar Planet. Sci. Conf.*, abstract 1366 (2013).
- 5. B. M. Jakosky, R. J. Phillips, *Nature* **412**, 237–244 (2001).
- 6. M. B. McElroy, Y. L. Yung, A. O. Nier, *Science* **194**, 70–72 (1976).
- 7. T. Owen, J.-P. Maillard, C. de Bergh, B. L. Lutz, *Science* **240**, 1767–1770 (1988).
- R. H. Carr, M. M. Grady, I. P. Wright, C. T. Pillinger, *Nature* **314**, 248–250 (1985).
- V. A. Krasnopolsky, J. P. Maillard, T. C. Owen, R. A. Toth, M. D. Smith, *lcarus* 192, 396–403 (2007).

- 10. P. B. Niles *et al., Space Sci. Rev.* **174**, 301–328 (2013). 11. A. O. Nier, M. B. McElroy, *Science* **194**, 1298–1300
- (1976).
- 12. P. B. Niles, W. V. Boynton, J. H. Hoffman, D. W. Ming, D. Hamara, *Science* **329**, 1334–1337 (2010).
- R. E. Criss, Principles of Stable Isotope Composition (Oxford Univ. Press, Oxford, 1999).
- 14. C. R. Webster, A. J. Heymsfield, *Science* **302**, 1742–1745 (2003).
- 15. P. Hartogh et al., Nature 478, 218-220 (2011).
- 16. L. A. Leshin, S. Epstein, E. M. Stolper, *Geochim. Cosmochim. Acta* **60**, 2635–2650 (1996).
- J. P. Greenwood, S. Itoh, N. Sakamoto, E. P. Vicenzi, H. Yurimoto, *Geophys. Res. Lett.* 35, L05203 (2008).
- 18. J. Farquar, M. H. Thiemens, J. Geophys. Res. 105, (2000).
- 19. C. S. Romanek et al., Nature 372, 655-657 (1994).
- B. Jakosky, A. Zent, R. Zurek, *Icarus* 130, 87–95 (1997).
- H. R. Karlsson, R. N. Clayton, E. K. Gibson Jr., T. K. Mayeda, *Science* 255, 1409–1411 (1992).
- 22. See the supplementary materials on Science Online.
- L. A. Leshin et al., Lunar Planet. Sci. Conf., abstract 2220 (2013).

30. P. B. Niles, L. A. Leshin, Y. Guan, *Geochim. Cosmochim.* Acta 69, 2931–2944 (2005).

therein.

(2005).

(2013)

(2005).

31. J. W. Valley *et al.*, *Science* **275**, 1633–1638 (1997).

24. D. A. Fisher, Icarus 187, 430-441 (2007) and references

T. Usui, C. Alexander, J. Wang, J. Simon, J. Jones, *Earth Planet. Sci. Lett.* **357-358**, 119–129 (2012).
 H. Lammer *et al.*, *Space Sci. Rev.* **174**, 113–154

25. R. E. Novak et al., Bull. Am. Astron. Soc. 35, 660

R. O. Pepin, *Icarus* 111, 289–304 (1994).
 L. Borg, M. J. Drake, *J. Geophys. Res.* 110, E12S03

- J. Farquhar, D. T. Johnston, *Rev. Mineral. Geochem.* 68, 463–492 (2008).
  R. M. Jakosky, J. H. Jopes, *Nature* 270, 239, 230.
- 33. B. M. Jakosky, J. H. Jones, *Nature* **370**, 328–329 (1994).
- M. Grott, A. Morschhauser, D. Breuer, E. Hauber, *EPSL* 308, 391–400 (2011).
- 35. J. P. Bibring et al., Science 312, 400-404 (2006).
- L. S. Rothman *et al.*, J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

Acknowledgments: The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

#### Supplementary Materials

www.sciencemag.org/cgi/content/full/341/6143/260/DC1 Materials and Methods Supplementary Text Figs. S1 to S3 Tables S1 to S4 Reference (*37*) MSL Science Team Authors and Affiliations

18 March 2013; accepted 17 June 2013 10.1126/science.1237961

## Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover

Paul R. Mahaffy,<sup>1</sup>\* Christopher R. Webster,<sup>2</sup> Sushil K. Atreya,<sup>3</sup> Heather Franz,<sup>1</sup> Michael Wong,<sup>3</sup> Pamela G. Conrad,<sup>1</sup> Dan Harpold,<sup>1</sup> John J. Jones,<sup>4</sup> Laurie A. Leshin,<sup>5</sup> Heidi Manning,<sup>6</sup> Tobias Owen,<sup>7</sup> Robert O. Pepin,<sup>8</sup> Steven Squyres,<sup>9</sup> Melissa Trainer,<sup>1</sup> MSL Science Team†

Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO<sub>2</sub>), 0.960( $\pm$ 0.007); argon-40 (<sup>40</sup>Ar), 0.0193( $\pm$ 0.0001); nitrogen (N<sub>2</sub>), 0.0189( $\pm$ 0.0003); oxygen, 1.45( $\pm$ 0.09) × 10<sup>-3</sup>; carbon monoxide, < 1.0 × 10<sup>-3</sup>; and <sup>40</sup>Ar/<sup>36</sup>Ar, 1.9( $\pm$ 0.3) × 10<sup>3</sup>. The <sup>40</sup>Ar/N<sub>2</sub> ratio is 1.7 times greater and the <sup>40</sup>Ar/<sup>36</sup>Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The <sup>40</sup>Ar/<sup>36</sup>Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature  $\delta^{13}$ C from CO<sub>2</sub> of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

The science and exploration goal of the Mars Science Laboratory (MSL) (1) is to advance our understanding of the potential of the present or past martian environments to support life. An understanding of how the present environment in Gale crater differs from the environment at the time of its forma-

tion requires comprehensive chemical characterization. The first set of experiments of the Sample Analysis at Mars (SAM) investigation (2) (Fig. 1) of the Curiosity rover included measurements of the chemical and isotopic composition of the atmosphere with sequences that employed two of SAM's three instruments. When



## Supplementary Materials for

#### Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere

Chris R. Webster,\* Paul R. Mahaffy, Gregory J. Flesch, Paul B. Niles, John H. Jones, Laurie A. Leshin, Sushil K. Atreya, Jennifer C. Stern, Lance E. Christensen, Tobias Owen, Heather Franz, Robert O. Pepin, Andrew Steele, the MSL Science Team

\*Corresponding author. E-mail: Chris.R.Webster@jpl.nasa.gov

Published 19 July 2013, *Science* **341**, 260 (2013) DOI: 10.1126/science.1237961

#### This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S3 Tables S1 to S4 Reference (*37*) MSL Science Team Authors and Affiliations

#### **Materials and Methods**

#### Spectral Data Processing

Spectral scan regions for TLS are shown in Fig. 1 and line parameters from HITRAN (*36*) are given in Tables S1 and S2 below. After normalization to the laser power and zero light pulse, spectral lines are processed individually by integrating over the line shape; line ratios are then related to those expected from calibration runs, using the HITRAN parameters if necessary to adjust for minor temperature differences. Details follow.

#### Theory

The Beer-Lambert law models the optical transmission of light through an absorbing medium:

$$\mathbf{I}_{v} = \mathbf{I}_{0} \mathrm{e}^{-\mathrm{k}(v)\rho \mathrm{l}}$$

where  $I_v$  is the transmitted light intensity at frequency v,  $I_0$  is the incident light intensity, k(v) is a line shaping function that may be Doppler, Lorenzian, or Voigt, although the Doppler lineshape is a close approximation at Mars atmospheric pressures.  $\rho$  is the number density and l is the path length in cm. We use this model to determine the abundances of individual absorption lines present in our sampled measurements and subsequently use those abundances to produce isotopic ratios. The model needs many input spectral parameters for temperature dependence, air broadening, ground state energy, etc., and we use the HITRAN database for this information (*36*).

### Normalization

For an amount of gas at a given pressure and temperature, the model will predict the depth and width (distribution in wave number) of the absorbing molecules in the gas sample for all sampled frequencies, allowing us to then compare our recorded spectra to the spectra produced by the model. But, in order to make this comparison, we must first normalize the recorded data. This entails:

- 1. Removing a "null pulse" which is a measurement of the background light taken with the laser off. We must be able to determine the direct absorption with respect to a percentage of transmitted light (i.e. 1% absorption: 99% transmission).
- 2. Removing any DC offsets in the harmonic spectra (described below).
- 3. Fit the baseline of the spectra. This sloping baseline results from the fact that the laser output power increases as it tunes through different wave numbers.
- 4. Assign a wave number (cm<sup>-1</sup>) scale to the real spectra. We do this by using easily identifiable peaks of known wave number.

