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Abstract

In this documentation the results are described which were obtained by using a grid
point oriented approach to solve the shallow water equations on the globe. Several test
cases of the shallow water test set have been evaluated.

This work was carried out on behalf of the Deutscher Wetterdienst (DWD).
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Introduction 1

1 Introduction

The program BARGLO [4] of the German Weather Service (Deutscher Wetterdienst,
DWD) solves the shallow water equations on the globe. The space discretization uses
an almost uniform triangular mesh, whose generation starts from a regular icosahedron,
which is embedded into the two-sphere [1]. The further re�nement �nally leads to a
triangulation (see Section 3), which is almost regular and which provides a data structure
having nice properties with respect to a later parallelization (see Section 5). Having an
approximately equally spaced grid, there is no need for a special procedure close to the
poles as in many other approaches.

Today, spectral methods are the most widely accepted and applied algorithms both
for numerical weather prediction and for the atmospheric part of global climate models.
The idea of using massively parallel computer architectures (perhaps for higher reso-
lutions) has raised the question again, whether grid point models or spectral methods
are more promising. Of course, the advantages and the disadvantages of the two meth-
ods are known, but never compared in a fair and systematic way. Therefore, applying
the grid point oriented approach of the DWD to the standard test suite will not only
contribute to such a fair comparison but also deliver the material which is necessary
for strategic decisions within the DWD's new global model. As already mentioned,
there is no clear answer to the question whether the spectral technique [3] or a grid
point method is preferable. Both approaches have advantages (especially the grid point
approach o�ers the principal possibility to use optimal order methods) but the use of
parallel architectures again poses the above question because of the more local features
of grid point based models. Therefore, it is both of theoretical and practical interest
to investigate the given model. For spectral methods there exists a widely accepted
sequence of test cases (see [2, 6]), which will detect the numerical properties of solving
procedures. In this documentation we describe the results which we obtained running
the grid point program BARGLO in its original version and with some optimizations
on all but one the test cases. The optimization of the code, which essentially results in
a modi�ed time stepping, is described later.

The numerical experiments are performed on several resolutions having an average
distance between mesh points of 542 km for the coarsest grid and of 125 km for the
�nest one. The corresponding spectral truncation numbers are approximately T21/T42
and T106, respectively, if the grid spacing is considered at the equator.

2 The Continuous Problem

In Cartesian coordinates the shallow water equations are given by the advective form
of the momentum equations and by the continuity equation:



2 The Discretized Problem

@u
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u and v are the horizontal wind components. h represents the depth of the uid,
hs the height of the underlying mountain. The Coriolis term is f = 2
 sin' with
the latitude ' 2 [�1

2
�; 1

2
�] varying from the north pole (' = 1

2
�) to the south pole

(' = �1

2
�). 
 = 2�=T with T being the length of a siderian day, is the angular velocity

of the earth. The longitude � varies in [0; 2�].

In vector representation using Cartesian coordinates with the origin in the center of
the earth the above system (2.1) reads like

@V

@t
+V � rV+ fk�V+ gr(h+ hs) = 0

@h

@t
+V � rh+ h (r �V) = 0 (2.2)

Here V := (u; v; w) is the three dimensional wind vector, r is given by ( @
@x
; @
@y
; @
@z
)

or ( @
@x
i+ @

@y
j+ @

@z
k). i; j and k are the unit vectors into the three space directions.

3 The Discretized Problem

3.1 The Triangular Mesh

The discretization of the continuous problem uses a mesh consisting of spherical trian-
gles, having areas and sides of approximately the same size and length, respectively.
The �rst step to create this mesh consists in embedding a regular icosahedron (20 tri-
angles, 30 edges and 12 nodes) into the two-sphere. Because the icosahedron may be
placed anywhere in the two-sphere, the poles play no special role. Nevertheless, for
better representation two nodes of the icosahedron are placed into the poles. Because
each of the initial nodes is surrounded by 5 triangles, the angles within the triangles are
2�
5
. The length of each side is given by

L = 2 arccos
cos �

5

sin 2�
5

�Rearth

with Rearth � 6371 km. Therefore L � 7053:6 km. The height of the triangles is

H = arcsin

�
sinL sin

2�

5

�
�Rearth:
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To compute the coordinates ' and � of the twelve initial points on the two-sphere of
the twenty spherical triangles the �gure is subdivided into 5 � 4 large triangles (see
Figure 3.1). Each of the �ve sub-domains consisting of four triangles is shifted in
latitudinal direction (�-direction), by 2�

5
against the previous one. The sub-domains

are equal with respect to '.

