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Preface

A deterministic initial value test case for dynamical cores of atmospheric general circulation mod-
els is presented that assesses the evolution of an idealized baroclinic wave in the Northern Hemi-
sphere. The initial zonal state is quasi-realistic and completely defined by analytic expressions
which are a steady-state solution of the hydrostatic primitive equations. A two-component test
strategy first evaluates the ability of the discrete approximations to maintain the steady-state solu-
tion. Then an overlaid perturbation is introduced which triggers the growth of a baroclinic distur-
bance over the course of several days.

The test is applied to four very different dynamical cores at varying horizontal and vertical
resolutions. In particular, the NCAR/NASA Finite Volume dynamics package, the NCAR spec-
tral transform Eulerian and the semi-Lagrangian dynamical cores of the Community Atmosphere
Model CAM3 are evaluated. In addition, the icosahedral finite-difference model GME of the
German Weather Service (DWD) is tested. These dynamical cores represent a broad range of nu-
merical approaches and, at very high resolutions, provide independent reference solutions. This
report discusses the convergence-with-resolution characteristics of the schemes and evaluates the
uncertainty of the high resolution reference solutions.
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Chapter 1

Introduction

Tests of atmospheric General Circulation Models (GCMs) and, in particular, dynamical core as-
sessments are important steps towards future model improvements. They reveal the influence of
an individual model design on climate and weather simulations and indicate whether the circu-
lation is described representatively by the numerical approach. Testing a global 3D atmospheric
model is not straightforward. In the absence of non-trivial analytic solutions, the model evalu-
ations most commonly rely on intuition, experience and model intercomparisons like AMIP, the
Atmospheric Model Intercomparison Project (Gates 1995; Gates et al. 1999). In addition, GCM
simulation statistics are typically compared to global reanalysis data while numerical weather fore-
casts are compared to local observations. Such approaches are not applicable to pure dynamical
core assessments that isolate the dynamics package from the physical parameterizations.

Very few standard test cases for 3D dynamical cores on the sphere have been developed to date.
Among them are the long-term idealized benchmarks as suggested by Held and Suarez (1994) and
Boer and Denis (1997). They require 1200-day model integrations with simple, pre-defined forcing
functions that replace the complex physics parameterizations. Typically time-mean zonal-mean
flow fields are evaluated for both test scenarios that assess the model’s idealized climatic state and
its variability. But as a consequence, the averaging of the flow patterns essentially eliminates all
small-scale flow features in the analysis although these are the main contributors to the creation
of the mean state. Improvements of the statistical mean state are therefore directly related to an
improved representations of the fine-scale flow characteristics.

Standard techniques for short-term baroclinic dynamical core assessments can only rarely be
found in the literature. This is in contrast to the long history of test cases available for shallow
water models (see Williamson et al. (1992) for a collection). One deterministic test technique was
suggested by Polvani and Saravanan (2000) who simulated the breakdown of the polar vortex in
a 3D dynamical core. The definition of this test case was inspired by earlier 1D and 2D studies
of the vortex erosion problem. These were conducted by Juckes and McIntyre (1987) and Bates
and Li (1997), respectively, who applied the 1D principles to the 2D shallow water framework. In
addition, Giraldo and Rosmond (2004) used a 3D version of the classical Rossby-Haurwitz test
(Phillips 1959) for dynamical core assessments. This 3D extension of the shallow water Rossby-
Haurwitz wave was derived by Monaco and Williams (1975). Other early test techniques from the
70s, like the baroclinic wave problem used in Hoskins and Simmons (1975), have not been widely
applied by the community. Most often, the lack of a concise test specification make these tests
difficult to use and interpret, especially in comparing new schemes to older results.

As modeling groups now move towards the next generation of dynamical cores with new nu-
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merical schemes and gridding options (Tomita and Sato 2004; Bonaventura 2003; Fournier et al.
2004; Giraldo and Rosmond 2004) a standard test suite for hydrostatic and non-hydrostatic dy-
namics packages is highly desirable. With the baroclinic instability test case described here we
contribute to this effort. The new test is based on four design principles. In particular, it is deter-
ministic, easy-to-use, relevant to typical atmospheric phenomena and applicable to a wide variety
of model formulations and grids.

The test assesses the evolution of an idealized baroclinic wave in the Northern Hemisphere
over a short 10-day time period. In addition, the initial conditions can also be used to test the
ability of a model to maintain a non-trivial, analytic steady-state solution. Recently, a similar
baroclinic wave test case has been independently developed by Polvani et al. (2004) (hereafter
POL). The main difference between POL and the test proposed here is that POL prescribe an
explicit second-order horizontal diffusion mechanism that significantly damps the evolution of the
baroclinic wave, in particular the cascade mechanism at small scales. Additionally, the POL test
requires the numerical evaluation of 1D integrals to define a quasi-realistic balanced flow in the
Northern Hemisphere. In contrast, the test proposed here starts from a reasonably realistic initial
data set in both hemispheres which is completely represented by analytic expressions. Overall, the
evolution in POL is dominated by strong diffusion processes that eliminate small-scale features
expected to be resolved at higher resolutions. This diffusion is needed to obtain the exact numerical
convergence of two models assessed in their study. On the other hand, POL also shows that any
other choice of the diffusion mechanism leads to a truly different numerically converged flow field.

Our test is designed to evaluate dynamical cores in the form that will be applied to Numerical
Weather Prediction (NWP) and climate simulations at the resolutions typically used for these ap-
plications. Thus the aim of the new test presented here is not to compute a numerically converged
diffusive solution but to assess the accuracy of solutions at any resolved scale. An analytic solution
to the problem is not known. We compute a set of reference solutions with a variety of models at
very high resolution. This set is used to estimate the uncertainty in any of the reference solutions.
Throughout this report, we consider the subgrid-scale diffusivity as part of the numerical scheme
as also argued by Held and Suarez (1994). Indeed, for some schemes, such as those incorporat-
ing nonlinear shape preservation, the inherent diffusion can not be isolated. Thus this test allows
the comparison of schemes with very different diffusive behaviors, like a spectral transform semi-
Lagrangian method (Collins et al. 2004) or a monotonic finite volume technique (Lin 2004), that
do not require explicit horizontal diffusion to control the solution spectra at the small scales. In
contrast, alternative schemes, like a spectral transform Eulerian method (Collins et al. 2004) or a
finite difference approach on an icosahedral grid (Majewski et al. 2002), generally apply a rather
scale-selective fourth-order horizontal diffusion mechanism to prevent the accumulation of kinetic
energy in the smallest scales or to ensure numerical stability. These four types of models are com-
pared herein. The study sheds light on the convergence-with-resolution model characteristics and
defines a set of reference solutions along with their uncertainties.

The report is organized as follows. The design principles of the baroclinic wave test case as well
as the derivation and discussion of the initial conditions are presented in Section 2 (with further
details in appendix A). Section 3 briefly summarizes the four dynamical cores used in the study.
The models represent a broad range of numerical approaches and provide independent reference
solutions. In Section 4 the models are assessed in a steady-state scenario without an explicitly
imposed trigger for a baroclinic perturbation. This approach reveals how well the dynamical cores
maintain the zonally symmetric initial state. The evolution of the baroclinic wave is discussed in
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Section 5. In particular, this section includes a model intercomparison and assesses the uncertainty
of the reference solutions. The findings are summarized in Section 6.
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Chapter 2

Definition of the test case

The underlying concept of the initial value test was inspired by ideas in Hoskins and Simmons
(1975) and Simmons and Hoskins (1975) who used a numerically balanced initial flow with a
superimposed wavenumber 8 perturbation. In contrast to these authors though, the new ideal-
ized test is entirely described by analytic initial conditions with a local nonperiodic perturbation
(Jablonowski 2004; Jablonowski and Williamson 2006). The initial data can therefore be immedi-
ately computed on any computational mesh.

The deterministic test is comprised of two parts. First, the dynamical core is initialized with
steady-state, balanced initial conditions that are an analytic solution to the hydrostatic primitive
equations. This model setup reveals how well a dynamical core maintains this initial state be-
fore numerical round-off and truncation errors as well as gravity waves degrade the steady-state.
Second, a relatively large-scale but localized Gaussian hill perturbation is superimposed onto the
zonal wind in the northern midlatitudes. This small-amplitude disturbance triggers the evolution
of a baroclinic wave over the course of several days.

2.1 The initial state
The baroclinic wave test case has been developed for dry dynamical cores with pressure-based
vertical coordinates like the pure pressure coordinate p, the hybrid η coordinate (Simmons and
Burridge 1981) or the pure σ = p/ps coordinate (Phillips 1957) where ps symbolizes the surface
pressure. The latter two coordinate systems are typically used in GCMs today. The definition of
the η coordinate together with the specification of all model levels for the integrations herein are
provided in appendix B. It is important to note that constant η-surfaces coincide with constant σ
or pressure surfaces if there are no variations in the surface pressure, which is the case here. The
choice of the vertical coordinate system is therefore left to the modeling group despite the fact that
each vertical coordinate system implies a different boundary condition for the vertical velocity. In
practice, this has been found to be insignificant for the evolution of the baroclinic wave over a
10-day time period (not shown).

The initial state is defined by analytic expressions in spherical (λ, ϕ, η) coordinates where
λ ∈ [0, 2π] stands for the longitude and ϕ ∈ [−π/2, π/2] represents the latitude. The subsequent
expressions can also be straightforwardly transformed into different, e.g. Cartesian, coordinate sys-
tems. All physical constants used in the test specification are listed below. Users of the test case
are encouraged to select the same parameter set in their models to foster future model intercom-
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parisons.
Assuming that a model utilizes η-levels an auxiliary variable ηv is defined by

ηv = (η − η0)
π

2
(2.1)

with η0 = 0.252. In case of a vertical σ coordinate the η-level in Eq. (2.1) can be simply replaced
with the corresponding σ value. This principle applies to all subsequent equations. Eq. (2.1) can
also be directly applied to models with pure pressure coordinates if η = σ = p/ps is adopted at
each pressure level p. The surface pressure ps is constant and given by ps(λ, ϕ) = 105 Pa.

The flow field is comprised of two symmetric zonal jets in midlatitudes. The zonal wind u is
defined as

u(λ, ϕ, η) = u0 cos
3
2 ηv sin2 (2 ϕ) . (2.2)

Here the maximum amplitude u0 is set to 35 m s−1 which is close to the wind speed of the zonal-
mean time-mean jet streams in the troposphere. The meridional wind v is set to zero. This flow field
in nondivergent and allows the derivation of the analytic initial data even for models in vorticity-
divergence (ζ ,δ) form. In particular, the radial outward component of the relative vorticity ζ is
given by

ζ(λ, ϕ, η) =
− 4 u0

a
cos

3
2 ηv sin ϕ cos ϕ (2− 5 sin2 ϕ) (2.3)

and δ = 0 s−1 is automatically fulfilled. a = 6.371229 × 106 m indicates the mean radius of the
Earth.