Once the spectra are normalized, we can then use the model to scale our real world data. Direct absorption spectra produce good results for gases that have line center absorption depths of 0.5% or greater. For greater resolution, we add a modulation to the laser current and then demodulate the returning detector signal at twice that frequency. This effectively gives us a second derivative of the direct spectra. Using this derivative or 2f method, sensitivities of up to 2 parts in  $10^5$  are possible. See Webster et al. for a complete discussion (37).

### **Producing Abundances**

Using temperatures and pressures from our instrument for input, we iteratively run the model, varying the abundance in a converging algorithm until the synthetic spectra is the same size as our real spectra (within some determined threshold). The convergence criteria may be set to optimize for either the direct absorption or 2f spectra.

The algorithm is as follows (see Figs. S1 and S2):

- 1. Find the global max of the 2f absorption spectra (peak)
- 2. Find the two local minima (2f lobes)
- 3. Fit a line between the two lobes
- 4. Using the lobes as integration boundaries, find the area between the fitted line and the spectra for both the direct and 2f spectra. Ratio this area between real and synthetic spectra and if ratio is outside the convergence threshold, iterate with new abundance.

Once the measurements converge, we ratio the resulting areas of the real spectra to the synthetic spectra which has a known abundance. We do this for both the direct and harmonic spectra. In general, the direct spectra provide us with accuracy, since it is a very simple percentage measurement. The harmonic spectra, with its great sensitivity, provide greater precision for small changes in the signal, although determining the exact modulation values and gains introduce opportunity for error.

Although it is common practice to fit the entire spectra simultaneously, certain artifacts in our spectra make that approach problematic (see Instrument Issues section below). Instead, we process individual absorptions separately, which is not difficult at these Doppler-limited low pressures where the absorption lines tend to be clearly delineated. The benefits of this approach are 1) that we use the signal where it is strongest (between the 2f lobes), 2) it weakens the dependency on perfect baseline fitting, and 3) the boundaries of integration are set by the physics of absorption, rather than relying on a perfect wave number assignment.

### **Producing Isotope Ratios**

Once we repeat this for every line of interest, we can create isotopic ratios for each data point (2 minute spectrum) according to the following standard isotope ratio formula for returning enrichment or depletion ratios in per mil. As an example, consider the case for comparing abundances of <sup>13</sup>C to <sup>12</sup>C in CO<sub>2</sub> to calculate  $\delta^{13}$ C in units of per mil:

### **Instrument Issues**

The HITRAN database reports its parameters to a few percent and we have refined some of those parameters through calibration testing. As for the artifacts mentioned above, several signal chain filters were set to values that attenuated the signal according to frequency, producing a "ring" on the direct absorption line shape. Fig. 2 in the main paper illustrates this effect, where part of the spectral region 1 is shown for CO<sub>2</sub> lines and is compared with the HITRAN calculations. Rather than try to remove the effects of that filter in our data, we build a software filter with identical behavior and make fine adjustments until our modeled output matches the line shape ring of our Mars spectra. In this way, we compare our Mars spectra with HITRAN-generated spectra that now have line shape rings included. Another potential issue is related to the susceptibility of the NIR laser to wavelength drift with heat sink temperature that depends on the Mars conditions (time of day). Across most of the scan range the laser tuning is constant and the effect is cancelled out. But we are watchful for situations where lines of interest are in the beginning of the scan where laser tuning rate is changing, and in these situations data is either discarded or the individual line results are given appropriately higher uncertainties.

#### **Calibration**

Calibration of the relative absorptions of isotopic pair lines was done pre-launch using either commercially-provided certified isotopic gas mixtures (Oztech) or specially prepared tanks (Cylinders A, B) whose isotopic content was determined by Isotope Ratio Mass Spectrometry (IRMS). For water isotopes, we used "Boulder water" independently certified by NOAA. See Table S3 for calibration gas isotopic values. Minor temperature and pressure interpolations are done using the HITRAN (*36*) line list. Although spectral SNR's are typically a few thousand, the data show scatter larger than this, and the reported results for any single run (Sol) are a mean value and either 1- or 2-standard errors from the mean (SEM) on the results (see Tables 1 and S4). Figure S3 shows our calibration plot of pre-launch and on-Mars cal gas results vs. retrieved measurements to show the excellent linearity over the measurement region.

#### Supplementary Text

#### Isotope Ratio Results

Tables of results on a sol-by-sol basis are given in Table S4. Because there is little water in the Martian atmosphere, the results for the  $\delta D$  values have quite high uncertainties compared to the result for the water evolved at lower temperatures from the Rocknest fines (23).



#### **Fig. S1.**

Example of normalization of real spectra for region 1. Lines can be identified from Fig. 1 in the main paper. The "C" or black traces are the second harmonic (2f) spectra, while the "D" or red traces are the direct absorption (DC) spectra.



## Fig. S2

Examples of direct (left) and 2f (right) line shapes for a single  ${}^{13}$ CO<sub>2</sub> line, showing the integrated area used in retrievals. This area is defined by the location of the two minima (lobes) in the 2f line shape mapped to the wave number scale in both line shapes.



#### Fig. S3

Calibration plot showing pre-launch and on-Mars cal gas results vs. retrieved measurements to show excellent linearity over the measurement region.

## Table S1.

| Line<br>Designation | Isotopic<br>Species | Wavenumber<br>(cm <sup>-1</sup> ) | Linestrength<br>(cm <sup>-1</sup> / (molecule· cm <sup>-2</sup> ) | Ground State<br>Energy (cm <sup>-1</sup> ) |
|---------------------|---------------------|-----------------------------------|-------------------------------------------------------------------|--------------------------------------------|
|                     |                     |                                   | at 296 K)                                                         |                                            |
| Z (H2O)             | H <sub>2</sub> O    | 3590.238310                       | 1.222E-21                                                         | 206.3014                                   |
| X (H2O)             | H <sub>2</sub> O    | 3590.165390                       | 5.164E-24                                                         | 2251.8625                                  |
| A (CO2)             | $CO_2$              | 3590.116079                       | 5.734E-23                                                         | 1648.4209                                  |
| Y (H2O)             | HDO                 | 3590.072290                       | 4.478E-25                                                         | 683.3240                                   |
| B (CO2)             | $CO_2$              | 3590.031510                       | 1.341E-21                                                         | 728.4124                                   |
| C (CO2)             | <sup>18</sup> OCO   | 3589.966048                       | 6.399E-23                                                         | 319.8096                                   |
| D (CO2)             | $^{13}CO_2$         | 3589.846500                       | 5.180E-23                                                         | 843.0702                                   |
| E (CO2)             | <sup>17</sup> 0C0   | 3589.749440                       | 3.057E-24                                                         | 2.2717                                     |
| F (H2O)             | H <sub>2</sub> O    | 3589.590960                       | 4.599E-23                                                         | 1437.9686                                  |

| HITRAN Line Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (36 | ) for S | pectral | Region | 1.         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------|--------|------------|
| In The It and I define the second of the second sec |     | , 101 0 | peena   | region | <b>.</b> . |

## Table S2.

HITRAN Line Parameters (36) for Spectral Region 2.