(3,2) north pole

/\

/ \

/ \

(2,2) .______. (3,1)

/ \ /

/ \ /

/ \/

(1,2) .______. (2,1)

\ /

\ /

j \ / i

\/

(1,1) south pole

Figure 3.1: Principal idea to construct the icosahedral mesh

The �nal data structure is generated by repeating this initial data part �ve times
(see Figure 3.2). The re�nement of this initial structure is done in a standard way: the
midpoints of the arcs of the spherical triangles are connected by geodesic arcs, yielding
four sub-triangles. This procedure is repeated several times until the desired resolution
is reached. For the re�nement depth m � 0 and n := 2m the total number of nodes is
N = 10n2+2. The number of triangles is T = 20n2. Table 3.1 collects some interesting
details of meshes created by this procedure. A is the average angle of opening and d is
the average Euclidean distance between the midpoints of two adjacent triangles. The
mesh corresponding to two re�nement steps is shown in Figure 3.2.

The discretization which is described later (see Section 3) places all unknowns into
the midpoints of the triangles. This simpli�es the di�erence operators because only
three neighbor points occur in the di�erence equations and supplies a good locality
for the later parallelization. On the other hand, the resulting mesh is not completely
regular. The distance between neighboring points varies and may cause problems to
achieve the desired order of approximation when discretizing the continuous equations.
From this approach the data structure is derived in a natural way. Five times four
of the initial triangles are connected, resulting in two rhomboids within each of the
�ve parallelograms. Considering the centers of the triangles which are obtained by the



4 The Discretized Problem

Figure 3.2: Main structure of the icosahedral approach and a mesh after two re�nement
steps

re�nement, �ve logically rectangular data partitions are created. The number of nodes
per rectangle depends on the number of re�nement steps. This number is je � ie =
(n+1)�(2n+1) (see Table 3.1). Similarly to the connection of the large initial triangles
the triangles of �ner meshes are considered as the basic elements of rhomboids, composed
of a lower and an upper triangle. All the required information concerning the vertices
and the midpoints is computed in a preprocessing step and written to a �le which is read
by the main program. The details which are read from this �le are the �- and '-values
of the midpoints of the triangles, the length of the sides, the distance to neighbor points,
the unit vectors standing perpendicular to the triangles, the areas of the triangles and
information concerning the Coriolis term.
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step Nodes Triangles Length Angle dist.
(km) (grad) (km)

m n N T L A d ie je

0 1 12 20 7674 69.00 3 2
1 2 42 80 3837 34.50 5 3
2 4 162 320 1919 17.30 9 5
3 8 642 1280 959 8.63 542 17 9
4 16 2562 5120 480 4.31 271 33 17
5 32 10242 20480 240 2.16 136 65 33
6 64 40962 81920 120 1.08 68 129 65

Table 3.1: Characteristic values for the triangular mesh

3.2 Time Discretization

As time discretization an explicit time{split scheme is used. The advective terms can
be calculated in large time steps, whereas the gravity and Coriolis terms are treated in
smaller steps. In this way, the time step restrictions of the explicit schemes are well
adapted to the wave speeds the terms are dealing with.

For the slower advective changes the following equations are solved in every large
time step:

@Vl

@t
+Vl � rVl = 0

@hl
@t

+Vl � rhl = 0 (3.1)

The subscript l denotes the results of the advective time step. Integration is done
with a two{step Lax{Wendro� scheme:

V
n+ 1

2

l
= Vn

l �
�t

2
Vn

l � rV
n
l

h
n+ 1

2

l = hnl �
�t

2
Vn

l � rh
n
l (3.2)

Vn+1
l �Vn

l

�t
= �V

n+ 1

2

l � rV
n+ 1

2

l

hn+1l � hnl
�t

= �V
n+ 1

2

l � rh
n+ 1

2

l (3.3)
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The full set of equations including gravity and Coriolis terms are calculated after-
wards with smaller time steps using the advection results of the long ones. Discretization
is done with a semi{implicit Euler scheme. The Coriolis term is evaluated implicitly to
get a more stable discretization. The gravitational term is determined explicitly:

hnj+1 = hnj +
�t

k

 
hn+1l � hnl

�t
� hnjr �Vnj

!