The horizontally averaged temperature 〈T (η)〉 is split into two representations for the lower
(Eq. (2.4)) and middle (Eq. (2.5)) atmosphere. This introduces the characteristic atmospheric tem-
perature profiles especially at upper levels. They are given by

〈T (η)〉 = T0 η
RdΓ

g (for ηs ≥ η ≥ ηt) (2.4)

〈T (η)〉 = T0 η
RdΓ

g + ∆T (ηt − η)5 (for ηt > η) (2.5)

with the surface level ηs = 1, the tropopause level ηt = 0.2 and the horizontal-mean temperature at
the surface T0 = 288 K. The temperature lapse rate Γ is set to 0.005 K m−1 which is similar to the
observed diabatic lapse rate. Additionally, the empirical temperature difference ∆T = 4.8×105 K
is chosen. Rd = 287.0 J (kg K)−1 represents the ideal gas constant for dry air and g = 9.80616 m
s−2 is the gravitational acceleration. The total temperature distribution comprises the horizontal-
mean temperature and a horizontal variation at each level. It is given by

T (λ, ϕ, η) = 〈T (η)〉+
3

4

η π u0

Rd

sin ηv cos
1
2 ηv ×

{(
− 2 sin6 ϕ (cos2 ϕ +

1

3
) +

10

63

)
2 u0 cos

3
2 ηv +

( 8

5
cos3 ϕ (sin2 ϕ +

2

3
)− π

4

)
a Ω

}
(2.6)

where Ω = 7.29212× 10−5 s−1 denotes the Earth’s angular velocity.
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The surface geopotential Φs completes the description of the steady-state initial conditions.
The orography field balances the non-zero zonal wind at the surface and Φs is determined by

Φs(λ, ϕ) = u0 cos
3
2

(
(ηs − η0)

π

2

)
×

{(
− 2 sin6 ϕ (cos2 ϕ +

1

3
) +

10

63

)
u0 cos

3
2

(
(ηs − η0)

π

2

)
+

( 8

5
cos3 ϕ (sin2 ϕ +

2

3
)− π

4

)
a Ω

}
. (2.7)

Besides the assessment of the steady-state solution, the test is primarily designed to simulate
the evolution of a baroclinic wave. It can be triggered if the initial conditions are overlaid with
a perturbation. Here a perturbation with a Gaussian profile is selected and centered at (λc, ϕc) =
(π/9, 2π/9) which points to the location (20◦E,40◦N). The perturbation u′ of the zonal wind

u′(λ, ϕ, η) = up exp
(
−

( r

R

)2 )
(2.8)

with radius R = a/10 and maximum amplitude up = 1 m s−1 is superimposed on the zonal wind
field (Eq. (2.2)) by adding u′ to u at each grid point at all model levels. Here the great circle
distance r is given by

r = a arccos
(

sin ϕc sin ϕ + cos ϕc cos ϕ cos(λ− λc)
)

. (2.9)

The corresponding (ζ ′,δ′ ) perturbations for models in vorticity-divergence form are

ζ ′(λ, ϕ) =
up

a
exp

(
−

( r

R

)2 )
×

{
tan ϕ−

2
( a

R

)2

arccos(X)
sin ϕc cos ϕ− cos ϕc sin ϕ cos(λ− λc)√

1−X2

}
(2.10)

δ′(λ, ϕ) =
−2 up a

R2
exp

(
−

( r

R

)2 )
arccos(X)

cos ϕc sin(λ− λc)√
1−X2

(2.11)

with X =
(
sin ϕc sin ϕ + cos ϕc cos ϕ cos(λ − λc)

)
. For both singular points (λc, ϕc) and

(λc + π,−ϕc) with X2 = 1, δ′ is identical zero. In addition, ζ ′(λc, ϕc) = up tan ϕ/a is well-
defined and limλ→λc+π,ϕ→−ϕc ζ ′ is zero. Similarly, limϕ→±π

2
ζ ′ is zero at the poles.

2.2 Characteristics of the initial data
The balanced initial flow field comprises a zonally symmetric basic state with a jet in the mid-
latitudes of each hemisphere and a quasi-realistic temperature distribution, which are displayed
in Figs. 2.1(a) and (b). In addition, the figure shows the profile of the surface geopotential
(Fig. 2.1(c)), three selected vertical temperature distributions on a logarithmic scale (Fig. 2.1(d))
and the unperturbed relative vorticity field ζ (Fig. 2.1(e)) . Overall, the atmospheric conditions
resemble the climatic state of a winter hemisphere reasonably well. The centers of the midlat-
itudinal jets at 45◦N/S are placed at the pressure level p = 252 hPa, which lies just below the
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Figure 2.1: Initial conditions for the (a) unperturbed zonal wind u, (b) temperature T , (c) surface
geopotential Φs, (d) three vertical temperature profiles at the equator, 45◦N/S and the poles, and
(e) the relative vorticity ζ .
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Figure 2.2: Perturbation patterns for the (a) zonal wind, (b) relative vorticity and (c) divergence.
The zero contour in (a) is omitted.

tropopause level at p = 200 hPa. Furthermore, the globally averaged temperature of this distri-
bution is approximately 256.4 K, which closely matches the observed global temperature of the
atmosphere. The horizontally averaged temperature at the surface is selected to be < T >= 288 K
which corresponds exactly to the surface temperature of the so-called U.S. standard atmosphere
(U.S. Standard Atmosphere 1976). In addition, the temperature distribution captures an idealized
stratospheric and mesospheric temperature profile and prescribes a low-level temperature inversion
in polar regions. A baroclinic wave can be triggered if these balanced initial conditions are overlaid
with a perturbation at each model level. Figure 2.2 shows the suggested perturbation patterns for
the zonal wind u′, the relative vorticity ζ ′ and the divergence δ′, respectively. The latter two are
provided for models in vorticity-divergence form.

The test design guarantees static, inertial and symmetric stability properties, but is unstable
with respect to baroclinic or barotropic instability mechanisms. These two forms of instabilities
result from the vertical and meridional wind shear characteristics. In particular, the growth rate
of the baroclinic disturbance highly depends on the strength of the vertical shear. The inertial,
symmetric and static stability criteria are analyzed in Fig. 2.3. Figures 2.3(a) and (b) show the
absolute and potential vorticity fields. The flow is stable with respect to inertial motions since the
absolute vorticity field (ζ + 2Ω sin ϕ) of the basic flow is positive in the Northern Hemisphere and
negative in the Southern Hemisphere (Holton 1992). The same argument holds for the potential
vorticity that indicates the symmetric stability of the flow. Here the potential vorticity PV is
assessed in form of the Ertel potential vorticity. Similar distributions of the Ertel potential vorticity
have also been found by Simmons and Hoskins (1976).

The initial data are also statically stable. This is displayed in Fig. 2.3(c) and (d) which show
the potential temperature distribution Θ and the Brunt Väisälä frequency N . The flow is stati-
cally stable if the vertical potential temperature gradient ∂Θ/∂z with respect to the height z, or
equivalently the buoyancy frequency N , is positive everywhere. The latter can clearly be seen in
Fig. 2.3(d). Note that the buoyancy frequency at the surface approaches zero at the poles which
defines almost neutrally stratified conditions.
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Figure 2.3: Assessment of the stability of the balanced initial conditions: (a) absolute vorticity
(inertial stability), (b) potential vorticity with varying contour levels in PV units = 10−6 K kg−1 m2

s−1 (symmetric stability), (c) potential temperature Θ and (d) Brunt Väisälä frequency N (static
stability).
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2.3 Test strategy
The following two-step test strategy is suggested. First, the dynamical core is initialized with the
balanced initial conditions and run for 30 model days at varying horizontal resolutions. This is a
stringent test of the dynamics that not only serves as a debugging tool but also as an assessment
tool for the algorithmic design of the numerical scheme and its horizontal grid (Williamson et al.
2006). For these model runs error norms can be directly assessed since the initial state is the true
solution (see Section 4). If possible, the unperturbed model simulations should be run without
horizontal or vertical diffusion. Most often, the latter is a component of the physics package and
therefore already inactive in a dynamical core simulation. In addition, no Rayleigh friction near
the model top (if included in the model) should be applied. All three aforementioned diffusion
mechanisms would damp the initial data over time which is consequently reflected in the error
statistics.

Second, the evolution of a baroclinic wave in the Northern Hemisphere is triggered when using
the initial conditions with the overlaid zonal wind perturbation. As before, different horizontal res-
olutions should be assessed to estimate the convergence characteristics. In general, the baroclinic
wave starts growing observably around day 4 and evolves rapidly thereafter with explosive cyclo-
genesis at model day 8. The wave train breaks after day 9 and generates a full circulation in both
hemispheres between day 20-30 depending on the model formulation. Therefore, the simulation
should cover at least a 10-day time period that captures the initial and rapid development stages
of the baroclinic disturbance. If longer time integrations are performed (e.g. up to 30 days as in
the subsequent examples) the spread of the numerical solutions increases noticeably from model
day 12 onwards. This indicates the predictability limit of the test case. Nevertheless, the initial
development stages of new systems at the leading edge of the baroclinic wave train (compare also
to Simmons and Hoskins (1979)) are still predicted reliably until day 16.

The baroclinic wave, although idealized, represents very realistic flow features. Strong tem-
perature fronts develop that are associated with the evolving low and high pressure systems. In
addition, the wavenumber with maximum growth rate lies between 5 and 9 (not shown) which
agrees well with observations and assessments in the literature (for example Simmons and Hoskins
(1977)). It is important to note that the baroclinic wave test case does not have an analytic solution.
Therefore, high resolution reference solutions and their uncertainties are assessed in Section 5.

11



12



Chapter 3

Description of the dynamical cores

The baroclinic wave test sequence has been applied to the three hydrostatic dynamical cores that
are part of NCAR’s Community Atmosphere Model version 3 (CAM3). In particular, these are a
Finite Volume dynamical core (Lin 2004) and the spectral transform semi-Lagrangian and Eulerian
dynamics packages. They are documented in Collins et al. (2004). In addition, the dynamical
core of the operational weather forecast model GME at the German Weather Service (DWD) has
been tested. This finite-difference model is based on an icosahedral mesh with a triangulated grid
structure (Majewski et al. 2002). As mentioned earlier, our test is intended to evaluate dynamical
cores as they would be configured for their NWP or climate simulation applications. This includes
any diffusion or filtering operators with typical coefficients even if they are not needed for this test.
We briefly summarize the four dynamical cores below.

3.1 Eulerian
The Eulerian dynamical core in vorticity-divergence form is based on the traditional three-time-
level, semi-implicit spectral transform approximations applied on a quadratically unaliased trans-
form grid with horizontal triangular truncation (Machenhauer 1979). The vertical coordinate is
terrain following hybrid pressure. The core includes ∇4 horizontal diffusion on temperature, di-
vergence and vorticity to control the energy at the smallest resolved scales. The coefficient has
been chosen for each resolution to yield a reasonably straight tail for the kinetic energy spectra
in realistically forced simulations. The model also includes a ∇2 horizontal diffusion on the top
three levels of the model which serves as a top boundary condition to control upward propagating
waves. The temperature equation includes a frictional heating term corresponding to the momen-
tum diffusion. The Eulerian core includes an a posteriori mass fixer applied at every time step. An
energy fixer is also available with the Eulerian core but was was not invoked for our experiments.
The three-time-level core includes a time filter to control the 2∆t time computational modes.