| Line<br>Designation | Is<br>Sr | otopic<br>Decies  | Wavenumber<br>(cm <sup>-1</sup> ) | Linestrength<br>(cm <sup>-1</sup> / (molecule· cm <sup>-2</sup> ) | Ground State<br>Energy (cm <sup>-1</sup> ) |
|---------------------|----------|-------------------|-----------------------------------|-------------------------------------------------------------------|--------------------------------------------|
|                     | ~1       |                   | ( )                               | at 296 K)                                                         | g, (e                                      |
| Z (CO2)             |          | <sup>18</sup> OCO | 3594.279835                       | 3.294E-23                                                         | 490.2111                                   |
| Y (CO2)             |          | $CO_2$            | 3594.216942                       | 1.392E-21                                                         | 801.1732                                   |
| X (CO2)             |          | $^{13}CO_{2}$     | 3594.160247                       | 9.647E-23                                                         | 704.3340                                   |
| B (H2O)             |          | $H_2^{18}O$       | 3594.061450                       | 1.827E-23                                                         | 78.9887                                    |
| C (H2O)             |          | H <sub>2</sub> O  | 3593.974520                       | 4.962E-22                                                         | 756.7248                                   |
| S (CO2)             |          | $^{18}O^{13}CO$   | 3593.907244                       | 9.883E-25                                                         | 26.5089                                    |
| W (CO2)             |          | $CO_2$            | 3593.819208                       | 3.554E-23                                                         | 1805.2522                                  |
| D (H2O)             |          | $H_2O$            | 3593.791190                       | 5.325E-24                                                         | 382.5169                                   |
| V (CO2)             |          | <sup>18</sup> OCO | 3593.762005                       | 3.640E-23                                                         | 463.7240                                   |
| E (H2O)             |          | HDO               | 3593.597530                       | 4.881E-24                                                         | 513.2072                                   |
| F (H2O)             |          | $H_2^{18}O$       | 3593.545310                       | 6.132E-24                                                         | 133.4758                                   |
| U (CO2)             |          | <sup>17</sup> OCO | 3593.489040                       | 4.590E-24                                                         | 2.2717                                     |
| T (CO2)             |          | $\overline{CO_2}$ | 3593.406043                       | 1.411E-21                                                         | 786.9028                                   |
| G (H2O)             |          | HDO               | 3593.317210                       | 4.922E-24                                                         | 512.5158                                   |
| H (H2O)             |          | $H_2O$            | 3593.197361                       | 1.719E-02                                                         | 602.7735                                   |

#### Table S3.

| Carbon Dioxide Isotope Values: |                                          |                 |  |  |
|--------------------------------|------------------------------------------|-----------------|--|--|
| Standard                       | $\delta^{13}C$                           | $\delta^{18}$ O |  |  |
| Cylinder A                     | $-43.02\pm0.01$                          | $6.62\pm0.01$   |  |  |
| Cylinder B                     | $220.91\pm0.05$                          | $476.05\pm1.72$ |  |  |
| Cylinder C                     | $475.64\pm0.24$                          | $794.23\pm9.9$  |  |  |
| Mars mix                       | $-39.16\pm0.05$                          | $0.61\pm0.07$   |  |  |
| Oztech (ref                    | $-10.43\pm0.05$                          | $31.24\pm0.05$  |  |  |
| cells)                         |                                          |                 |  |  |
| Water Isotope values:          |                                          |                 |  |  |
| Standard                       | δD                                       | $\delta^{18}O$  |  |  |
| Boulder water                  | $ r  -110.11 \pm 0.05  -14.91 \pm 0.05 $ |                 |  |  |

Calibration Standards Used in TLS as determined by Isotope Ratio Mass Spectrometry (IRMS).

#### Table S4.

Sol by sol mean isotope ratio values (‰) and uncertainties ( $1_{SEM}$  ‰) measured by TLS. The first row for each entry is from Region 1, and the second row from Region 2. An "X" marks no reliable data retrieved due to SNR or other instrument issues. PTC = Possible Terrestrial Contamination; PC = Post-pyrolysis contamination.

| Sol                       | $\delta^{13}C\_CO_2$ | δ <sup>18</sup> O_CO <sub>2</sub> | $\delta^{17}O_CO_2$ | $\delta^{13}C^{18}O\_CO_2$ | δD_H <sub>2</sub> O |
|---------------------------|----------------------|-----------------------------------|---------------------|----------------------------|---------------------|
| 28                        | 53.1 ± 5.7           | $41.5 \pm 9.2$                    | X                   | X                          |                     |
|                           | Х                    | $53.3\pm2.8$                      | $22.7\pm6.0$        | $147 \pm 12$               | PTC                 |
| 53                        | $45.3 \pm 3.7$       | $43.4\pm~5.3$                     | $30.6\pm3.6$        | Х                          |                     |
|                           | $39.03 \pm$          | $36.48 \pm$                       | $8.4\pm7.6$         | Х                          | PTC                 |
|                           | 5.7                  | 6.3                               |                     |                            |                     |
| 73                        | $34.3 \pm 3.4$       | $39.9\pm7.5$                      | $28.5\pm5.2$        | Х                          |                     |
|                           | $49.85 \pm$          | $38.3\pm7.3$                      | Х                   | $114 \pm 27$               | $4,420 \pm 430$     |
|                           | 4.0                  |                                   |                     |                            |                     |
| 79                        | $41.1 \pm 4.4$       | $50.5 \pm 4.0$                    | $32.1 \pm 5.3$      | Х                          |                     |
|                           | $50.8 \pm 11$        | $63.2\pm9.6$                      | $17.7 \pm 15$       | $112 \pm 52$               | $5,\!480 \pm 980$   |
| 106                       | $47.1 \pm 1.9$       | $61.6 \pm 3.7$                    | $18.0\pm2.9$        | Х                          | PC                  |
|                           | $50.1\pm5.0$         | $47.3\pm4.0$                      | $10.2\pm6.0$        | $62 \pm 18$                |                     |
| Range of                  | 34.3-53.1            | 36.5-63.2                         | 8.4-32.1            | 62-147                     | 4,420-5,480         |
| values                    |                      |                                   |                     |                            |                     |
| Mean $\pm 1_{\text{SEM}}$ | $45.8 \pm 2.1$       | $47.6 \pm 2.4$                    | $24.2 \pm 2.0$      | $109 \pm 15.6$             | $4,950 \pm 540$     |
| Mean $\pm 2_{\text{SEM}}$ | $46 \pm 4$           | 48 ± 5                            | $24 \pm 5$          | $109 \pm 31$               | $4,950 \pm 1,080$   |

#### **Reference:**

37. C. R. Webster, R. T. Menzies, and E. D. Hinkley, in *Laser Remote Chemical Analysis*, R. M. Measures, Ed. (Wiley, New York, New York) chap. 3, (1988).

## MSL Science Team authors and affiliations:

# Mars Science Laboratory Science Team

| Achilles, Cherie               | Jacobs Technology (at NASA JSC)                                          |
|--------------------------------|--------------------------------------------------------------------------|
| Agard, Christophe              | CNES (Centre National d'Etudes Spatiales)                                |
| Alves Verdasca, José Alexandre | CAB (Centro de Astrobiología)                                            |
| Anderson, Robert               | NASA JPL                                                                 |
| Anderson, Rvan                 | USGS Flagstaff                                                           |
| Archer, Doug                   | NASA Postdoc Program (at NASA JSC)                                       |
| Armiens-Aparicio. Carlos       | CAB (Centro de Astrobiología)                                            |
| Arvidson, Ray                  | WUSTL (Washington University in St. Louis)                               |
| Atlaskin, Evgeny               | FMI (Finnish Meteorological Institute) and University of Helsinki        |
| Aubrey, Andrew                 | NASA JPL                                                                 |
| Baker, Burt                    | MSSS (Malin Space Science Systems)                                       |
| Baker, Michael                 | Caltech                                                                  |
| Balic-Zunic. Tonci             | University of Copenhagen                                                 |
| Baratoux. David                | IRAP (Institut de Recherche en Astrophysique et Planetologie)            |
| Baroukh, Julien                | CNES (Centre National d'Etudes Spatiales)                                |
| Barraclough, Bruce             | PSI (Planetary Science Institute)                                        |
| Bean, Keri                     | Texas A&M                                                                |
| Beegle, Luther                 | NASA IPI                                                                 |
| Behar, Alberto                 | NASA JPL                                                                 |
| Bell. James                    | ASU (Arizona State University)                                           |
| Bender, Steve                  | PSI (Planetary Science Institute)                                        |
| Benna, Mehdi                   | University of Maryland Baltimore County (at NASA GSEC)                   |
| Bentz, Jennifer                | University of Saskatchewan                                               |
| Berger, Gilles                 | IRAP (Institut de Recherche en Astrophysique et Planetologie)            |
| Berger, Jeff                   | University of New Mexico (Western Univ. May 1)                           |
| Berman. Daniel                 | PSI (Planetary Science Institute)                                        |
| Bish. David                    | Indiana University Bloomington                                           |
| Blake. David F.                | NASA Ames                                                                |
| Blanco Avalos, Juan J.         | Universidad de Alcalá de Henares                                         |
| Blaney, Diana                  | NASA JPL                                                                 |
| Blank, Jen                     | BAER (at NASA Ames)                                                      |
| Blau, Hannah                   | University of Massachusetts                                              |
| Bleacher, Lora                 | USRA-LPI (at NASA GSFC)                                                  |
| Boehm, Eckart                  | University of Kiel                                                       |
| Botta. Oliver                  | Swiss Space Office                                                       |
| Böttcher. Stephan              | University of Kiel                                                       |
| Boucher, Thomas                | University of Massachusetts                                              |
| Bower. Hannah                  | University of Maryland College Park                                      |
| Boyd, Nick                     | University of Guelph                                                     |
| Boynton, Bill                  | University of Arizona                                                    |
| Breves. Elly                   | Mount Holvoke College                                                    |
| Bridges, John                  | University of Leicester                                                  |
| Bridges, Nathan                | APL (Johns Hopkins University Applied Physics Laboratory)                |
| Brinckerhoff, William          | NASA GSFC                                                                |
| Brinza, David                  | NASA JPL                                                                 |
| Bristow, Thomas                | NASA Postdoc Program (at NASA Ames)                                      |
| Brunet. Claude                 | CSA (Canadian Space Agency)                                              |
| Brunner, Anna                  | University of Maryland College Park (at GSFC)                            |
| Brunner. Will                  | inXitu                                                                   |
| Buch, Arnaud                   | LGPM. Ecole Centrale Paris (Laboratoire Génie des Procédés et Matériaux) |
| Bullock. Mark                  | SwRI (Southwest Research Institute)                                      |
| Burmeister, Sönke              | University of Kiel                                                       |
| Cabane, Michel                 | LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales)        |
| Calef, Fred                    | NASA JPL                                                                 |
| Cameron, James                 | Lightstorm Entertainment Inc.                                            |
| Campbell, John "lain"          | University of Guelph                                                     |
| Cantor, Bruce                  | MSSS (Malin Space Science Systems)                                       |
| Caplinger, Michael             | MSSS (Malin Space Science Systems)                                       |
| Caride Rodríguez, Javier       | CAB (Centro de Astrobiología)                                            |
| Carmosino. Marco               | University of Massachusetts                                              |