Vnj+1 = Vnj +
�t

k

 
Vn+1

l �Vn
l

�t
� fe�

Vnj+1 +Vnj

2
� gr(hnj+1 + hs)

!
(3.4)

with j = 1 : : :k. According to the speed of the advection and the fast gravity waves,
respectively, the large time steps are subdivided into k = 5 smaller ones.

3.3 Stability Considerations

Unfortunately, the discretization for the advection (3.1) is not stable with a straight
forward space discretization, see [8]. A stability analysis for this situation is fairly
complicated. However, a simpli�ed study explains this statement:

Consider the nonlinear, one{dimensional convection equation:

@u

@t
+ a

@u

@x
= 0 (3.5)

Time discretization due to Lax{Wendro� with centered space discretization gives:

u
n+ 1

2

i = uni �
�t

2
a
uni+1 � uni�1

2�x
and

un+1i = uni ��t a
u
n+ 1

2

i+1 � u
n+ 1

2

i�1

2�x
(3.6)

or after inserting the �rst equation into the second one

un+1i = uni �
1

2

�t a

�x
(uni+1 � uni�1) +

1

8

�t2a2

�x2
(uni+2 � 2uni + uni�2); (3.7)

For the Von Neumann stability analysis (see [7]) the actual calculated solution u is
developed into a Fourier series, uni = EneIi�; I2 = 1:
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G :=
En+1

En
= 1� I� sin ��

�2

2
sin2 �; (3.8)

where � = �t a
�x

denotes the Courant number. The modulo of the ampli�cation factor
G gives the growth of the amplitudes of the solution.

With

jGj2 = 1 +
�4

4
sin4 � > 1 (3.9)

it is obvious that the discretization is unstable independent from the size of the
Courant number �.

Because of these reasons, which are reected by the numerical results of the orig-
inal code, we propose a di�erent procedure which has been used in the framework of
BARGLO. The practical improvement is described below (see Section 4) and can be ex-
plained theoretically. Applying a discretization which uses a Lax{Friedrich step instead
of the Euler step within the �rst part of the Lax{Wendro� scheme gives:

u
n+ 1

2

i =
uni+1 + uni�1

2
�

�t

2
a
uni+1 � uni�1

2�x
and

un+1i = uni ��t a
u
n+ 1

2

i+1 � u
n+ 1

2

i�1

2�x
(3.10)

instead. The Von Neumann stability analysis gives:

G = 1� I� cos� sin� �
�2

2
sin2 � (3.11)

and

jGj2 = 1 + �2 sin4 �(
�2

4
� 1) < 1 for � < 2: (3.12)

This scheme is stable for Courant numbers � < 2. For multi{dimensional problems
the critical Courant number can be smaller. Ideally one should consider the total time
splitting scheme with the Lax{Wendro� scheme for the large steps and the Eulerian
scheme for the small steps together. Nonlinear stability is achieved with an additional
di�usion step, see sec. (3.5).

Further improvement of the stability of the time splitting scheme was gained by per-
forming a Lax{Wendro� time scheme for the small non{advective time steps, too. The
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semi{implicit Euler scheme (3.4) was substituted with a semi{implicit Lax{Wendro�
scheme as follows:

h
n
j+ 1

2 = hnj +
�t

2k

 
hn+1l � hnl

�t
� hnjr �Vnj

!
(3.13)

V
n
j+1

2 = Vnj +
�t

2k

 
Vn+1

l �Vn
l

�t
� fe�

V
n
j+ 1

2 +Vnj

2
� gr(h

n
j+1

2 + hs)

!

hnj+1 = hnj +
�t

k

 
hn+1l � hnl

�t
� h

n
j+ 1

2r �V
n
j+1

2

!
(3.14)

Vnj+1 = Vnj +
�t

k

 
Vn+1

l �Vn
l

�t
� fe�

Vnj+1 +V
n
j+ 1

2

2
� gr(hnj+1 + hs)

!