3.2 Semi-Lagrangian

The semi-Lagrangian dynamical core is based on two-time-level, semi-implicit semi-Lagrangian
spectral transform approximations with quasi-cubic Lagrangian polynomial interpolants. Triangu-
lar truncation is adopted. The core is based on the same terrain following vertical coordinate as
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the Eulerian core. For our experiments we use a quadratically unaliased transform grid. We do
not include the ∇4 and ∇2 horizontal diffusions which are available in the core; the interpolants
control the energy at the smallest resolved scales for the time scales considered here. Since the
energy loss due to the damping by the interpolants is not explicitly known, a term corresponding to
the ∇4 diffusive heating in the Eulerian core cannot be derived. Thus an a posteriori energy fixer
is applied every time step in the model. In addition the a posteriori mass fixer is applied every time
step as in the Eulerian core.

3.3 Finite Volume
The mass-conservative finite volume dynamical core in flux-form is built upon a 2D shallow wa-
ter approach in the horizontal plane (Lin and Rood 1996, 1997). The vertical discretization uti-
lizes a “Lagrangian control-volume” principle, which is based on a terrain-following “floating”
Lagrangian coordinate system and a fixed “Eulerian” reference frame. In particular, the vertically-
stacked finite volumes are allowed to float for a duration of 10 time steps before they are mapped
back monotonically and conservatively to the fixed reference system (Lin 2004). The latter co-
incides with the hybrid levels of CAM3’s Eulerian and semi-Lagrangian dynamical cores. The
advection algorithm makes use of the monotonic third-order piecewise parabolic method PPM
(Colella and Woodward 1984) with an explicit time-stepping scheme. Lower order approximations
are applied near the model top to add extra diffusion at the upper boundary. This configuration has
been used for both the steady-state and baroclinic wave simulations. The FV dynamics package
is built upon a regular latitude-longitude grid and employs both a weak 3-point digital filter in
midlatitudes as well as an FFT filter in polar regions. These control the unstable waves in the
zonal direction that result from the convergence of the computational grid near the poles. The FV
dynamical core does not include explicit horizontal ∇4 or ∇2 diffusion terms. The smallest scales
are controlled by the monotonicity constraints of the numerical scheme. In addition, a divergence
damping mechanism is applied that damps the divergence δ in the form of ∇2(νδ) where ν is a
spatially varying divergence damping coefficient. As with the semi-Lagrangian core, the energy
loss due to the numerical damping is not explicitly known. Therefore, an a posteriori energy fixer
is applied that has the same form as that in the semi-Lagrangian model.

3.4 GME
The dynamical core of the weather prediction system GME applies a finite-difference approxima-
tion with local spherical basis functions at each grid point. The horizontal grid is based on an
icosahedron which is further subdivided into smaller triangles. An Arakawa-A grid staggering is
chosen that places the prognostic variables at the vertices of the triangles. In the vertical direction
GME utilizes the same terrain following η coordinate as the CAM3 Eulerian dynamics package.
The semi-implicit numerical scheme is second-order accurate and applies a classical Leapfrog
three-time-level approach with an Asselin time filter. Due to the quasi-uniformity of the compu-
tational grid no longitudinal FFT-filtering is needed. The smallest scales are controlled by a ∇4

horizontal diffusion mechanism that is applied to the prognostic wind and temperature variables
u, v and T . Near the model top the ∇4 diffusion is replaced with a stronger ∇2 diffusion operator
that serves as a top boundary condition. Neither a mass fixer nor an energy fixer is applied.
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3.5 Resolutions and model parameters

For the basic experiments here which examine the effect of horizontal resolution we adopt the
standard 26 vertical levels (L26) used to produce the CAM3 control simulations (Collins et al.
2006). For mid-range horizontal resolutions we also calculate the solutions with increased and
decreased vertical resolution: 49 levels (L49), which essentially halve the thickness of the standard
26-level grid intervals, and the 18 levels (L18) used for the standard simulations of the predecessor
of CAM3, the Community Climate Model version 3 (CCM3) (Kiehl et al. 1998). In all level
setups, the centers of the topmost levels lie between 3 and 5 hPa (see appendix B for the exact
level placement).

3.5.1 Eulerian (EUL)

Table 3.1 lists the horizontal resolutions, time steps and∇4diffusion coefficients K4 for the spectral
transform Eulerian dynamical core. The abbreviation T symbolizes a triangular truncation which
is followed by the maximum resolved wavenumber. The∇2 horizontal diffusion coefficient, K2 =
2.5 × 105 m2 s−1, is independent of horizontal resolution.

Table 3.1: Horizontal grid resolutions, time steps and diffusion coefficients for the spectral Eulerian
(EUL) dynamical core in CAM3. The∇2 horizontal diffusion coefficient, K2 = 2.5× 105 m2 s−1,
is independent of horizontal resolution.

Eulerian (EUL)
Spectral # Grid points Grid distance Time step Diffusion coefficient

Resolution lat × lon at the equator ∆t K4 (m4 s−1)
T21 32 × 64 625 km 2400 s 2.0 × 1016

T42 64 × 128 313 km 1200 s 1.0 × 1016

T85 128 × 256 156 km 600 s 1.0 × 1015

T170 256 × 512 78 km 300 s 1.5 × 1014

T340 512 × 1024 39 km 150 s 1.5 × 1013

3.5.2 Semi-Lagrangian (SLD)

The same resolutions as in the Eulerian case are tested (see Table 3.1). In contrast though, the time
step ∆t is three times the corresponding Eulerian value and both diffusion coefficients K4 and K2

are set to zero. The standard CAM3 SLD decentering parameter ε = 0.2 is used.

3.5.3 Finite Volume (FV)

The Finite Volume dynamical core is run at the horizontal resolutions listed in Table 3.2. The table
also shows the approximate equatorial grid distances in physical space to ease the comparison to
the other dynamical cores.

15



Table 3.2: Horizontal grid resolutions and time steps for the Finite Volume (FV) dynamical core
in CAM3.

Finite Volume (FV)
Resolution # Grid points Grid distance at the equator Time step
∆ϕ × ∆λ lat × lon ∆y × ∆x ∆t

4◦ × 5◦ 46 × 72 435 km × 556 km 720 s
2◦ × 2.5◦ 91 × 144 220 km × 278 km 360 s

1◦ × 1.25◦ 181 × 288 111 km × 139 km 180 s
0.5◦ × 0.625◦ 361 × 576 55 km × 69 km 90 s

0.25◦ × 0.3125◦ 721 × 1152 28 km × 35 km 45 s

3.5.4 GME

The horizontal grid of GME is based on an icosahedron with 20 equilateral triangles. The sides of
these base triangles are further subdivided into ni equal intervals. The corresponding maximum
and minimum grid distances, time steps and diffusion coefficients are listed in Table 3.3.

Table 3.3: Horizontal grid resolutions, time steps and diffusion coefficients for GME with an
icosahedral grid.

GME
Resolution # Grid Min. grid Max. grid Time step Diffusion coefficients

ni points distance distance ∆t K4 (m4 s−1) K2 (m2 s−1)
16 2562 440 km 526 km 1600 s 5.0 × 1016 2.0 × 106

32 10242 220 km 263 km 800 s 6.0 × 1015 1.5 × 106

64 40962 110 km 132 km 400 s 1.0 × 1015 1.0 × 106

128 163842 55 km 66 km 200 s 1.2 × 1014 2.0 × 105

256 655362 26 km 33 km 100 s 1.2 × 1013 2.5 × 104

3.6 Run time

The run times of the four dynamical cores at their mid-range and second-highest resolutions and 26
levels are listed in Table 3.4. The table serves as a general guide for the computational costs of each
model while acknowledging that such costs are hardware-dependent and vary with the ingenuity of
the programmer. The run time data represent the wallclock time needed to complete one model day
on a 32-processor node of an IBM Power4 architecture when using a pure MPI (Message Passing
Interface) parallelization approach. Identical compiler optimization flags were used for all models.
No effort was made to optimize the numerical schemes or to configure the models in their optimal
setups, such as selecting an optimal time step or switching from a quadratic to a linear truncation
technique in case of EUL and SLD. The dynamical cores represent the standard versions in CAM3
and GME, respectively.
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Table 3.4: Wallclock time (s) for one model day measured on a 32-processor node of an IBM
Power4 architecture. The run times are listed for the mid-range and second-highest horizontal
resolutions and 26 levels.

Wallclock time (s) for 1 day

Horizontal resolution EUL SLD FV GME
T85 — 1◦ × 1.25◦ — ni64 44 24 66 48

T170 — 0.5◦ × 0.625◦ — ni128 483 271 625 325
increase in run time by a factor of 11.0 11.3 9.5 6.8

Table 3.4 shows that the semi-Lagrangian dynamical core clearly outperforms EUL, FV and
GME. At T85 the SLD dynamical core is roughly twice as fast as the other three models at the
comparable resolutions. At the higher resolution T170 though, the computational advantage of
the SLD model diminishes especially in comparison to GME. This is mainly due to a better cache
utilization and reduced parallel overhead in GME. GME shows a superlinear parallel speedup
as the horizontal resolution is doubled and the time step is halved. In general, this corresponds
to an increase in the workload by a factor of 8 when disregarding any additional work for the
parallelization. Here, the increase in the wallclock time for GME ni128 lies around a factor of 7,
whereas the EUL T170, SLD T170 and FV 0.5◦× 0.625◦ dynamical cores show an increase in the
run time by a factor between 9.5-11.3 compared to the lower resolutions. Nevertheless, the SLD
T170 run is still the most cost-effective approach while giving similar simulation results as shown
later.
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Chapter 4

Results: Steady state test case

All four dynamical cores have been initialized with the steady-state initial conditions and run for
30 model days at varying horizontal resolutions and 26 levels. In an ideal case the models are
expected to perfectly maintain the initial state which is the true solution. In practice though, the
initial state degrades over time as discussed below. The errors are quantified via unnormalized l2
error norms. In particular, two types of error measures are used that are applied to the zonal wind
field u.