| Carrasco Blázquez, Isaías  | CAB (Centro de Astrobiología)                                                       |
|----------------------------|-------------------------------------------------------------------------------------|
| Charpentier, Antoine       | ATOS Origin                                                                         |
| Chipera, Steve             | Chesapeake Energy                                                                   |
| Choi, David                | NASA Postdoc Program (at NASA GSFC)                                                 |
| Clark, Benton              | SSI (Space Science Institute)                                                       |
| Clegg, Sam                 | LANL (Los Alamos National Lab)                                                      |
| Cleghorn, Timothy          | NASA JSC                                                                            |
| Cloutis, Ed                | University of Winnipeg                                                              |
| Cody, George               | Carnegie Institution of Washington                                                  |
| Coll, Patrice              | LISA (Laboratoire Interuniversitaire des Systèmes Atmosphériques), Université Paris |
| Conrad, Pamela             | NASA GSFC                                                                           |
| Coscia, David              | LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales)                   |
| Cousin. Agnès              | LANL (Los Alamos National Lab)                                                      |
| Cremers, David             | ARA (Applied Research Associates, Inc.)                                             |
| Crisp. Joy                 | NASA JPL                                                                            |
| Cros. Alain                | IRAP (Institut de Recherche en Astronhysique et Planetologie)                       |
| Cucinotta, Frank           | NASA ISC                                                                            |
| d'Uston, Claude            | IRAP (Institut de Recherche en Astronhysique et Planetologie)                       |
| Davis, Scott               | MSSS (Malin Space Science Systems)                                                  |
| Dav. Mackenzie "Kenzie"    | University of Texas at Austin                                                       |
| de la Torre Juarez, Manuel |                                                                                     |
|                            |                                                                                     |
| Del ann. Dorothea          | I ANI (Los Alamos National Lab)                                                     |
|                            | Denver Museum of Nature & Science                                                   |
| DesMarais, Julia           |                                                                                     |
| Districh William           | NASA Alles                                                                          |
| Diedici, William           | University of Camorina Berkeley                                                     |
| Dingier, Robert            | LAINE (LOS AIdilios Indilolidi Lab)                                                 |
| Donny, Christophe          |                                                                                     |
| Downs, Bob                 |                                                                                     |
|                            |                                                                                     |
| Dromart, Gilles            | LGL-TPE (Laboratoire de Geologie de Lyon : Terre, Planete, Environnement )          |
| Dupont, Audrey             | LS Systemes d'information                                                           |
| Duston, Brian              | MSSS (Main Space Science Systems)                                                   |
| Dworkin, Jason             | NASA GSEC                                                                           |
| Dyar, M. Darby             | Mount Holyoke College                                                               |
| Edgar, Lauren              | ASU (Arizona State University)                                                      |
| Edgett, Kenneth            | MSSS (Malin Space Science Systems)                                                  |
| Edwards, Christopher       | Caltech                                                                             |
| Edwards, Laurence          | NASA Ames                                                                           |
| Ehlmann, Bethany           | Caltech                                                                             |
| Ehresmann, Bent            | SwRI (Southwest Research Institute)                                                 |
| Eigenbrode, Jen            | NASA GSFC                                                                           |
| Elliott, Beverley          | University of New Brunswick                                                         |
| Elliott, Harvey            | University of Michigan Ann Arbor                                                    |
| Ewing, Ryan                | University of Alabama                                                               |
| Fabre, Cécile              | G2R (Géologié et Gestion des Ressources Minérales et Energétique)                   |
| Fairén, Alberto            | Cornell University                                                                  |
| Farley, Ken                | Caltech                                                                             |
| Farmer, Jack               | ASU (Arizona State University)                                                      |
| Fassett, Caleb             | Mount Holyoke College                                                               |
| Favot, Laurent             | Capgemini France                                                                    |
| Fay, Donald                | MSSS (Malin Space Science Systems)                                                  |
| Fedosov, Fedor             | Space Research Institute                                                            |
| Feldman, Jason             | NASA JPL                                                                            |
| Feldman, Sabrina           | NASA JPL                                                                            |
| Fisk, Marty                | Oregon State University                                                             |
| Fitzgibbon, Mike           | University of Arizona                                                               |

| Floyd, Melissa           | NASA GSFC                                                                           |
|--------------------------|-------------------------------------------------------------------------------------|
| Flückiger, Lorenzo       | Carnegie Mellon University (at NASA Ames)                                           |
| Forni, Olivier           | IRAP (Institut de Recherche en Astrophysique et Planetologie)                       |
| Fraeman, Abby            | WUSTL (Washington University in St. Louis)                                          |
| Francis, Raymond         | University of Western Ontario                                                       |
| François, Pascaline      | LISA (Laboratoire Interuniversitaire des Systèmes Atmosphériques), Université Paris |
| Freissinet, Caroline     | NASA Postdoc Program (at NASA GSFC)                                                 |
| French, Katherine Louise | MIT                                                                                 |
| Frydenvang, Jens         | University of Copenhagen                                                            |
| Gaboriaud, Alain         | CNES (Centre National d'Etudes Spatiales)                                           |
| Gailhanou, Marc          | CNRS (Centre National de la Recherche Scientifique)                                 |
| Garvin. James            | NASA GSFC                                                                           |
| Gasnault. Olivier        | IRAP (Institut de Recherche en Astrophysique et Planetologie)                       |
| Geffroy. Claude          | IC2MP (Institut de Chimie des Milieux et Matériaux de Poitiers)                     |
| Gellert, Ralf            | University of Guelph                                                                |
| Genzer, Maria            | FMI (Finnish Meteorological Institute)                                              |
| Glavin, Daniel           | NASA GSEC                                                                           |
| Godber, Austin           | ASU (Arizona State University)                                                      |
| Goesmann, Fred           | Max Planck Institute for Solar System Research                                      |
| Goetz Walter             | Max Planck Institute for Solar System Research                                      |
| Golovin Dmitry           | Snace Research Institute                                                            |
| Gómez Gómez, Feline      | Centro de Astrobiología                                                             |
| Gómez-Elvira Javier      | Centro de Astrobiología                                                             |
| Gondet Brigitte          | IAS (Institut d'Astrophysique Spatiale)                                             |
| Gordon Suzanne           | Liniversity of New Mexico                                                           |
| Gorevan Stenhen          | Honeybee Robotics                                                                   |
| Grant John               |                                                                                     |
| Griffes Jennifer         |                                                                                     |
| Grinspoon David          | Denver Museum of Nature & Science                                                   |
| Grotzinger John          | Caltech                                                                             |
| Guillemot Philippe       | CNES (Centre National d'Etudes Spatiales)                                           |
| Guo lingnan              | SwPL (Southwart Research Institute)                                                 |
| Gunta Sanjeev            |                                                                                     |
| Guzewich Scott           | NASA Destdes Program (at NASA GSEC)                                                 |
| Haberle Robert           | NASA Postdoc Plogram (at NASA OSPC)                                                 |
|                          | Inax Ames                                                                           |
| Hallet Perpard           | University of Michigan Ann Arbon                                                    |
| Hamilton Vicky           | (SwPI) Southwest Poscarch Institute                                                 |
| Hardgrove Craig          | (SWR) Southwest Research Institute                                                  |
| Harker, David            | MSSS (Malin Space Science Systems)                                                  |
| Harpold Daniel           |                                                                                     |
|                          | NASA GSFC                                                                           |
| Harri, Ari-Watti         |                                                                                     |
| Harshman, Kari           | University of Arizona                                                               |
| Hassier, Donald          | SWRI (Southwest Research Institute)                                                 |
|                          |                                                                                     |
| Hayes, Alex              |                                                                                     |
| Herkennoff, Ken          |                                                                                     |
| Herrera, Paul            | INISSS (Malin Space Science Systems)                                                |
| Hettrich, Sebastian      | LAB (Centro de Astrobiologia)                                                       |
| Heydari, Ezat            | Jackson State University                                                            |
|                          | ICSA (Canadian Space Agency)                                                        |
| Hoenier, Tori            | INASA AMES                                                                          |
| Hollingsworth, Jeff      | INASA AMES                                                                          |
| Huagins, Judy            | Salish Kootenai College                                                             |
| Huntress, Wesley         | Retired                                                                             |
| Hurowitz, Joel           | INASA JPL                                                                           |
| Hviid, Stubbe            | Max Planck Institute for Solar System Research                                      |
| llagnemma. Karl          | IMIT                                                                                |