With these two slight changes it became possible to increase the size of possible time
steps drastically. However, the computational costs for every time step almost double
because of the more expensive Lax{Wendro� scheme within the small time steps. But
the total increase in e�ciency is shown with the results of the test cases, see (4).

3.4 Spatial Discretization

A �nite volume method on the triangular mesh is used to discretize the governing
equations. The following formula result:

1. r , with  a scalar quantity:

r =
1

2F

i=3X
i=1

li( i �  0)e2i

The used conventions are: index 0 indicates the reference triangle, the indices
i = 1; : : : ; 3 are used for the surrounding triangles, li is the length of the three
sides of the triangle, e2i is the unit vector which stands perpendicular to the vector
normal to the triangle and which also stands perpendicular to the side i of the
triangle (because these vectors are given in Cartesian coordinates, r is given in
these coordinates, too).

2. r � V , with V = (V1; V2; V3) = (u; v; w) a vector �eld:

r � V =
1

2F

i=3X
i=1

li

 
k=3X
k=1

(Vk0 + Vki) (e2i)k

!
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3. � , with  a scalar quantity:

� =
1

F

i=3X
i=1

li
�xi

( i �  0)

Here the new quantity �xi is the distance between the midpoint of the reference
triangle and the i-th neighboring triangle.

4. Di�usion �2 , with  a scalar quantity:
Because of �2 = �w with w = � there is

�2 =
1

F

i=3X
i=1

li
�xi

(wi � w0):

The formula for � can be used to complete the representation.

3.5 Di�usion

For the nonlinear instability of the Eulerian advection a fourth order di�usion operator
is added to the set of equations (di�usion coe�cient K4). Di�usion has to damp out
high frequent error modes. In BARGLO the di�usion step is calculated after every long
time step for every prognostic variable:

 smooth =  ��tK4�
2 

This smoothing has to reduce high frequent error modes by a factor of 1
e
within a

time frame of two or three hours.

For a two dimensional model analysis the space discretization of �2 on an equidis-
tant grid of mesh size �x starts with the standard second order approximation of the
Laplacian, which is described by the well-known �ve{point stencil. From this we get
the second order approximation for �2 = �� which is given by the 13{point{stencil:

1

�x4

2
666664

1
2 �8 2

1 �8 20 �8 1
2 �8 2

1

3
777775

This space discretization corresponds to the actual discretization as described in
Section 3.
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A two dimensional analysis using a frequency of the form  = 	eIi'eIj� gives

G =
	smooth

	
= 1� 16

�t

�x4
K4

�
sin2

'

2
+ sin2

�

2

�2
(3.15)

High frequencies correspond to values '; � close to �, while low frequencies correspond
to �; � close to 0. The requirement to reduce high frequent error modes by a factor of
1
e
within the time period T = k ��t leads to:

Gk =

�
1� 64

�t

�x4
K4

�k

=
1

e

From this we get a condition for the di�usion constant

K4 =
1

64

�
1� e�

1

k

� �x4
�t

This method a�ects low frequencies in a negligible way. A table of proposed and
used di�usion constants is given in Section 4.

4 The Shallow Water Test Set

The development of global weather forecast programs usually starts from the shallow
water equations on the sphere. This 2D-problem already exhibits the main di�culties for
the numerical solution of the 3D-problem which �nally occurs in global weather forecast.
To detect numerical properties of new numerical approaches and software developments
a standard test set consisting of a series of test cases has been proposed [6]. Any new
development should perform well on these test cases. Because the realized test cases
are described in more meteorological detail below, here the numerical properties which
are checked by the test set are mentioned:

{ The advection of a structure having compact support by a speci�c wind �eld
checks the behavior of the advection scheme.

{ The steady state, nonlinear zonal geostrophic ow with given wind �elds tests the
capability of the scheme to handle the poles and, in addition, nonlinearities come
into play.