The first l2 error norm evaluates the symmetry-deviations from the zonal average. It is defined
as

l2
(
u(t)− u(t)

)
=

(
1

4 π

∫ 1

0

∫ π
2

−π
2

∫ 2π

0

[u(λ, ϕ, η, t)− u(ϕ, η, t)]2 cos ϕ dλ dϕ dη

)1/2

≈
(∑

k

∑
j

∑
i [u(λi, ϕj, ηk, t)− u(ϕj, ηk, t)]

2 wj ∆ηk∑
k

∑
j

∑
i wj ∆ηk

)1/2

(4.1)

where the overbar ( ) denotes the zonal average and the sums with indices (i, j, k) are taken over
all longitude points λi, latitude points ϕj and vertical levels ηk of the global grid. The summation
weights wj are the Gaussian weights for the calculations on the spectral transform grids. On
uniform grids wj = | sin(ϕj+1/2)− sin(ϕj−1/2)| is used where the half indices denote the location
of the cell interfaces in the meridional direction. The weights ∆ηk = (ηk+1/2 − ηk−1/2) indicate
the thickness of a model layer. Here the half indices k ± 1/2 point to the locations of the level
interfaces. Eq. (4.1) assumes that the longitudinal grid points are equally spaced.

The second l2 norm assesses the degradation of the zonal average with respect to the true
solution. It is defined by

l2
(
u(t)− u(t = 0)

)
=

(
1

2

∫ 1

0

∫ π
2

−π
2

[u(ϕ, η, t)− u(ϕ, η, t = 0)]2 cos ϕ dϕ dη

)1/2

≈
(∑

k

∑
j [u(ϕj, ηk, t)− u(ϕj, ηk, t = 0)]2 wj ∆ηk∑

k

∑
j wj ∆ηk

)1/2

. (4.2)

For both analyses the GME data are biquadratically interpolated to a regular latitude–longitude
grid that is identical to the FV grid at a comparable resolution (see Tables 3.2 and 3.3). In general,
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alternative numerical approximations to the integrals can also be chosen if models with non-regular
computational meshes are assessed.

Figure 4.1 compares the zonal-symmetry characteristics (Eq. (4.1)) of the dynamical cores.
The simulations with EUL and FV at all horizontal resolutions show that both models maintain
the zonal symmetry exactly up to machine precision (no figure shown). This is in contrast to SLD
(Fig. 4.1(a)) and GME (Fig. 4.1(b)) which develop zonal asymmetries immediately after the start
of the simulation. In case of SLD the asymmetries grow continuously and become clearly visible
after approximately four weeks, especially in surface maps of the meridional wind (not shown).
Here it is interesting to note that the growth of the zonal asymmetry is slightly faster at increased
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Figure 4.1: l2 norm of u − ū in m s−1 for the (a) semi-Lagrangian and (b) GME dynamical cores
at varying horizontal resolutions and 26 levels.

resolution because of the decreased damping from the interpolations at higher resolution. The
asymmetries are introduced at the machine precision level by calculations that involve the lon-
gitudes of the grid points such as the departure point which is calculated as an offset from the
arrival grid point. Thus the relative location of the departure point within the grid interval will
differ at the rounding level for the points on a latitude circle even though the offset is the same to
machine precision. In contrast, the Eulerian spectral and Finite Volume methods use only the grid
interval and not the actual longitudes of grid points and thus the calculations at all longitudes on
a given latitude circle are identical. Other calculations in the semi-Lagrangian core that introduce
rounding-level perturbations along latitude circles are the local geodesic trajectory calculations,
the rotation of the unit vectors associated with the advection of a vector wind, and the calculation
of a wavenumber one polar wind vector used for meridional interpolation which should be zero in
this case but is only so to rounding (see Williamson and Olson (1994) and Collins et al. (2004) for
algorithm details). We note that these are details of the particular implementation in the CAM3
SLD core. It is possible to devise coding strategies that would not introduce rounding level longi-
tudinal asymmetries, such as by interpolating differences from arrival point values rather than full
fields. However, the elimination of rounding level longitudinal asymmetries seems unimportant
in practical atmospheric applications. In case of GME (Fig. 4.1(b)) the initial errors as plotted
at t = 0 are completely determined by the interpolation to the regular grid which sets the lower
bound of the detectable signal. During the simulation this noise level is then overlaid with true
non-zonal numerical truncation errors. These have a built-in wavenumber 5 structure which arises
from the variations in the icosahedral grid intervals. The wavenumber 5 signal grows considerably
over time due to the magnitude of the truncation errors and unstable mean state which leads to
a visible breakdown of the zonal symmetry after several days. This effect is postponed at higher
resolutions as the truncation error perturbations decrease.
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Figure 4.2 shows the evolution of the zonal-mean zonal wind for the 30-day time period In
general, the degradation of the zonal-mean is mainly attributable to the initial generation of gravity
waves in the ϕ-η plane which slowly decay over time. They adjust the geostrophic balance in
the discrete system since the analytically balanced initial state is not entirely balanced in a discrete
representation. Both the EUL (Fig. 4.2(a)) and FV (Fig. 4.2(c)) dynamical cores modulate the zonal
mean initially and exhibit flat profiles thereafter. There are only minor (FV) or almost no (EUL)
improvements of the l2 errors with increasing horizontal resolution. In contrast, the l2 norms of the
SLD dynamical core (Fig. 4.2(b)) increase linearly over the 30-day forecast period. As resolutions
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-ū
t=

0)

0 5 10 15 20 25 30
Days

c FINITE VOLUME

4.0o x 5.0o

2.0o x 2.5o

1.0o x 1.25o

0.5o x 0.625o

0

2

4

6

8

10

12
l 2

(ū
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Figure 4.2: l2 norm of ū − ūt=0 in m s−1 for the four dynamical cores at varying horizontal
resolutions and 26 levels.

increase and time steps decrease the zonal-mean is better maintained. This behavior is primarily
determined by the decentering parameter ε, the length of the time step and the above mentioned
meridional position of the non-zonal geodesic trajectory calculations in polar regions where the
algorithm is switched from a spherical coordinate based scheme (Williamson and Rasch 1989).
Note that the SLD curves closely match the EUL results (Fig. 4.2(a)) if the spherical coordinate
based trajectory calculation is used everywhere and if the decentering parameter is set to zero. This
is shown in Fig. 4.3(b). The former is, of course, only reasonable with zonal advection as in this
case, and the latter in the absence of mountains. We deliberately do not include those variations in
the tests here so as to evaluate the scheme as it would be applied in practice. Again, the GME errors
arise from the built-in wavenumber 5 truncation errors which lead to the breakdown of the steady-
state solution after several days (Fig. 4.2(d)). In general, such a model behavior is an artifact of the
computational grid and the numerical method. But despite the clear exposure of this phenomenon
it is somewhat artificial and unimportant unless one is trying to model a problem dominated by a
zonal flow. For atmospheric applications this is clearly not the case since the forcing is strongly
non-zonal. The wavenumber 5 effect is therefore overly enhanced by the idealized setup. Similar
conclusion would also apply to models that utilize a cubed-sphere computational grid with a built-
in wavenumber 4 structure.
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based trajectory calculation is used and the decentering parameter ε is set to zero.
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Chapter 5

Results: Baroclinic wave test case

The baroclinic wave is triggered when overlaying the steady-state initial conditions with the zonal
wind perturbation. As before, 30-day simulations at varying resolutions are performed with all four
dynamical cores. In general, the nonlinear analytic solution for finite perturbations is not known.
Therefore, we determine a set of reference solutions numerically by applying all the dynamical
cores at very high horizontal resolutions. Because the basic state is unstable, small differences in
addition to our imposed initial perturbation will also grow with time. In particular small differ-
ences between the initial discrete representations of the different cores will grow with time. Such
differences can be introduced by different truncation errors between the schemes or between dif-
ferent resolutions of the same scheme, or even by different relative locations of the grid points
with respect to the imposed perturbation for a given scheme. Thus the reference solutions differ
from each other and the differences grow with time. These differences provide an estimate of the
uncertainty in the reference solutions.

5.1 Time evolution

Figures 5.1–5.4 show snapshots of the evolving surface pressure and 850 hPa temperature fields1 of
the four dynamical cores at day 4, 6, 7, 8 and 10. All models are displayed at their second highest
horizontal resolution with 26 levels which gives a first impression of the ensemble of reference
solutions discussed in this report. Note that the corresponding snapshots at day 9 are presented in
Section 5.2 (Figs. 5.5–5.8). In general, the baroclinic wave grows very slowly until day 4. At day
6 the surface pressure shows two weak high and low pressure systems (Figs. 5.1(b)–5.4(b)) and
two small-amplitude waves are visible in the temperature field (Figs. 5.1(g)–5.4(g)). At day 7 the
rapid development stage of the baroclinic instability sets in (note the change in the scale). The two
high and low pressure centers have intensified and the temperature wave can now clearly be seen.
By day 8 the highs and lows have deepened significantly (Figs. 5.1(d)–5.4(d)). In addition, the two
waves in the temperature field have almost peaked and are beginning to wrap around with fronts
trailing from them. A third upstream wave is now visible. At day 10 wave breaking has set in.
Three closed cells with relatively warmer temperatures (Figs. 5.1(j)–5.4(j)) have formed with the
leading front quite sharp.

1The 850 hPa temperature field is computed via a linear interpolation in ln p coordinates using the two surrounding
model levels.
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In comparison, the growth characteristics of the baroclinic disturbances in all four models are
visually very similar. Differences can only be seen at very small scales as expected. Note that the
intensification of the baroclinic wave in the Finite Volume (FV) dynamical core (Fig. 5.3) appears
to be slightly weaker than in EUL, SLD and GME. This is due to the intrinsic nonlinear diffusion
of the numerical scheme, which is further discussed in Section 5.2 and 5.3. In addition, both the
Eulerian (EUL) and semi-Langrangian (SLD) dynamical cores show some spectral noise in the
surface pressure fields at day 8 and 10. Such a behavior is most commonly observed for spectral
numerical techniques with low diffusion.

5.2 Convergence and model comparison

Figures 5.5–5.8 compare the surface pressure and 850 hPa temperature fields of all four dynamical
at day 9 for the range of horizontal resolutions considered here (see Section 3.5). In the vertical
direction 26 model levels were used. It can clearly be seen that the two lowermost horizontal
resolutions of all four models do not capture the strength of the closed cells in the surface pressure
fields. In addition, the fronts in the temperature fields are not as sharp as in the higher resolution
model runs. However, the mid-range resolutions T85, 1◦× 1.25◦ and ni64 (Figs. 5.5(c)–5.8(c)) are
visually very similar to the simulations at the higher resolutions although the closed cells in the
surface pressure at 170◦E are not quite as deep. As an aside, these mid-range resolutions or even
coarser resolutions (around T42) are typically used for climate simulations today. Note that the
GME simulations at ni64 and the lower resolutions (Figs. 5.8(a-c)) are characterized by an apparent
phase lag in comparison to the higher resolution runs. This is further analyzed in Section 5.5.3. The
second-highest and highest resolution runs are visually almost indistinguishable. Differences can
only be seen at the smallest scales that are most influenced by the diffusive characteristics of the
numerical schemes. An example are the closed cells in the surface pressure fields of the Eulerian,
semi-Lagrangian and GME solutions. They are slightly deeper than those from the Finite Volume
dynamical core. The two spectral cores also exhibit spectral noise where the fields become nearly
flat.