| Indyk, Steve                | Honeybee Robotics                                                    |
|-----------------------------|----------------------------------------------------------------------|
| Israël, Guy                 | CNRS and LATMOS                                                      |
| Jackson, Ryan               | LANL (Los Alamos National Lab)                                       |
| Jacob, Samantha             | University of Hawai'i at Manoa                                       |
| Jakosky, Bruce              | University of Colorado Boulder                                       |
| Jensen, Elsa                | MSSS (Malin Space Science Systems)                                   |
| Jensen, Jaqueline Kløvgaard | University of Copenhagen                                             |
| Johnson, Jeffrey            | APL (Johns Hopkins University Applied Physics Laboratory)            |
| Johnson, Micah              | Microtel (at NASA GSFC)                                              |
| Johnstone, Steve            | LANL (Los Alamos National Lab)                                       |
| Jones, Andrea               | USRA-LPI (at NASA GSFC)                                              |
| Joseph, Jonathan            | Cornell University                                                   |
| Jun, Insoo                  | NASA JPL                                                             |
| Kah, Linda                  | University of Tennessee Knoxville                                    |
| Kahanpää, Henrik            | FMI (Finnish Meteorological Institute)                               |
| Kahre, Melinda              | NASA Ames                                                            |
| Karpushkina, Natalya        | Space Research Institute                                             |
| Kasprzak, Wayne             | NASA GSFC                                                            |
| Kauhanen, Janne             | FMI (Finnish Meteorological Institute)                               |
| Keelv. Leslie               | NASA Ames                                                            |
| Kemppinen. Osku             | FMI (Finnish Meteorological Institute)                               |
| Keymeulen. Didier           | NASA JPL                                                             |
| Kim. Myung-Hee              | USRA (at NASA JSC)                                                   |
| Kinch. Kiartan              | University of Copenhagen                                             |
| King, Penny                 | ANU (Australian National University)                                 |
| Kirkland, Laurel            | LPI (Lunar and Planetary Institute)                                  |
| Kocurek, Garv               | University of Texas at Austin                                        |
| Koefoed, Asmus              | University of Copenhagen                                             |
| Köhler. Jan                 | University of Kiel                                                   |
| Kortmann. Onno              | University of California Berkeley                                    |
| Kozyrey, Alexander          | Space Research Institute                                             |
| Krezoski, Jill              | MSSS (Malin Space Science Systems)                                   |
| Krysak. Daniel              | MSSS (Malin Space Science Systems)                                   |
| Kuzmin. Ruslan              | Snace Research Institute and Vernadsky Institute                     |
| Lacour. Jean Luc            | CEA (Commissariat à l'Énergie Atomique et aux Énergies Alternatives) |
| Lafaille, Vivian            | CNES (Centre National d'Etudes Spatiales)                            |
| Langevin. Yves              | IAS (Institut d'Astrophysique Spatiale)                              |
| Lanza. Nina                 | LANL (Los Alamos National Lab)                                       |
| Lasue, leremie              | IRAP (Institut de Recherche en Astrophysique et Planetologie)        |
| Le Mouélic. Stéphane        | LPGN (Laboratoire de Planétologie et Géodynamique de Nantes)         |
| Lee. Ella Mae               | USGS Elapstaff                                                       |
| Lee, Oiu-Mei                | IRAP (Institut de Recherche en Astrophysique et Planetologie)        |
| Lees. David                 | Carnegie Mellon University (at NASA Ames)                            |
| Lefavor. Matthew            | Microtel (at NASA GSEC)                                              |
| Lemmon. Mark                | Texas A&M                                                            |
| Lepinette Malvitte, Alain   | CAB (Centro de Astrobiología)                                        |
| Léveillé. Richard           | CSA (Canadian Space Agency)                                          |
| Lewin-Carpintier. Éric      | ISTerre (Institut des Sciences de la Terre)                          |
| Lewis. Kevin                | Princeton University                                                 |
|                             | Brown University                                                     |
| Lipkaman, Leslie            | MSSS (Malin Space Science Systems)                                   |
| Little. Cvnthia             | LANL (Los Alamos National Lab)                                       |
| Litvak, Maxim               | Snace Research Institute                                             |
| Lorigny, Fric               | CNFS (Centre National d'Etudes Spatiales)                            |
| Lugmair, Guenter            | UICSD (University of California San Diego)                           |
| Lundberg, Angela            | Delaware State University                                            |
| Lyness, Fric                | Microtel (at NASA GSEC)                                              |
| Madsen, Morten              | University of Copenhagen                                             |
|                             | 1 - · · · · · · · · · · · · · · · · · ·                              |