{ Other test cases which are characterized by increasing complexity and realism
look for the treatment of more complicated local features of atmospheric ow like
isolated mountains and driving a low pressure region around the sphere, respec-
tively.
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{ Finally test cases providing atmospheric initial conditions of the 500 mb height
and wind �elds from several atmospheric states check the capability of the scheme
under realistic conditions.

Of course, the standard numerical test in meteorology, applying a Rossby-Haurwitz
wave is included.

The results of the test cases are evaluated by comparing to analytical solutions and
highly resolved reference solutions. The error is measured in di�erent norms. When
comparing the results of the described test cases with already published results using
implementations of spectral models one should keep in mind the following fact: most
of the test situations consider problems with relatively smooth phenomena. They can
be represented more or less exactly using frequencies up to a relatively small truncation
number. Therefore, the spectral methods provide quasi exact solutions in these situ-
ations. This is not the case for grid point oriented approaches because their inherent
locality is not able to detect global smoothness.

Because the numerical properties of the program BARGLO have to be compared to
those which have been reported for spectral methods [2] it is of interest to collect some
characteristic values which have been used there (Table 4.1).

Spectral Truncation Grid Points Distance at Di�usion Constant Time Step
M the equator K4 �t

42 64 � 128 312 km 0:50 � 1016 1200 s
63 96 � 192 208 km 1:00 � 1015 900 s
106 160 � 320 125 km 1:25 � 1014 600 s
170 256 � 512 78 km 2:00 � 1013 450 s
213 320 � 640 62 km 8:00 � 1012 360 s

Table 4.1: Characteristic values for test cases using spectral methods

Some parameters relevant to the earth and all test cases are not used uniquely
throughout the literature. Therefore we specify how we have used them:

{ radius of the earth: Rearth = 6371 km instead of 6371.22 km

{ angular velocity: 
 = 2�
T
s�1 (T= siderian day = 86164.1 s) computed in single

precision instead of the �xed value 
 = 7:292� 10�5s�1

{ gravitation g = 9:81m
s2

instead of 9:80616m
s2

All of the analytic representations of initial states for the wind or for the geopotential
height are given in spherical coordinates. The program BARGLO requires them in
Cartesian form. If the surface vector (U; V )T is extended to the three-dimensional
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vector (U; V;W )T where we assume W = 0, the Cartesian formulation of the velocity
vector (u; v; w)T can be calculated by the transformation0

B@ u

v
w

1
CA =

0
B@ � sin� � sin' cos� cos' cos�

cos� � sin' sin� cos' sin�
0 cos' sin'

1
CA
0
B@ U

V
W

1
CA :

As an example consider the test case 1. Here we have0
B@ U

V

W

1
CA =

0
B@ U0 (cos' cos�+ sin' cos� sin�)

�U0 sin� sin�
0

1
CA :

Then the Cartesian representation is0
B@ u

v

w

1
CA =

0
B@ �U0 sin� cos' cos�
U0 (cos� cos' cos�+ sin' sin�)

�U0 cos' sin� sin�

1
CA :

To have all components within the plane of the triangles the tangential components
are calculated due to the rules which are speci�ed in [4]. Any vector V is projected
using the formula

Vtang = V� < V;n > n (4.1)

where n is the unit normal vector perpendicular to the plane of the triangle.

For all the experiments a standard output is given which describes the relative change
of quantities like total energy and total mass with time. For most of the experiments
we simulated a ten day period. Only test case 1 needs a twelve days simulation to be
back at the initial situation, and the test cases representing real atmospheric states are
provided for a �ve day forecast.

h0 = .29400000E+05 hqu(t=0) = .23172501E+05

hour kin.energy pot.energy tot.energy tot.mass var. of geop.