Figures 5.9–5.12 display the 850 hPa relative vorticity fields of the four dynamical cores at day
7 and 9. As before, the models are shown with increasing horizontal resolution and 26 levels. In
these plots, the overall vorticity patterns of all dynamical cores agree reasonably well at the second
highest and highest horizontal resolutions despite the fact that the small-scale differences of the
vorticity grow more rapidly. Therefore, the differences among the models become more evident
in comparison to Figs. 5.5–5.8. At day 7, the high-resolution Finite Volume (FV) dynamical core
(Figs. 5.11(d) and (e)) exhibits a slightly weaker vorticity pattern in comparison to EUL, SLD and
GME at high resolutions. The latter are visually very similar and almost identical at the second
highest and highest resolution. The slightly weaker vorticity fields are caused by the monotonic-
ity constraint in the FV dynamical core. This constraint adds nonlinear intrinsic diffusion in the
regions where the monotonocity principles are locally violated. Note that the slightly more diffu-
sive solution of the FV dynamical core can be matched more very closely by EUL and SLD when
increasing their diffusion coefficients (see Section 5.3). At day 9 the waves have almost reached
their breaking point. Here, the details of vorticity patterns differ, especially in the vicinity of the
rolled up tongues of the vortices. Again, the EUL and SLD dynamical cores (Figs. 5.9 and 5.10)
show spectral noise that disrupts the vorticity contours. In general, it can be seen that the vorticity
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Figure 5.1: Evolution of the baroclinic wave from day 4 until day 10: Surface pressure (left col-
umn) and temperature at 850 hPa (right column) modeled with the Eulerian (EUL) dynamical core
at the horizontal resolution T170 and 26 levels.
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Figure 5.2: Same as Fig. 5.1 but for the semi-Lagrangian (SLD) dynamical core at the horizontal
resolution T170 and 26 levels.

26



a) Day 4

0

30

60

90

L
at

itu
de

0 90 180 270 360

f) Day 4

0

30

60

90

0 90 180 270 360
0

30

60

90

0 90 180 270 360

b) Day 6

0

30

60

90

L
at

itu
de

0 90 180 270 360
Longitude

992 996 1000 1004
Surface pressure [hPa]

g) Day 6

0

30

60

90

0 90 180 270 360
Longitude

0

30

60

90

0 90 180 270 360

220 240 260 280 300
Temperature [K]

c) Day 7

0

30

60

90

L
at

itu
de

0 90 180 270 360

h) Day 7

0

30

60

90

0 90 180 270 360
0

30

60

90

0 90 180 270 360

d) Day 8

0

30

60

90

L
at

itu
de

0 90 180 270 360

i) Day 8

0

30

60

90

0 90 180 270 360
0

30

60

90

0 90 180 270 360

e) Day 10

0

30

60

90

L
at

itu
de

0 90 180 270 360
Longitude

940 960 980 1000 1020
Surface pressure [hPa]

j) Day 10

0

30

60

90

0 90 180 270 360
Longitude

0

30

60

90

0 90 180 270 360

220 240 260 280 300
Temperature [K]

Figure 5.3: Same as Fig. 5.1 but for the Finite Volume (FV) dynamical core at the horizontal
resolution 0.5◦ × 0.625◦ and 26 levels.
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Figure 5.4: Same as Fig. 5.1 but for the dynamical core of GME at the horizontal resolution ni128
and 26 levels.
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Figure 5.5: Convergence of the Eulerian (EUL) dynamical core with increasing horizontal resolu-
tion and 26 levels. The snapshots show the surface pressure (left column) and temperature at 850
hPa (right column) at day 9.
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Figure 5.6: Same as Fig. 5.5 but for the semi-Lagrangian (SLD) dynamical core with increasing
horizontal resolution and 26 levels (day 9).
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Figure 5.7: Same as Fig. 5.5 but for the Finite Volume (FV) dynamical core with increasing hori-
zontal resolution and 26 levels (day 9).
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Figure 5.8: Same as Fig. 5.5 but for the dynamical core of GME with increasing horizontal reso-
lution and 26 levels (day 9).
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gradients become extremely sharp after day 7 since we purposely do not apply strong diffusion
mechanisms as in POL. This enables us to assess the uncertainties in the high-resolution reference
solutions for models in their operational configurations (see discussion in Section 5.5).
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Figure 5.9: Convergence of the Eulerian (EUL) dynamical core with increasing horizontal resolu-
tion and 26 levels. The snapshots show the 850 hPa relative vorticity fields at day 7 (left column)
and day 9 (right column).
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Figure 5.10: Same as Fig. 5.9 but for the semi-Lagrangian (SLD) dynamical core with increasing
horizontal resolution and 26 levels.
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Figure 5.11: Same as Fig. 5.9 but for the Finite Volume (FV) dynamical core with increasing
horizontal resolution and 26 levels.
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Figure 5.12: Same as Fig. 5.9 but for the dynamical core of GME with increasing horizontal
resolution and 26 levels.
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5.3 Sensitivity to the diffusion coefficient
For the dynamical core intercomparison presented in this report, all models are run in their typical
configurations that would also be used for climate predictions or NWP applications. On purpose,
no attempt has been made to tune the models towards a forced converged state. This especially
addresses the choice of the diffusion coefficients in the EUL, SLD and GME dynamical cores
(Tables 3.1 and 3.3). Note that the numerical scheme of the FV dynamical core exhibits intrinsic
nonlinear numerical diffusion that is not tunable by a diffusion coefficient. It is also important
to point out that an artificial exact numerical convergence of the models can be forced by adding
extreme diffusion (POL). But this essentially inhibits the interesting small-scale features of the so-
lution and, as a consequence, leads to a very different evolution of the baroclinic wave. Therefore,
we are not interested in such diffusive simulations.

In order to put the different diffusive characteristics of the models into perspective, a short
sensitivity study has been performed. In particular, the sensitivities of the EUL and SLD dynamical
cores to moderate increases in the forth-order diffusion coefficient K4 are assessed. The second-
order diffusion coefficient K2, that is only active in a few model levels near the model top, is left
at its standard value K2 = 2.5× 105 m2 s−1. Here, the study focuses on the horizontal resolutions
T85 and T170 with 26 vertical levels.

Figures 5.13 and 5.14 show the surface pressure, 850 hPa temperature and relative vorticity
fields of the EUL simulation with doubled K4 diffusion coefficients at T85 and T170. Model days
7 (Fig. 5.14) and 9 (Figs. 5.13 and 5.14) are shown that can be compared to the Eulerian model
simulations with the standard K4 setting (Figs. 5.5 and 5.9). Here it can be seen that the additional
diffusion helps smooth the spectral noise, but on the other hand leads to a slight weakening of
the EUL 850 hPa vorticity field. The latter now resembles the corresponding FV vorticity fields
(Fig. 5.11) more closely.

An even clearer demonstration of the impact of the diffusion on the numerical simulation is
given in Fig. 5.15. Again, the surface pressure, 850 hPa temperature and relative vorticity fields
of the EUL dynamical core at T85 are shown, but now the standard K4 diffusion coefficient is
increased by a factor of 10. In this setup, the spectral noise is eliminated but the diffusion has
strong detrimental effects on the overall circulation. This can now be seen in all model fields
which show a severely damped evolution of the baroclinic disturbance. Here, the strong gradients
and small-scale features of the solution are smoothed out which slows down the rapid growth of
the baroclinic wave.

In addition, the sensitivity of the SLD dynamical core to the diffusion coefficients is assessed.
Recall, that we did not include any second- or forth-order diffusion in our standard experiments
since the smallest scales are mainly controlled by the intrinsic diffusion of the interpolations in the
semi-Lagrangian numerical scheme. Nevertheless, the intrinsic diffusion still allowed some spec-
tral noise in the SLD simulations as seen in Figs. 5.7 and 5.11. Therefore, it is interesting to assess
the impact of some minor additional diffusion on the SLD model simulation. Here, we evaluate
the effects of the standard Eulerian diffusion coefficients (Table 3.1) on the SLD dynamical core
at T85 and T170 with 26 model levels. Figures 5.16 and 5.17 show the surface pressure, 850 hPa
temperature and relative vorticity fields of the corresponding SLD simulation at model day 7 and 9,
respectively. These figures can be compared to the inviscid SLD model simulations in Figs. 5.6 and
5.10. As already seen in the EUL model runs with doubled K4 diffusion (Figs. 5.13 and 5.14) the
additional diffusion helps smooth the spectral noise in the SLD simulation, but on the other hand
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Figure 5.13: Sensitivity of the Eulerian (EUL) dynamical core to the doubling of the standard
horizontal diffusion coefficient K4 at the resolutions T85 and T170 with 26 vertical levels (compare
to Fig. 5.5). K4 = 2.0 × 1015 m4 s−1 (T85) and K4 = 3.0 × 1014 m4 s−1 (T170) are used. K2

is standard (Table 3.1). The snapshots show the surface pressure (left column) and temperature at
850 hPa (right column) at day 9.
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Figure 5.14: Sensitivity of the Eulerian (EUL) dynamical core to the doubling of the standard
horizontal diffusion coefficient K4 at the resolutions T85 and T170 with 26 vertical levels (compare
to Fig. 5.9). K4 = 2.0 × 1015 m4 s−1 (T85) and K4 = 3.0 × 1014 m4 s−1 (T170) are used. K2 is
standard (Table 3.1) The snapshots show the 850 hPa relative vorticity field at day 7 (left column)
and day 9 (right column).
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Figure 5.15: Sensitivity of the Eulerian (EUL) dynamical core at the resolution T85L26 to an
increase in the horizontal diffusion coefficient K4 by a factor of 10. K4 = 1.0 × 1016 m4 s−1 is
used, K2 is standard (Table 3.1). The snapshots show (a) the surface pressure, (b) the 850 hPa
temperature and (c–d) the 850 hPa relative vorticity at day 7 and 9, respectively.
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Figure 5.16: Sensitivity of the semi-Lagrangian (SLD) dynamical core to the horizontal diffu-
sion coefficients K4 and K2 at the resolutions T85 and T170 with 26 vertical levels (compare to
Fig. 5.6). K4 = 1.0× 1015 m4 s−1 (T85), K4 = 1.5× 1014 m4 s−1 (T170) and K2 = 2.5× 105 m2

s−1 are used that are standard for the EUL dynamical core (see Table 3.1). The snapshots show the
surface pressure (left column) and temperature at 850 hPa (right column) at day 9.
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also leads to a slight weakening of the SLD 850 hPa vorticity field. The latter now also resembles
the corresponding FV vorticity fields (Fig. 5.11) more closely, especially at day 7.
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Figure 5.17: Sensitivity of the semi-Lagrangian (SLD) dynamical core to the horizontal diffu-
sion coefficients K4 and K2 at the resolutions T85 and T170 with 26 vertical levels (compare to
Fig. 5.10). K4 = 1.0 × 1015 m4 s−1 (T85), K4 = 1.5 × 1014 m4 s−1 (T170) and K2 = 2.5 × 105

m2 s−1 are used that are standard for the EUL dynamical core (see Table 3.1). The snapshots show
the 850 hPa relative vorticity field at day 7 (left column) and day 9 (right column).