| Maki, Justin                          | NASA JPL                                                             |
|---------------------------------------|----------------------------------------------------------------------|
| Malakhov, Alexey                      | Space Research Institute                                             |
| Malespin, Charles                     | USRA (at NASA GSFC)                                                  |
| Malin, Michael                        | MSSS (Malin Space Science Systems)                                   |
| Mangold, Nicolas                      | LPGN (Laboratoire de Planétologie et Géodynamique de Nantes)         |
| Manhes, Gérard                        | Retired                                                              |
| Manning, Heidi                        | Concordia College                                                    |
| Marchand, Geneviève                   | CSA (Canadian Space Agency)                                          |
| Marín Jiménez, Mercedes               | CAB (Centro de Astrobiología)                                        |
| Martín García, César                  | University of Kiel                                                   |
| Martin, Dave                          | NASA GSFC                                                            |
| Martin, Mildred                       | Catholic University of America (at NASA GSFC)                        |
| Martínez-Frías, Jesús                 | Centro de Astrobiología                                              |
| Martín-Soler, Javier                  | CAB (Centro de Astrobiología)                                        |
| Martín-Torres, F. Javier              | Centro de Astrobiología                                              |
| Mauchien, Patrick                     | CEA (Commissariat à l'Énergie Atomique et aux Énergies Alternatives) |
| Maurice, Sylvestre                    | IRAP (Institut de Recherche en Astrophysique et Planetologie)        |
| McAdam, Amy                           | NASA GSFC                                                            |
| McCartney, Elaina                     | MSSS (Malin Space Science Systems)                                   |
| McConnochie, Timothy                  | University of Maryland (at NASA GSFC)                                |
| McCullough, Emily                     | University of Western Ontario                                        |
| McEwan, Ian                           | Ashima Research                                                      |
| McKay, Christopher                    | NASA Ames                                                            |
| McLennan, Scott                       | SUNY Stony Brook                                                     |
| McNair, Sean                          | MSSS (Malin Space Science Systems)                                   |
| Melikechi, Noureddine                 | Delaware State University                                            |
| Meslin, Pierre-Yves                   | IRAP (Institut de Recherche en Astrophysique et Planetologie)        |
| Meyer, Michael                        | NASA Headquarters                                                    |
| Mezzacappa, Alissa                    | Delaware State University                                            |
| Miller, Hayden                        | Caltech                                                              |
| Miller, Kristen                       | MIT                                                                  |
| Milliken, Ralph                       | Brown University                                                     |
| Ming, Douglas                         | NASA JSC                                                             |
| Minitti, Michelle                     | ASU (Arizona State University)                                       |
| Mischna, Michael                      | NASA JPL                                                             |
| Mitrofanov. Igor                      | Space Research Institute                                             |
| Moersch, Jeff                         | University of Tennessee Knoxville                                    |
| Mokrousov, Maxim                      | Space Research Institute                                             |
| Molina Jurado. Antonio                | CAB (Centro de Astrobiología)                                        |
| Moores. John                          | York University                                                      |
| Mora-Sotomavor. Luis                  | CAB (Centro de Astrobiología)                                        |
| Morookian, John Michael               | NASA JPL                                                             |
| Morris, Richard                       | NASA JSC                                                             |
| Morrison. Shaunna                     | University of Arizona                                                |
| Mueller-Mellin. Reinhold              | University of Kiel                                                   |
| Muller. Jan-Peter                     | UCL (University College London)                                      |
| Muñoz Caro. Guillermo                 | CAB (Centro de Astrobiología)                                        |
| Nachon. Marion                        | LPGN (Laboratoire de Planétologie et Géodynamique de Nantes)         |
| Navarro López. Sara                   | CAB (Centro de Astrobiología)                                        |
| Navarro-González, Rafael              | UNAM (University Nacional Autónoma de México)                        |
| Nealson, Kenneth                      | USC (University of Southern California)                              |
| Nefian, Ara                           | Carnegie Mellon University (at NASA Ames)                            |
| Nelson, Tony                          | LANL (Los Alamos National Lab)                                       |
| Newcombe, Megan                       | Caltech                                                              |
| Newman, Claire                        | Ashima Research                                                      |
| Newsom, Horton                        | University of New Mexico                                             |
| Nikiforov, Sergev                     | Space Research Institute                                             |
| Nixon, Brian                          | MSSS (Malin Space Science Systems)                                   |
| · · · · · · · · · · · · · · · · · · · |                                                                      |

| Noe Dobrea, Eldar                | PSI (Planetary Science Institute)                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------|
| Nolan, Thomas                    | Nolan Engineering (at NASA GSFC)                                                                 |
| Oehler, Dorothy                  | Jacobs Technology (at NASA JSC)                                                                  |
| Ollila, Ann                      | University of New Mexico                                                                         |
| Olson, Timothy                   | Salish Kootenai College                                                                          |
| Pablo Hernández, Miguel Ángel de | Universidad de Alcalá de Henares                                                                 |
| Paillet, Alexis                  | CNES (Centre National d'Etudes Spatiales)                                                        |
| Pallier, Etienne                 | IRAP (Institut de Recherche en Astrophysique et Planetologie)                                    |
| Palucis, Marisa                  | University of California Berkeley                                                                |
| Parker, Timothy                  | NASA JPL                                                                                         |
| Parot, Yann                      | IRAP (Institut de Recherche en Astrophysique et Planetologie)                                    |
| Patel, Kiran                     | Global Science & Technology, Inc. (at NASA GSFC)                                                 |
| Paton, Mark                      | FMI (Finnish Meteorological Institute)                                                           |
| Paulsen, Gale                    | Honeybee Robotics                                                                                |
| Pavlov. Alex                     | NASA GSFC                                                                                        |
| Pavri, Betina                    | NASA JPL                                                                                         |
| Peinado-González. Verónica       | CAB (Centro de Astrobiología)                                                                    |
| Peret. Laurent                   | ATOS Origin                                                                                      |
| Perez. Rene                      | CNES (Centre National d'Etudes Spatiales)                                                        |
| Perrett, Glynis                  | University of Guelph                                                                             |
| Peterson, Joe                    | SwRI (Southwest Research Institute)                                                              |
| Pilorget, Cedric                 | Caltech                                                                                          |
| Pinet, Patrick                   | IRAP (Institut de Recherche en Astrophysique et Planetologie)                                    |
| Pla-García. Jorge                | CAB (Centro de Astrobiología)                                                                    |
| Plante, Janik                    | USRA (at NASA ISC)                                                                               |
| Poitrasson, Franck               | CNRS (Centre National de la Recherche Scientifique) and GET (Géosciences Environnement Toulouse) |
| Polkko, Jouni                    | FMI (Einnish Meteorological Institute)                                                           |
| Popa, Badu                       | USC (University of Southern California)                                                          |
| Posiolova, Liliva                | MSSS (Malin Space Science Systems)                                                               |
| Posner, Arik                     | NASA Headquarters                                                                                |
| Pradler, Irina                   | University of Guelph                                                                             |
| Prats, Benito                    | eINFORMe Inc. (at NASA GSEC)                                                                     |
| Prokhorov, Vasily                | Space Research Institute                                                                         |
| Purdy, Sharon Wilson             | Smithsonian Institution                                                                          |
| Raaen, Eric                      | NASA GSEC                                                                                        |
| Radziemski. Leon                 | Piezo Energy Technologies, Tucson                                                                |
| Rafkin, Scot                     | SwRI (Southwest Research Institute)                                                              |
| Ramos, Miguel                    | Universidad de Alcalá de Henares                                                                 |
| Rampe Flizabeth                  | NASA Postdoc Program (at NASA ISC)                                                               |
| Raulin François                  | USA (Laboratoire Interuniversitaire des Systèmes Atmosphériques). Université Paris               |
| Ravine Michael                   | MSSS (Malin Space Science Systems)                                                               |
| Reitz Günther                    | DIR (Deutsches Zentrum für Luft- und Raumfahrt)                                                  |
| Rennó Nilton                     | University of Michigan Ann Arbor                                                                 |
| Rice Melissa                     | NASA Postdoc Program (at Caltech)                                                                |
| Richardson Mark                  | Ashima Research                                                                                  |
| Robert François                  | (IMCM) Laboratoire de Minéralogie et Cosmochimie du Muséum                                       |
| Robertson Kevin                  | Brown University                                                                                 |
| Rodriguez Manfredi José Antonio  | CAB (Centro de Astrobiología)                                                                    |
| Romeral-Planelló Julio I         | CAB (Centro de Astrobiología)                                                                    |
| Rowland, Scott                   | University of Hawai'i at Manoa                                                                   |
| Rubin David                      | UISGS Santa Cruz                                                                                 |
| Saccoccio, Muriel                | CNES (Centre National d'Etudes Spatiales)                                                        |
| Salamon Andrew                   | MSSS (Malin Space Science Systems)                                                               |
| Sandoval lennifer                | MSSS (Malin Space Science Systems)                                                               |
| Sanin Anton                      | Share Research Institute                                                                         |
| Sans Fuentes Sara Aleiandra      | CAB (Centro de Astrobiología)                                                                    |
| Saner Lee                        | (Malin Space Science Systems)                                                                    |
| Sarrazin Philippe                |                                                                                                  |
|                                  |                                                                                                  |