0 .59850E+21 .80633E+21 .14048E+22 .14755E+19 -.24347E-10

1 .99966 1.00031 1.00004 1.0000001 .16976E-10

2 .99939 1.00059 1.00008 .9999998 -.91625E-11

3 .99924 1.00081 1.00014 .9999994 .21802E-10

Table 4.2: Part of the standard output of BARGLO

Because the di�erent quantities are de�ned in a special way, their calculation is given
here:



The Shallow Water Test Set 13

{ kinetic energy: Ekin =
h

2g

X
triangles

Vi �Viareai

{ potential energy: Epot =
1

2g

X
triangles

�
hi � h

�2
areai

{ mass: m =
%

g

X
triangles

hi areai

Here h =
P

triangles hiareai=surface is the weighted mean value of the geopotential.
surface is the sum of the areas of all planar triangles. Relative errors are given in
terms of l1; l2 and l1-norms. With a true solution to a test case uT and

I(u) :=
Z
surface

udo approximated by

P
triangles ui areai

surface

these quantities are de�ned for a scalar quantity as

l1 =
I(ju� uT j)

I(juT j)

l2 =

p
I(ju� uT j2)q

I(u2T)

l
1

=
max(ju� uT j)

max juT j

The modi�cations for vector quantities are due to [6].

Performance measurements are not evaluated, because the current test is more con-
cerned with numerical questions than e�cient programming. The experiments have
been done using a IBM RS6000 workstation. The code is not optimized, especially not
with respect of cache usage. Such a tuning is of future interest. All data used DOUBLE
PRECISION representation.

The sequence of experiments is performed using the di�usion constants as given in
Table 4.3. They have been selected from [4]. The inuence of the di�usion constant due
to Section 3.5 is investigated later. For the mostly used time step sizes we give values
of K4 as proposed by the theoretical analysis of Section 3.5. The �t which was used to
calculate the di�usion coe�cient is mentioned in parentheses. Additionally, we give the
�t which were calculated due to the stability condition. A systematic study of possible
values for these quantities is postponed.

For all test cases we show results using both the original form of the program and the
modi�ed program (modi�ed especially with respect to time stepping and with respect to
the handling of the data structure). If nothing is speci�ed, the presented results concern
the program in its original form. The results obtained with the modi�ed program are
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re�nement depth di�usion constant �t
m K4 used K4 proposed (T=2) proposed

3 7:3 � 1017 1:5 � 1017(�t = 3600s) 8727 s
4 4:5 � 1016 1:0 � 1016(�t = 1800s) 4327 s
5 3:7 � 1015 7:1 � 1014(�t = 900s) 2164 s

Table 4.3: Di�usion constant depending on re�nement depth and time step size

speci�ed explicitly. The direct comparison of the calculations on the triangular mesh
and on grids as they are used for spectral transform methods is not so easy because
the mesh spacing in the latter case varies from the pole to the equator. The di�erent
spectral truncations correspond to approximate distances between neighboring points
at the equator as follows: T42 (312 km), T63 (208 km), T106 (125 km), T170 (78
km) and T213 (62 km), respectively. For the triangular mesh the average distance
between midpoints of neighboring triangles does not vary as extremely. For the di�erent
re�nement steps we have average distances of 542 km (m=3), 271 km (m=4), 136 km
(m=5) and 68 km (m=6), respectively (see Table 3.1). This has to be kept in mind
when comparing time step sizes and di�usion coe�cients as they have been used for the
di�erent test cases and numerical techniques.

4.1 Advecting Cosine Bell

This test case does not deal with the complete set of the shallow water equations. It
concentrates on the advective component of the numerical approach. A cosine bell is
placed at predescribed positions and advected over the sphere. It circulates around the
equator, over the poles and at slight angles to these extreme values. After a simulation
time of twelve days the bell should be back at the initial position. For this test case
the predicted wind �eld is overwritten by an analytically speci�ed wind �eld every time
step. The analytical speci�cation of the wind �eld and of the cosine pattern is given
in [6]. It is necessary to transform the given de�nitions to the Cartesian coordinate
system. Starting from the speci�cations of u; v and h as given in [6] we have:

u = �U0 sin� cos' cos� (4.2)

v = U0 (cos� cos' cos�+ sin' sin�) (4.3)

w = �U0 cos' sin� sin� (4.4)

h =

(
h0
2

�
1 + cos

�
�r
R

��
g if r < R

0 if r � R
(4.5)