5.4 Forecast skills after model day 10
In this report, the discussion of the baroclinic wave test is focused on the first 10 model days
although integrations until day 30 have been performed. In general, it can be observed that the
solutions of the four dynamical cores start diverging from each other after wave-breaking events
set in around day 9. In particular, the differences in the solutions after day 10 become evident in
the regions where the baroclinic waves have reached maturity and generated sharp fronts. Nev-
ertheless, in other regions the forecasts after day 10 are still reliable. This is especially true for
the newly developing systems downstream of the baroclinic wave. In these regions the initial de-
velopment is in essence a linear phenomenon. As shown in Fig. 5.18 new systems develop every
2-3 days 60-90◦ downstream of the leading edge of the wave train. The figure depicts the surface
pressure maps of the four dynamical cores at the second-highest resolution at day 11, 14 and 16 in
a northpolar-stereographic projection. The high pressure centers are marked with the symbol ‘+’.
The evolution of the new downstream systems agrees well across the four model simulations even
until day 16. This is in particular true for the EUL, SLD and FV model runs whereas the GME
simulation is noticeably perturbed by the growing wavenumber 5 from day 14 onwards (compare
to Section 4). Such a succession of new systems downstream of a baroclinic wave is also discussed
in Simmons and Hoskins (1979).
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Figure 5.18: Northpolar-stereographic projection of the surface pressure at day 11 (left), day 14
(middle) and day 16 (right) for the four dynamical cores at their second-highest resolution (a) EUL
T170, (b) SLD T170, (c) FV 0.5◦×0.625◦ and (d) GME ni128 with 26 levels. The contour interval
is 5 hPa, the 1000 hPa contour line is dotted. The high pressure centers are labeled with the symbol
‘+’.
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5.5 Difference norms
In this section we quantify the differences between solutions from different dynamical cores and
at different resolutions using the l1, l2 and l∞ difference norms of the surface pressure, 850mb
temperature and 850mb vorticity. Surface pressure is most convenient for general comparisons
since the norms can be calculated without vertical interpolation to a specified pressure surface.
Also it does not require the calculation of a secondary variable such as vorticity which is not a
prognostic variable for many dynamical cores. We present all three variables here to demonstrate
that consideration of surface pressure alone is adequate for future comparisons.

The difference norms for ps are defined by

l1
(
ps(t)

)
=

1

4π

∫ 2π

0

∫ π
2

−π
2

|ps1(λ, ϕ, t)− ps2(λ, ϕ, t)| cos ϕ dϕ dλ

≈
∑

i

∑
j |ps1(λi, ϕj, t)− ps2(λi, ϕj, t)|wj∑

i

∑
j wj

(5.1)

l2
(
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)
=
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1

4π

∫ 2π

0

∫ π
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−π
2

[ps1(λ, ϕ, t)− ps2(λ, ϕ, t)]2 cos ϕ dϕ dλ

)1/2

≈
(∑

i

∑
j [ps1(λi, ϕj, t)− ps2(λi, ϕj, t)]

2 wj∑
i

∑
j wj

)1/2

(5.2)

l∞
(
ps(t)

)
= maxall i,j|ps1(λi, ϕj, t)− ps2(λi, ϕj, t)| (5.3)

where the sums are taken over all points (λi, ϕj) of the global grid and ps1 and ps2 represent the
two cases being compared. The integration weights wj are given following Eq. (4.1). As earlier
Eq. (5.1) and Eq. (5.2) assume a tensor product grid with a uniform longitudinal grid interval. The
model solutions must be interpolated to a common grid in order to calculate the norm. For each pair
compared we interpolate from the coarser grid to the finer grid of the pair with horizontal spectral
interpolation with no truncation. As outlined in Section 4 the GME data are also biquadratically
interpolated to a regular latitude–longitude grid before further spectral interpolations are made for
the norm calculations. All spectral interpolations are computed with SPHEREPACK, a publicly
available analysis package for problems in spherical geometry (Adams and Swarztrauber 1997).
The vorticity is calculated from the wind components u and v on the Gaussian or uniform latitude–
longitude grids using spectral approximations. Again SPHEREPACK routines are applied.

5.5.1 Uncertainty in the reference solutions
Figures 5.19, 5.20, and 5.21 show the l1, l2 and l∞ difference norms of the surface pressure, 850mb
temperature and 850mb vorticity, respectively, for different models from the highest resolution
class (first row), from the second-highest resolution class (second row), and from the highest res-
olution class with a model from the second-highest resolution class (third and fourth rows). Many
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of the individual curves overlay each other and cannot be distinguished. The region below the
maximum of all curves in each column of the figures is filled with yellow in all the plots of that
column. The significance of this filled region will be discussed later.

The differences in the norms for days 0 to 6 are very small and are easily affected by the
interpolations to a common grid needed to calculate the difference norms. The differences from day
0 to day 6 tend to be relatively flat, rather than growing as would be expected. This indicates that
the differences are affected by something in addition to the growth of the perturbation itself. During
this period dispersion and damping of the gravity waves affect the initial growth characteristics.
In addition, the interpolation adds to the difference and can dominate. Thus the norms do not
represent the actual difference in the unstable growing mode between the models during this period.
That difference is smaller. Before day 6 the differences are very small in practical terms as seen in
Figs. 5.1 – 5.4 where, for example, the temperature contours on day 4 are practically straight lines.

For days 7 through 14 the difference norms in the second rows of Figs. 5.19 – 5.21 which
compare the different models in the second-highest resolution class are similar to those in first rows
which compare models in the highest resolution class. Since the uncertainties are not decreasing
going from second-highest to the highest resolution, these reference solutions are the best that can
be obtained for the problem as posed here. The highest curves in the first and second rows of
Figs. 5.19 – 5.21 provide an indication of the uncertainty in the reference solutions. This is further
verified by the third and fourth rows which show the difference norms between a model from the
highest resolution class with one from the second-highest class. The largest differences in third and
fourth rows are very similar to the largest in the first and second rows again indicating the level of
uncertainty in the reference solutions. Thus the top of the filled regions define the uncertainty of
our reference solutions for that variable and norm.

Eventually the difference norms grow until they saturate and the two solutions are related to
each other as if they were chosen randomly from all possible states. Figures 5.19 and 5.20 indicate
that for surface pressure and temperature that leveling occurs around day 25 where the curves be-
gin to level off. The asymptotic levels appear to differ somewhat between models. This apparent
different level of saturation occurs because the perturbations in EUL, SLD and FV are in fact not
fully developed in the Southern Hemisphere until after day 30, in contrast to GME. In general,
the basic zonal state in the test case is symmetric about the equator. Thus any perturbation in the
Southern Hemisphere will also grow. However, we impose an initial perturbation in the North-
ern Hemisphere only. Perturbations are introduced into the Southern Hemisphere by truncation
errors and by gravity waves which arise from the geostrophic adjustment associated with the im-
posed unbalanced perturbation in the Northern Hemisphere and which propagate into the Southern
Hemisphere. The perturbations introduced by the gravity waves are of similar amplitude for the
different schemes at comparable resolutions, but the truncation errors are not. As indicated earlier
by Figs. 4.1 and 4.2 the EUL and FV schemes approximate the zonal balanced state in the South-
ern Hemisphere rather well without any zonal variations in the truncation error. This is contrary to
GME which truncation errors exhibit the built-in wavenumber 5 grid structure. For practical ap-
plication these errors are small at the higher resolutions. Nevertheless in the Southern Hemisphere
they grow fast and saturate sooner than the numerical errors introduced by the EUL, SLD and FV
schemes. Notice that in fact the l1 and l2 norms for those schemes which saturate later continue to
grow to day 30 and eventually reach the same level as the others. The l∞ norm grows faster than
the l1 and l2 norms as it reflects the smaller scales where the difference grows faster. Likewise the
vorticity norms (Fig. 5.21) grow significantly faster than the corresponding surface pressure and
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Figure 5.19: l1, l2 and l∞ norms of the surface pressure differences (in hPa) between the four
dynamical cores with 26 levels: (first row) highest horizontal resolutions, (second row) second-
highest horizontal resolutions, (third and fourth rows) highest of one model compared to second-
highest of the other.
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Figure 5.20: l1, l2 and l∞ norms of the 850mb temperature differences (in K) between the four
dynamical cores with 26 levels: (first row) highest horizontal resolutions, (second row) second-
highest horizontal resolutions, (third and fourth rows) highest of one model compared to second-
highest of the other.
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Figure 5.21: l1, l2 and l∞ norms of the 850mb vorticity differences (in s−1) between the four
dynamical cores with 26 levels: (first row) highest horizontal resolutions, (second row) second-
highest horizontal resolutions, (third and fourth rows) highest of one model compared to second-
highest of the other.
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temperature norms consistent with the smaller scale uncertainties being more noticeable in the vor-
ticity as seen earlier in the maps of the fields (Figs. 5.9 – 5.12). As mentioned above, for reference
in later figures, the regions below all lines in each column are filled in all figures for that norm
and variable. The top of that filled region provides an estimate of the uncertainty in the reference
solution.

5.5.2 Horizontal resolution
Figures 5.22, 5.23 and 5.24 show the convergence of surface pressure, temperature and vorticity
respectively with increasing resolution for the EUL, SLD, FV and GME dynamical cores. Each
is compared with the reference solution produced by the highest resolution version of the same
model. The first and second rows show that the T42 EUL and SLD do not capture the reference
solution to within the uncertainty, but the T85 EUL and SLD do. Likewise, the third rows show that
the 2.0 FV does not capture the reference solution but the 1.0 FV does. For the GME (last row),
ni64 does not capture the reference solution and the resolution must be at least ni128 to capture it
to within the uncertainty.

Notice that the differences between higher resolution solutions of the same model are well
below the uncertainty obtained from Figs. 5.19 – 5.21, e.g. T170-T340 EUL and SLD, and 0.5-
0.25 FV. The decrease in differences with increasing horizontal resolution is the expected behavior
for a single model. As horizontal resolution is increased the errors decrease so the differences
between solutions also decrease. On first consideration this might be taken to imply our estimate
of the uncertainty in the reference solutions is too large. Rather it implies a danger in using a
single model to determine a reference solution for problems involving geostrophic adjustment and
unstable states.

Figures 5.19 – 5.21 show that the solutions of different models do not become closer to each
other with increasing resolution once the resolutions exceed a certain limit whereas in Figs. 5.22 –
5.24 the differences between solutions with the same model continue to decrease with increasing
resolution. A possible explanation is that the truncation errors for a single model at different
resolutions are more similar than the errors between models. Thus the differences involving a
single model are initially smaller and remain smaller for a fixed elapsed time until saturation is
reached. Although the perturbations introduced by the truncation errors of a single model are more
similar and the evolving solutions are closer to each other, those solutions are not necessarily more
accurate.