| Sautter, Violaine           | LMCM (Laboratoire de Minéralogie et Cosmochimie du Muséum)           |
|-----------------------------|----------------------------------------------------------------------|
| Savijärvi, Hannu            | University of Helsinki                                               |
| Schieber, Juergen           | Indiana University Bloomington                                       |
| Schmidt, Mariek             | Brock University                                                     |
| Schmidt, Walter             | FMI (Finnish Meteorological Institute)                               |
| Scholes, Daniel "Dan"       | WUSTL (Washington University in St. Louis)                           |
| Schoppers, Marcel           | NASA JPL                                                             |
| Schröder, Susanne           | IRAP (Institut de Recherche en Astrophysique et Planetologie)        |
| Schwenzer, Susanne          | Open University                                                      |
| Sebastian Martinez, Eduardo | CAB (Centro de Astrobiología)                                        |
| Sengstacken, Aaron          | NASA JPL                                                             |
| Shterts, Ruslan             | Space Research Institute                                             |
| Siebach, Kirsten            | Caltech                                                              |
| Siili, Tero                 | FMI (Finnish Meteorological Institute)                               |
| Simmonds, Jeff              | NASA JPL                                                             |
| Sirven, Jean-Baptiste       | CEA (Commissariat à l'Énergie Atomique et aux Énergies Alternatives) |
| Slavney, Susie              | WUSTL (Washington University in St. Louis)                           |
| Sletten, Ronald             | University of Washington Seattle                                     |
| Smith, Michael              | NASA GSFC                                                            |
| Sobrón Sánchez. Pablo       | CSA (Canadian Space Agency)                                          |
| Spanovich, Nicole           | NASA JPL                                                             |
| Spray, John                 | University of New Brunswick                                          |
| Sauvres, Steven             | Cornell University                                                   |
| Stack, Katie                | Caltech                                                              |
| Stalport, Fabien            | LISA (Laboratoire Interuniversitaire des Systèmes Atmosphériques)    |
| Stein, Thomas               | WIJSTI (Washington University in St. Louis)                          |
| Stewart, Noel               | Salish Kootenai College                                              |
| Stinn Susan Louise Svane    | University of Conenhagen                                             |
| Stoiber Kevin               | MSSS (Malin Space Science Systems)                                   |
| Stolper, Ed                 | Caltech                                                              |
| Sucharski Boh               |                                                                      |
| Sullivan Rob                | Cornell University                                                   |
| Summons Roger               | MIT                                                                  |
| Sumper Dawn                 | Iniversity of California Davis                                       |
| Sun Vivian                  | Brown University                                                     |
| Sunulver Kimberley          | MSSS (Malin Snace Science Systems)                                   |
| Sutter Brad                 | lacobs Technology (at NASA ISC)                                      |
| Szona Cyril                 | IATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales)    |
| Tan Elorence                | NASA GSEC                                                            |
| Tate Christopher            | Liniversity of Tennessee Knoxville                                   |
| Teinturier Samuel           | IATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales)    |
| ten Kate Inge               | Itracht University                                                   |
| Thomas Deter                |                                                                      |
|                             | Liniversity of New Brunswick                                         |
| Tokar Robert                | Dianatary Science Institute                                          |
|                             | IRAR (Institut de Recherche en Astronhysique et Planetologia)        |
| Torres Redondo, Josefina    | CAR (Centro de Astrohiología)                                        |
| Trainer Melicca             |                                                                      |
| Treiman Allan               | (LRI) Lupar and Planetary Institute                                  |
| Trotyakov Vladislav         |                                                                      |
| Uraui O'Callaghan Pasar     | CAP (Contro do Astrohiología)                                        |
| Van Rook, Jacon             | MSCS (Malin Space Science Systems)                                   |
| Van Dook, Jason             | IVISOS (IVIAINI SPACE Science Systems)                               |
| VanDommol Scott             | Initiation of Cuolob                                                 |
| Vaniman David               | University of Guelphi                                                |
| Variniidii, David           | ron (ridnetary Science institute)                                    |
| Vacewada, Ashwin            |                                                                      |
| Vasapraalaa Daula           | IVACA JEL                                                            |
| vasconcelos, Paulo          | juniversity of Queensiand                                            |

| Vicenzi, Edward               | Smithsonian Institution                                        |
|-------------------------------|----------------------------------------------------------------|
| Vostrukhin, Andrey            | Space Research Institute                                       |
| Voytek, Mary                  | NASA Headquarters                                              |
| Wadhwa, Meenakshi             | ASU (Arizona State University)                                 |
| Ward, Jennifer                | WUSTL (Washington University in St. Louis)                     |
| Weigle, Eddie                 | Big Head Endian LLC                                            |
| Wellington, Danika            | ASU (Arizona State University)                                 |
| Westall, Frances              | CNRS (Centre National de la Recherche Scientifique)            |
| Wiens, Roger Craig            | LANL (Los Alamos National Lab)                                 |
| Wilhelm, Mary Beth            | NASA Ames and Georgia Institute of Technology                  |
| Williams, Amy                 | University of California Davis                                 |
| Williams, Joshua              | University of New Mexico                                       |
| Williams, Rebecca             | PSI (Planetary Science Institute)                              |
| Williams, Richard B. "Mouser" | LANL (Los Alamos National Lab)                                 |
| Wilson, Mike                  | UCSF (University of California San Francisco) (at NASA Ames)   |
| Wimmer-Schweingruber, Robert  | University of Kiel                                             |
| Wolff, Mike                   | SSI (Space Science Institute)                                  |
| Wong, Mike                    | University of Michigan Ann Arbor                               |
| Wray, James                   | MSSS (Malin Space Science Systems)                             |
| Wu, Megan                     | MSSS (Malin Space Science Systems)                             |
| Yana, Charles                 | CNES (Centre National d'Etudes Spatiales)                      |
| Yen, Albert                   | NASA JPL                                                       |
| Yingst, Aileen                | PSI (Planetary Science Institute) (at University of Wisconsin) |
| Zeitlin, Cary                 | SwRI (Southwest Research Institute)                            |
| Zimdar, Robert                | MSSS (Malin Space Science Systems)                             |
| Zorzano Mier, María-Paz       | CAB (Centro de Astrobiología)                                  |
|                               |                                                                |

#### **References and Notes**

- P. R. Mahaffy, C. R. Webster, M. Cabane, P. G. Conrad, P. Coll, S. K. Atreya, R. Arvey, M. Barciniak, M. Benna, L. Bleacher, W. B. Brinckerhoff, J. L. Eigenbrode, D. Carignan, M. Cascia, R. A. Chalmers, J. P. Dworkin, T. Errigo, P. Everson, H. Franz, R. Farley, S. Feng, G. Frazier, C. Freissinet, D. P. Glavin, D. N. Harpold, D. Hawk, V. Holmes, C. S. Johnson, A. Jones, P. Jordan, J. Kellogg, J. Lewis, E. Lyness, C. A. Malespin, D. K. Martin, J. Maurer, A. C. McAdam, D. McLennan, T. J. Nolan, M. Noriega, A. A. Pavlov, B. Prats, E. Raaen, O. Sheinman, D. Sheppard, J. Smith, J. C. Stern, F. Tan, M. Trainer, D. W. Ming, R. V. Morris, J. Jones, C. Gundersen, A. Steele, J. Wray, O. Botta, L. A. Leshin, T. Owen, S. Battel, B. M. Jakosky, H. Manning, S. Squyres, R. Navarro-González, C. P. McKay, F. Raulin, R. Sternberg, A. Buch, P. Sorensen, R. Kline-Schoder, D. Coscia, C. Szopa, S. Teinturier, C. Baffes, J. Feldman, G. Flesch, S. Forouhar, R. Garcia, D. Keymeulen, S. Woodward, B. P. Block, K. Arnett, R. Miller, C. Edmonson, S. Gorevan, E. Mumm, The Sample Analysis at Mars investigation and instrument suite. *Space Sci. Rev.* **170**, 401–478 (2012). doi:10.1007/s11214-012-9879-z
- J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. Anderson, C. J. Baker, R. Barry, D. F. Blake, P. Conrad, K. S. Edgett, B. Ferdowski, R. Gellert, J. B. Gilbert, M. Golombek, J. Gómez-Elvira, D. M. Hassler, L. Jandura, M. Litvak, P. Mahaffy, J. Maki, M. Meyer, M. C. Malin, I. Mitrofanov, J. J. Simmonds, D. Vaniman, R. V. Welch, R. C. Wiens; Mars Science Laboratory Mission and Science Investigation, Mars Science Laboratory mission and science investigation. *Space Sci. Rev.* **170**, 5–56 (2012). <u>doi:10.1007/s11214-012-9892-2</u>
- 3. P. R. Mahaffy *et al.*, Abundance and isotopic composition of gases in the Martian atmosphere: First results from the Mars Curiosity Rover. *Science* **341**, 263–266 (2013).
- C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, K. A. Farley, Measurements of Mars methane at Gale Crater by the Curiosity Rover. *Lunar Planet. Sci. Conf.*, abstract 1366 (2013).
- 5. B. M. Jakosky, R. J. Phillips, Mars' volatile and climate history. *Nature* **412**, 237–244 (2001). doi:10.1038/35084184 Medline
- M. B. McElroy, Y. L. Yung, A. O. Nier, Isotopic composition of nitrogen: Implications for the past history of Mars' atmosphere. *Science* 194, 70–72 (1976). <u>doi:10.1126/science.194.4260.70 Medline</u>
- 7. T. Owen, J.-P. Maillard, C. de Bergh, B. L. Lutz, Deuterium on Mars: The abundance of HDO and the value of D/H. *Science* 240, 1767–1770 (1988). doi:10.1126/science.240.4860.1767 Medline
- R. H. Carr, M. M. Grady, I. P. Wright, C. T. Pillinger, Martian atmospheric carbon-dioxide and weathering products in SNC meteorites. *Nature* 314, 248–250 (1985). <u>doi:10.1038/314248a0</u>
- 9. V. A. Krasnopolsky, J. P. Maillard, T. C. Owen, R. A. Toth, M. D. Smith, Oxygen and carbon isotope ratios in the Martian atmosphere. *Icarus* 192, 396–403 (2007). <u>doi:10.1016/j.icarus.2007.08.013</u>