h0 = 1000m is prescribed and r is the great circle distance between some arbitrary
point on the sphere and the center of the cosine bell [6].
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The numerical experiments have been performed using the di�usion constant K4

as speci�ed in Table 4.3 for the corresponding re�nement step. Table 4.4 contains
the relation of the initial and �nal values of energy, mass and geopotential height.
Additionally, the time step size is reported. These time step sizes produced stable
results. A systematic search for the largest possible time step size can be done later, but
always considering the accuracy requirements. Comparing the time step sizes of �t =
1200s and �t = 600s as they are used for the tests using spectral models with resolutions
corresponding to T42 and T106, respectively, larger time step sizes are allowed even for
the original program.

Figure 4.1: Initial state of wind �elds with � = 0 and � = �
2

The �rst picture (Figure 4.1) shows the initial states of the wind �eld for di�erent
directions of �. The maximum velocity vmax is 38.609 ms�1.

This version of the program produces results which are not satisfactory for resolutions
below re�nement depth m = 5, as the loss of the total energy shows. The variation of
the angle of rotation has no inuence on the behavior of the program, as the results
for the di�erent resolutions prove. Figure 4.2 shows the initial and the �nal state of
the cosine bell for � = 0 using a resolution with m = 5 and calculating with �t = 900
seconds. The pro�le of the cosine bell is slightly damaged and a small wave occurs
behind the moving pro�le. According to this phenomenon the contour lines are more
dense at the back end of the bell and less dense at the front of the pro�le. The di�erence
between the initial state and the �nal state within the critical region is plotted in the
upper part of Figure 4.3. The di�erence varies from -240 m to 210 m, approximately.
Varying the direction of the bell's movement (� = �

2
instead of � = 0:0) shows no

signi�cant di�erence. Again, the oscillation is behind the bell. But now, due to the
changed direction at another position (see Figure 4.3). In Figure 4.4 the error norms
(l1; l1; l2) of the height errors for all angles using re�nement depth m = 5 and �t = 900
are shown. The relative errors seem to be large. Looking closer at the values, the
reason for this is a small shift of the �nal cosine bell with respect to the reference bell
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after 2 days after 6 days after 12 days
angle m �t E M E M E M

� = 0 3 3600 0.659 0.989 0.490 0.968 0.390 0.937
4 1800 0.936 0.995 0.845 0.984 0.751 0.968
5 900 0.990 0.997 0.972 0.992 0.946 0.984

� = �
2

3 3600 0.656 0.989 0.491 0.968 0.393 0.937
4 1800 0.936 0.995 0.845 0.984 0.752 0.967
5 900 0.990 0.997 0.972 0.992 0.946 0.984

� = 0:05 3 3600 0.659 0.989 0.517 0.973 0.390 0.937
4 1800 0.936 0.995 0.864 0.986 0.751 0.968
5 900 0.990 0.997 0.976 0.993 0.945 0.984

� = �
2
� 0:05 3 3600 0.680 0.991 0.518 0.973 0.396 0.938

4 1800 0.936 0.995 0.865 0.986 0.752 0.967
5 900 0.990 0.997 0.976 0.993 0.946 0.984

modi�ed program

� = 0 5 1800 0.980 0.995 0.943 0.984 0.896 0.968
5 900 0.987 0.997 0.965 0.992 0.934 0.984

� = �
2

5 1800 0.980 0.995 0.944 0.984 0.897 0.968
5 900 0.987 0.997 0.965 0.992 0.934 0.984

� = 0:05 5 1800 0.980 0.995 0.952 0.986 0.895 0.968
5 900 0.987 0.997 0.965 0.992 0.933 0.984

� = �
2
� 0:05 5 1800 0.980 0.995 0.953 0.986 0.897 0.968

5 900 0.987 0.997 0.965 0.992 0.935 0.984

Table 4.4: Advection of the cosine bell; relative conservation of energy and mass, original
and modi�ed program