A more likely explanation for the convergence of inter-model differences is the different way
each numerical method handles the geostrophic adjustment of the unbalanced initial perturbation.
The models have different vertical approximations and different effective top boundary condi-
tions, although the nominal level placement is the same in our experiments. With different vertical
approximations the models are likely to project the imposed initial unbalanced perturbation dif-
ferently onto the vertical modes, leading to a slightly different initial partition between the slow
modes which grow with time, and the fast modes which are damped out, or at least remain small.
This partition will be less affected by the horizontal resolution of a single scheme once it is fine
enough with respect to the scales of the imposed initial wind perturbation.

The surface pressure and temperature differences represented by Figs. 5.19 and 5.20 and by
Figs. 5.22 and 5.23 are relatively large scale. The corresponding differences for all cases trun-
cated to a T42 representation are shown in Figs. 5.25 and 5.26 and by Figs. 5.28 and 5.29. The
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Figure 5.22: l1, l2 and l∞ norms of the surface pressure differences (in hPa) for each horizontal
resolution compared to the highest horizontal resolution of the same model with 26 levels: (first
row) EUL, (second row) SLD, (third row) FV and (last row) GME.
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Figure 5.23: l1, l2 and l∞ norms of the 850mb temperature differences (in K) for each horizontal
resolution compared to the highest horizontal resolution of the same model with 26 levels: (first
row) EUL, (second row) SLD, (third row) FV and (last row) GME.
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Figure 5.24: l1, l2 and l∞ norms of the 850mb vorticity differences (in s−1) for each horizontal
resolution compared to the highest horizontal resolution of the same model with 26 levels: (first
row) EUL, (second row) SLD, (third row) FV and (last row) GME.
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curves with and without truncation are virtually identical. Thus at least T85 resolution is needed
to calculate the T42 component of surface pressure and temperature to within the uncertainty of
the reference solution for the EUL and SLD, while at least 1◦ is needed for the T42 component
of the FV and ni128 for the T42 component of the GME. Vorticity, on the other hand, shows the
effect of the truncation. Figs. 5.27 and 5.30 show the norms for vorticity truncated to T42. One can
see a slower growth compared to the untruncated norms (Figs. 5.21 and 5.24), looking much more
like the surface pressure and temperature curves. However the earlier conclusions with regard to
the resolutions needed to capture the solution to within the uncertainty continue to hold for the
truncated vorticity as well.
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Figure 5.25: l1, l2 and l∞ norms of the surface pressure differences (in hPa) between the four
dynamical cores with 26 levels: (first row) highest horizontal resolutions, (second row) second-
highest horizontal resolutions, (third and fourth rows) highest of one model compared to second-
highest of the other. Fields are truncated to T42 before the calculations.
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Figure 5.26: l1, l2 and l∞ norms of the 850mb temperature differences (in K) between the four
dynamical cores with 26 levels: (first row) highest horizontal resolutions, (second row) second-
highest horizontal resolutions, (third and fourth rows) highest of one model compared to second-
highest of the other. Fields are truncated to T42 before the calculations.
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Figure 5.27: l1, l2 and l∞ norms of the 850mb vorticity differences (in s−1) between the four
dynamical cores with 26 levels: (first row) highest horizontal resolutions, (second row) second-
highest horizontal resolutions, (third and fourth rows) highest of one model compared to second-
highest of the other. Fields are truncated to T42 before the calculations.
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Figure 5.28: l1, l2 and l∞ norms of the surface pressure differences (in hPa) for each horizontal
resolution compared to the highest horizontal resolution of the same model with 26 levels: (first
row) EUL, (second row) SLD, (third row) FV and (last row) GME. Fields are truncated to T42
before the calculations.
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Figure 5.29: l1, l2 and l∞ norms of the 850mb temperature differences (in K) for each horizontal
resolution compared to the highest horizontal resolution of the same model with 26 levels: (first
row) EUL, (second row) SLD, (third row) FV and (last row) GME. Fields are truncated to T42
before the calculations.
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Figure 5.30: l1, l2 and l∞ norms of the 850mb vorticity differences (in s−1) for each horizontal
resolution compared to the highest horizontal resolution of the same model with 26 levels: (first
row) EUL, (second row) SLD, (third row) FV and (last row) GME. Fields are truncated to T42
before the calculations.
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5.5.3 Phase error

Figure 5.31 shows the surface pressure phase error in degrees longitude for the various models,
positive for phase lag of the coarser resolution model. We define the phase error to be the distance
the field must be shifted in longitude with respect to the reference solution to produce the minimum
l2 difference. The reference solution is taken to be the highest resolution solution from the same
model. The phase error is determined to an integral number of grid intervals of the reference
solution. A meaningful phase error can only be calculated when there is a reasonable correlation
between the growing unstable structures in the two fields. In our experience, the perturbation is
neither large enough nor well organized enough to yield a consistent phase error before day 4. After
day 10, the differences involving the coarser resolutions are too close to saturation (and randomly
related) to yield a consistent phase error.

Figure 5.31: Surface pressure phase error (degrees longitude) for each horizontal resolution com-
pared to the highest horizontal resolution for each model with 26 levels. The phase error is positive
for a phase lag of the coarser resolution run.

The finer resolution solutions have insignificant phase error which is consistent with their
matching the reference solution to within its uncertainty. The T21 EUL has about 2◦ phase er-
ror at day 10, and the 4.0 and 2.0 FV phase errors range from 1.5◦ to 2◦. The T21 SLD phase error
reaches 6.5◦ by day 10. The GME shows larger phase errors than the other three schemes at similar
resolutions. The ni16, ni32 and ni64 GME phase errors are about 25◦, 10◦, and 3◦ respectively at
day 10. The phase error is responsible for much of the total error in the ni64 GME solution, but
not all. The “amplitude” error (not shown), i.e. the minimum l2 used to determine the phase error,
is close to the reference solution uncertainty but still does not fall within it. Some of the total error
is also attributable to the growth of the wavenumber 5 perturbation.

59



5.5.4 Vertical Resolution

In addition to the standard 26-level configuration (see appendix B), calculations have also been
performed with 18 and 49 vertical levels to address the impact of the vertical resolution on the
reference state. For these simulations the mid-range horizontal resolutions are selected: T85 EUL
and SLD, 1.0 FV and ni64 GME. Recall that the 26-level T85 EUL and SLD, and 1.0 FV have
converged to within the uncertainty of the reference solutions, but the ni64 GME has not.

Figures 5.32 – 5.34 display the sensitivity of the solution to the vertical level distribution.
The top rows of the figures show that the differences between all 49-level and 26-level model

Figure 5.32: l1, l2 and l2 norms of the surface pressure differences (in hPa) between each model (at
its mid-range horizontal resolution) with different vertical resolutions: (first row) 49 levels versus
26 levels, (second row) 26 levels versus 18 levels.

simulations are within the uncertainty of the reference solutions. The same conclusion applies to
the differences between the 26-level and 18-level model runs that are presented in second rows of
the figures. However, these differences are significantly smaller than the differences between the
49-level and 26-level model setups. The effect is attributable to the similar placement of the levels
in the 18- and 26-level configurations. This is especially true for the tropospheric levels since the
26-level distribution was created from the 18-level setup by adding levels around the tropopause
with most of the new levels added between 200 hPa and 50 hPa (Williamson et al. 1998). Above
200 hPa the 26-level grid layers are therefore about half the thickness of the 18-level ones (in ln p).
In the lower troposphere, however, the levels of the two grids are very close to each other. As
a consequence, the truncation errors of the 18- and 26-level setups are indeed very similar since
the growing modes of our test case have most of their amplitude at lower levels. In contrast, the
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level distribution of the 49-level configuration clearly differs from the 26-level setup in all regions
which is reflected by the slightly elevated levels of the l2 error norms. For practical purposes
though, these differences stay well below the uncertainty limit so that the 26-level distribution is
an adequate representative of the reference state.

Figure 5.33: l1, l2 and l2 norms of the 850mb temperature differences (in K) between each model
(at its mid-range horizontal resolution) with different vertical resolutions: (first row) 49 levels
versus 26 levels, (second row) 26 levels versus 18 levels.
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Figure 5.34: l1, l2 and l2 norms of the 850mb vorticity differences (in s−1) between each model (at
its mid-range horizontal resolution) with different vertical resolutions: (first row) 49 levels versus
26 levels, (second row) 26 levels versus 18 levels.
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Chapter 6

Summary

An idealized baroclinic wave test case for dynamical cores of GCMs has been developed that is
deterministic, easy-to-use, relevant to typical atmospheric phenomena and applicable to a wide
variety of model formulations and grids. The two-step test strategy first assesses the ability of
the models to maintain a steady-state before an overlaid perturbation triggers the evolution of a
baroclinic wave over the course of several days. The initial conditions are given in form of analytic
expressions. The zonally symmetric initial state is a steady-state solution of the primitive equations
that resembles the climatic conditions of a winter hemisphere.

The test has been applied to four very different dynamical cores at varying horizontal and verti-
cal resolutions. In particular, two spectral transform models (Eulerian (EUL) and semi-Lagrangian
(SLD)) and two grid point models (Finite Volume (FV) and DWD’s finite difference, icosahe-
dral model (GME)) with different numerical schemes and computational grids have been tested.
All models provide independent reference solutions. The uncertainty in the reference solutions is
established by comparing the solutions of all four dynamical cores at high horizontal resolutions.
This approach not only takes the convergence-with-resolution characteristics of a single model into
account but also assesses the cross-model differences to gain confidence in the reference states.
Here, it is strongly emphasized that the maximum spread of all high resolution reference simula-
tions defines the uncertainty of the reference state despite the fact that all single model assessments
stay well below the uncertainty limit. Once a single model converges to within the uncertainty, finer
horizontal resolutions do not provide a better estimate of the reference solution. Thus the test case
tells the user at what resolution a new scheme is as good as those considered here and something
about its behavior at coarser resolutions, but not at finer resolutions. In summary, it has been shown
that the four dynamical cores with 26 levels converge to within the uncertainty at the horizontal
resolutions EUL T85, SLD T85, FV 1.0◦× 1.25◦ and GME ni128. The higher resolution for GME
was partly needed to reduce the phase error that is evident in the coarser GME simulations.