- P. B. Niles, D. C. Catling, G. Berger, E. Chassefière, B. L. Ehlmann, J. R. Michalski, R. Morris, S. W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: Implications for climate history and nature of aqueous environments. *Space Sci. Rev.* 174, 301–328 (2013). doi:10.1007/s11214-012-9940-y
- A. O. Nier, M. B. McElroy, Structure of the neutral upper atmosphere of Mars: Results from Viking 1 and Viking 2. *Science* 194, 1298–1300 (1976). <u>doi:10.1126/science.194.4271.1298</u> <u>Medline</u>
- P. B. Niles, W. V. Boynton, J. H. Hoffman, D. W. Ming, D. Hamara, Stable isotope measurements of martian atmospheric CO<sub>2</sub> at the Phoenix landing site. *Science* **329**, 1334–1337 (2010). <u>doi:10.1126/science.1192863</u> <u>Medline</u>
- 13. R. E. Criss, Principles of Stable Isotope Composition (Oxford Univ. Press, Oxford, 1999).
- 14. C. R. Webster, A. J. Heymsfield, Water isotope ratios D/H, <sup>18</sup>O/<sup>16</sup>O, <sup>17</sup>O/<sup>16</sup>O in and out of clouds map dehydration pathways. *Science* **302**, 1742–1745 (2003). doi:10.1126/science.1089496 Medline
- 15. P. Hartogh, D. C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E. A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G. A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. *Nature* 478, 218–220 (2011). doi:10.1038/nature10519 Medline
- 16. L. A. Leshin, S. Epstein, E. M. Stolper, Hydrogen isotope geochemistry of SNC meteorites. *Geochim. Cosmochim. Acta* **60**, 2635–2650 (1996). <u>doi:10.1016/0016-7037(96)00122-6</u>
- J. P. Greenwood, S. Itoh, N. Sakamoto, E. P. Vicenzi, H. Yurimoto, Hydrogen isotope evidence for loss of water from Mars through time. *Geophys. Res. Lett.* 35, L05203 (2008). doi:10.1029/2007GL032721
- 18. J. Farquar, M. H. Thiemens, Oxygen cycle of the Martian atmosphere-regolith system:  $\delta^{17}$ O of secondary phases in Nakhla and Lafayette. *J. Geophys. Res.* **105**, (2000). 10.1029/1999JE001194
- C. S. Romanek, M. M. Grady, I. P. Wright, D. W. Mittlefehldt, R. A. Socki, C. T. Pillinger, E. K. Gibson Jr., Record of fluid-rock interactions on Mars from the meteorite ALH84001. *Nature* 372, 655–657 (1994). doi:10.1038/372655a0 Medline
- 20. B. Jakosky, A. Zent, R. Zurek, The Mars water cycle: Determining the role of exchange with the regolith. *Icarus* **130**, 87–95 (1997). <u>doi:10.1006/icar.1997.5799</u>
- 21. H. R. Karlsson, R. N. Clayton, E. K. Gibson Jr., T. K. Mayeda, Water in SNC meteorites: Evidence for a martian hydrosphere. *Science* 255, 1409–1411 (1992). <u>doi:10.1126/science.11537889</u> Medline
- 22. See the supplementary materials on *Science* Online.
- 23. L. A. Leshin *et al.*, Integrated results from analysis of the Rocknest aeolian deposit by the Curiosity Rover. *Lunar Planet. Sci. Conf.*, abstract 2220 (2013).
- 24. D. A. Fisher, Mars water isotope D/H history in the strata of the North Polar Cap: Inferences about the water cycle. *Icarus* 187, 430–441 (2007) and references therein. doi:10.1016/j.icarus.2006.10.032

- 25. R. E. Novak, M. J. Mumma, S. Lee, L. Ivanov, B. Bonev, G. Villanueva, Mapping of D/H and ozone in the martian atmosphere near perihelion. *Bull. Am. Astron. Soc.* **35**, 660 (2005).
- 26. T. Usui, C. Alexander, J. Wang, J. Simon, J. Jones, Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. *Earth Planet. Sci. Lett.* 357-358, 119–129 (2012). doi:10.1016/j.epsl.2012.09.008
- 27. H. Lammer, E. Chassefière, Ö. Karatekin, A. Morschhauser, P. B. Niles, O. Mousis, P. Odert, U. V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L. B. S. Pham, Outgassing history and escape of the martian atmosphere and water inventory. *Space Sci. Rev.* **174**, 113–154 (2013). doi:10.1007/s11214-012-9943-8
- 28. R. O. Pepin, Evolution of the martian atmosphere. *Icarus* **111**, 289–304 (1994). doi:10.1006/icar.1994.1146
- 29. L. Borg, M. J. Drake, A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res. 110, E12S03 (2005). doi:10.1029/2005JE002402
- 30. P. B. Niles, L. A. Leshin, Y. Guan, Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments. *Geochim. Cosmochim. Acta* 69, 2931–2944 (2005). doi:10.1016/j.gca.2004.12.012
- 31. J. W. Valley, J. M. Eiler, C. M. Graham, E. K. Gibson, C. S. Romanek, E. M. Stolper, Low-temperature carbonate concretions in the Martian meteorite ALH84001: Evidence from stable isotopes and mineralogy. *Science* 275, 1633–1638 (1997). doi:10.1126/science.275.5306.1633 Medline
- J. Farquhar, D. T. Johnston, The oxygen cycle of the terrestrial planets: Insights into the processing and history of oxygen in surface environments. *Rev. Mineral. Geochem.* 68, 463–492 (2008). doi:10.2138/rmg.2008.68.16
- 33. B. M. Jakosky, J. H. Jones, Evolution of water on Mars. *Nature* **370**, 328–329 (1994). doi:10.1038/370328a0
- 34. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO<sub>2</sub> and H<sub>2</sub>O on Mars. *EPSL* **308**, 391–400 (2011). doi:10.1016/j.epsl.2011.06.014
- 35. J. P. Bibring, Y. Langevin, J. F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, M. Berthé, J. P. Bibring, A. Gendrin, C. Gomez, B. Gondet, D. Jouglet, F. Poulet, A. Soufflot, M. Vincendon, M. Combes, P. Drossart, T. Encrenaz, T. Fouchet, R. Merchiorri, G. Belluci, F. Altieri, V. Formisano, F. Capaccioni, P. Cerroni, A. Coradini, S. Fonti, O. Korablev, V. Kottsov, N. Ignatiev, V. Moroz, D. Titov, L. Zasova, D. Loiseau, N. Mangold, P. Pinet, S. Douté, B. Schmitt, C. Sotin, E. Hauber, H. Hoffmann, R. Jaumann, U. Keller, R. Arvidson, J. F. Mustard, T. Duxbury, F. Forget, G. Neukum, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. *Science* 312, 400–404 (2006). doi:10.1126/science.1122659 Medline
- 36. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N.

Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, The HITRAN 2008 molecular spectroscopic database. *J. Quant. Spectrosc. Radiat. Transf.* **110**, 533–572 (2009). <u>doi:10.1016/j.jqsrt.2009.02.013</u>

37. C. R. Webster, R. T. Menzies, E. D. Hinkley, in *Laser Remote Chemical Analysis*, R. M. Measures, Ed. (Wiley, New York, 1988), chap. 3.