In the future, we would like to establish a standard test suite for dynamical cores that fosters the
developments and intercomparisons of new numerical schemes and gridding options. We hope that
this test finds broad acceptance in the modeling community to become part of such a test series.
As a starting point for model intercomparions we make our reference solutions in netCDF format
available online (contact the authors for details). In particular, the data sets contain the surface
pressure fields for all four models at the highest and second-highest resolutions so that modeling
groups can readily compute the l2 norms against the established reference states.
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Appendix A

Derivation of the analytic initial conditions

The derivation starts from the adiabatic and frictionless primitive equations in spherical (λ, ϕ)
coordinates with hybrid η-levels. The u- and v-momentum equations, the hydrostatic equation as
well as the continuity and thermodynamic equations are given by

d u

d t
− u v tan ϕ

a
=

− 1

a cos ϕ

(
∂ Φ

∂ λ
+ Rd T

∂ ln p

∂ λ

)
+ f v (A.1)
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− 1
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− f u (A.2)
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d T

d t
− Rd T ω

cp p
= 0 (A.5)

with the Coriolis parameter f = 2 Ω sin ϕ. The constant cp = 1004 J kg−1 K−1 stands for the
specific heat of dry air at constant pressure, η̇ is defined as η̇ = dη/dt and ω = dp/dt symbolizes
the pressure vertical velocity. The equation of state for dry air is given by

p = ρRd T

where ρ denotes the air density. In addition, the substantial derivative d/dt is defined as

d

d t
( ) =

∂

∂ t
( ) + (v · ∇)( )

=
∂

∂ t
( ) +

u

a cos ϕ

∂

∂ λ
( ) +

v

a

∂

∂ ϕ
( ) + η̇

∂

∂ η
( ).

All other symbols are explained in Section 2.1. For ps = p0 = 105 Pa with p = η ps (compare to
appendix B) the hydrostatic equation (Eq. (A.3)) is equivalent to

∂ Φ′

∂ η
=
− Rd T ′

η
(A.6)
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where Φ′ and T ′ indicate the deviations from the horizontal-mean geopotential and temperature
fields.

Based on this formulation the goal is to derive an analytic, steady-state balanced initial data
set for the model variables u, v, ps, T, Φs where Φs stands for the surface geopotential. The deriva-
tion contains several degrees of freedom. Here the chosen wind profiles and constant parameters
guarantee that the resulting initial data closely resemble a realistic climatic state and fulfill the
symmetric, inertial and static stability criterion. On the other hand, the flow is designed to be
baroclinically and barotropically unstable. The derivation steps are

1. Choose a nondivergent wind field u and v and a constant ps distribution (see Section 2.1).

2. Choose the horizontally averaged temperature profile 〈T (η) 〉. This is first done in z coordi-
nates using

〈T 〉 = T0 − Γ z (A.7)

where Γ = 0.005 K m−1 is the vertical temperature gradient, T0 = 288 K represents the
horizontal-mean temperature at the surface and z denotes the horizontal-mean geopotential
height in m. This equation is then transformed into the p system via integration of the
hydrostatic relationship

∂ p

p
= − g

Rd 〈T 〉 ∂z .

It follows
z =

T0

Γ

(
1 − ( p

p0

)Rd Γ

g

)
(A.8)

with p0 = p(z0 = 0 m) = 105 Pa. Equations (A.7) and (A.8) result in the expression for
〈T (η) 〉 (Eq. (2.4)) with η = p/p0.

3. Derive the geopotential Φ and compute the surface geopotential Φs: The derivation starts
from the v momentum equation (Eq. (A.2)). A steady-state solution with dv/dt = 0 is
sought. In case of a constant ps field ∂ ln p/∂ϕ vanishes on constant η-surfaces. The chosen
u wind profile (Eq. (2.2)) is inserted into the steady-state momentum equation for v

1

a

∂Φ′

∂ϕ
= − u (2 Ω sin ϕ +

u

a
tan ϕ) (A.9)

which is integrated analytically over ϕ. The integration leads to

Φ′(λ, ϕ, η) = u0 cos
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}
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with a level-dependent integration constant Φ0(η). Recall that ηv is defined as

ηv = (η − η0)
π

2
.

Using the condition that the deviations Φ′ from the horizontal mean must vanish when aver-
aged horizontally Φ0(η) is derived via

1

4π

∫ 2π

0

∫ π
2

−π
2

Φ′(λ, ϕ, η) cos ϕ dϕdλ = 0 .
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This results in the expression

Φ0(η) = u0 cos
3
2 ηv

(
10

63
u0 cos

3
2 ηv − π

4
a Ω

)
. (A.11)

The geopotential is given by Φ(λ, ϕ, η) = 〈Φ(η) 〉 + Φ′(λ, ϕ, η) where 〈Φ(η) 〉 is the hor-
izontally averaged geopotential. In hydrostatic GCMs, it is only necessary to calculate the
surface geopotential Φs where the horizontally averaged geopotential 〈Φ(ηs) 〉 at the surface
level ηs = 1 is set to zero.

4. Finally, the temperature deviations T ′ are analytically derived using the hydrostatic equation
(Eq. (A.6)) and the newly derived expression for Φ′ (Eq. (A.10))

T ′(λ, ϕ, η) =
−η

Rd

∂Φ′(λ, ϕ, η)

∂η
. (A.12)

The temperature field T is then composed of

T (λ, ϕ, η) = 〈T (η) 〉 + T ′(λ, ϕ, η) (A.13)

as displayed in Eq. (2.6). 〈T (η) 〉 is the horizontally averaged temperature which is discussed
in step 2. At upper levels 〈T (η) 〉 is modified to introduce the typical stratospheric and
mesospheric temperature profiles (Eq. (2.5)).

In this setup, the initial vertical velocities ω and η̇ are zero when imposing the boundary con-
dition η̇ = 0 at the lower and upper boundaries η = 1 and η = 0. In addition, the u-momentum
(Eq. (A.1)), continuity (Eq. (A.4)) and thermodynamic (Eq. (A.5)) equations are automatically
fulfilled. A baroclinic wave can be triggered when overlaying the steady-state initial conditions
with an unbalanced perturbation at each model level.
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Appendix B

Vertical η coordinate

The hybrid orography-following η-coordinate (Simmons and Burridge 1981) comprises a pure
pressure coordinate and a σ-component with σ = p/ps. The pressure p at a vertical level η is given
by

p(λ, ϕ, η, t) = a(η) p0 + b(η) ps(λ, ϕ, t) (B.1)

where the coefficients a(η) and b(η) are height-dependent and provided in tabular form (see below).
Most commonly the reference pressure p0 is set to 105 Pa or 1.01325× 105 Pa. Here, a setup with
p0 = 105 Pa is chosen which coincides with the constant initial surface pressure ps. This leads to
the simplified expression

p(λ, ϕ, η, t = 0) = (a(η) + b(η)) p0 = η p0 . (B.2)

In the discrete representation, the vertical direction is subdivided into Nlev model levels which
are bounded by Nlev + 1 interface levels (denoted by the half indices k + 1

2
below). The pressure

at the interfaces is then given by

pk+ 1
2

= ak+ 1
2
p0 + bk+ 1

2
ps = ηk+ 1

2
p0 (B.3)

with ηk+ 1
2

= ak+ 1
2

+ bk+ 1
2

and k = 0, 1, 2, · · ·Nlev. The corresponding ηk values at the centers are
determined via the average ηk = 1

2
(ηk+ 1

2
+ ηk− 1

2
). It follows pk = ηk p0.

For the baroclinic wave tests described here, three setups with 18, 26 and 49 model levels are
chosen. The corresponding coefficients for the model interfaces ak+ 1

2
and bk+ 1

2
are listed in Tables

B.1 and B.2. Here it is important to note that some GCMs (for example Majewski et al. (2002))
employ the alternative notation pk+ 1

2
= ak+ 1

2
+bk+ 1

2
ps where the coefficients ak+ 1

2
are given in Pa.

If such a setup is encountered, the ak+ 1
2

coefficients in Tables B.1 and B.2 need to be multiplied by
p0.
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Table B.1: Vertical coefficients for the 18- and 26-level setups. The parameter ak+ 1
2

denotes the
pure pressure component, bk+ 1

2
defines the σ part of the hybrid η-system.

Index 18 Model levels (L18) 26 Model levels (L26)
k ak+ 1

2
bk+ 1

2
ak+ 1

2
bk+ 1

2

0 0.00251499 0. 0.002194067 0.
1 0.00710361 0. 0.004895209 0.
2 0.01904260 0. 0.009882418 0.
3 0.04607560 0. 0.01805201 0.
4 0.08181860 0. 0.02983724 0.

5 0.07869805 0.03756984 0.04462334 0.
6 0.07463175 0.08652625 0.06160587 0.
7 0.06955308 0.1476709 0.07851243 0.
8 0.06339061 0.221864 0.07731271 0.01505309
9 0.05621774 0.308222 0.07590131 0.03276228

10 0.04815296 0.4053179 0.07424086 0.05359622
11 0.03949230 0.509588 0.07228744 0.07810627
12 0.03058456 0.6168328 0.06998933 0.1069411
13 0.02193336 0.7209891 0.06728574 0.1408637
14 0.01403670 0.816061 0.06410509 0.1807720

15 0.007458598 0.8952581 0.06036322 0.2277220
16 0.002646866 0.953189 0.05596111 0.2829562
17 0. 0.985056 0.05078225 0.3479364
18 0. 1. 0.04468960 0.4243822
19 0.03752191 0.5143168

20 0.02908949 0.6201202
21 0.02084739 0.7235355
22 0.01334443 0.8176768
23 0.00708499 0.8962153
24 0.00252136 0.9534761

25 0. 0.9851122
26 0. 1.

70



Table B.2: Same as Table B.1 but for the 49-level setup.

Index 49 Model levels (L49) Index 49 Model levels (L49)
k ak+ 1

2
bk+ 1

2
k ak+ 1

2
bk+ 1

2

0 0.002251865 0. 25 0.07118414 0.1556586
1 0.003983890 0. 26 0.06962863 0.1737837
2 0.006704364 0. 27 0.06795950 0.1932327
3 0.01073231 0. 28 0.06616846 0.2141024
4 0.01634233 0. 29 0.06424658 0.2364965

5 0.02367119 0. 30 0.06218433 0.2605264
6 0.03261456 0. 31 0.05997144 0.2863115
7 0.04274527 0. 32 0.05759690 0.3139801
8 0.05382610 0. 33 0.05504892 0.3436697
9 0.06512175 0. 34 0.05231483 0.3755280

10 0.07569850 0. 35 0.04938102 0.4097133
11 0.08454283 0. 36 0.04623292 0.4463958
12 0.08396310 0.006755112 37 0.04285487 0.4857576
13 0.08334103 0.01400364 38 0.03923006 0.5279946
14 0.08267352 0.02178164 39 0.03534049 0.5733168

15 0.08195725 0.03012778 40 0.03116681 0.6219495
16 0.08118866 0.03908356 41 0.02668825 0.6741346
17 0.08036393 0.04869352 42 0.02188257 0.7301315
18 0.07947895 0.05900542 43 0.01676371 0.7897776
19 0.07852934 0.07007056 44 0.01208171 0.8443334

20 0.07751036 0.08194394 45 0.007959612 0.8923650
21 0.07641695 0.09468459 46 0.004510297 0.9325572
22 0.07524368 0.1083559 47 0.001831215 0.9637744
23 0.07398470 0.1230258 48 0. 0.9851122
24 0.07263375 0.1387673 49 0. 1.
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