(see Figure 4.7). Therefore the centers of the two do not coincide and produce a large
error. The maximum value of the �nal bell, which is for � = 0:0 equal to 959.56 m,
di�ers with respect to the maximum of the reference bell, which is for this resolution
989.75 m just by about 30.0 m. This again comes from the fact, that the speci�ed
center of the bells in general does not meet a center of a triangle and results in a
velocity error. This inuences the height of the errors, too. For the modi�ed program
using the improved time stepping the variation of the angle has no inuence on the
quality of the results. This is shown here for re�nement step m = 5. Even with a
time step size twice as large as allowed for the original program the results are of the
similar accuracy. A possible time step size can be chosen three times larger than for
the corresponding spectral computations. The error norms as shown in Figure 4.8 are
larger than those reported for the unchanged algorithm. The reason for this may be
the introduced arti�cial averaging (comparable to some arti�cial di�usion) during the
modi�ed time stepping procedure in combination with the principal facts which were
already mentioned above. Comparing the structure of the error as presented both in
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Figures 4.3 (above) and in Figure 4.6 with that reported for spectral methods ([2],
Figure 1.2 b) shows the similarity.

Figure 4.2: Initial state and �nal state of the advecting cosine bell (� = 0; m = 5;�t =
900 s), contour interval 100 m
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Figure 4.3: Above: di�erence between initial and �nal state of the cosine bell (� =
0; m = 5;�t = 900), contour interval 20 m (solid lines negative, dashed lines positive);
below: �nal state of the cosine bell (� = �

2
, m = 5, �t = 900 s), contour interval 100 m
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Figure 4.4: Height error norms for the advection of the cosine bell (m = 5, �t = 900 s)
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Figure 4.5: Final state of the cosine bell (m = 5, � = 0:0 and � = �
2
, �t = 900),

contour interval 100 m, modi�ed program
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Figure 4.6: Height di�erence between initial and �nal state of the cosine bell (� =
0; m = 5;�t = 900), contour interval 50 m (solid lines negative, dashed lines positive),
modi�ed program

Figure 4.7: Longitudinal and latitudinal cut through the initial and �nal cosine bells
for � = 0 and � = �

2
, respectively, modi�ed program
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Figure 4.8: Height error norms for the advection of the cosine bell (m = 5, �t = 900
s), modi�ed program
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4.2 Steady State Geostrophic Flow

This test case is a steady state solution to the non-linear shallow water equations.
Because of the smoothness of the geopotential height and the wind �eld this example is
a trivial test for spectral methods. Even for low resolutions the solution is approximated
well. The test is performed using the standard parameter as speci�ed in [6].

Starting from the speci�cations of u; v and h as required we have after transformation
to Cartesian coordinates the same initialization for u; v and w as in test case 1. The
geopotential height is given by

h = h0 �

�
Rearth
u0 +

1

2
u20

�
(� cos� cos� sin �+ sin � cos�)2

with h0 = 2:94 � 104m2s�2, u0 and �, respectively, as in test case 1.

Table 4.5 shows the results concerning relative mass and energy for the original time
stepping. For the coarse resolution m = 3 the time step size of 3600 seconds runs
into stability problems for any angle �. Table 4.5 gives the time step sizes for which
stable results were obtained. The possible time steps are smaller than those used for
experiments with spectral methods. The results are independent from the angle used.

For this test case the modi�ed time stepping allows an extremely enlarged time
step size. Again, the results are independent from �. Therefore results using coarser
resolutions m = 3 and m = 4 are reported only for � = 0:0. Even with a time step
size which is more than six times larger for m = 5 the �nal results are stable. The
mass is conserved more or less exactly, while the development of the energy shows a
nearly linear increase. This gain of energy is reduced when time steps with �t = 675 s
are used. Compared to the original version the new time stepping enables larger time
steps, which now are even larger than the usually used �t for the spectral methods.
Figure 4.9 shows the initial height �elds for the test situations using the angles � = 0:0
and � = �

2
. The development of the error is reported in Figure 4.10.

The structure of the error reects to a certain degree also the underlying structure
of the grid. Ten of the initial discretization points on the initial icosahedron can be
recognized. These are points, where only �ve neighboring cells exist. Such a symmetry
is not only observed for test case 2, but also for test case 3. This phenomenon is
presented in Figure 4.18, looking at the north pole. The height- and wind-errors in
Figures 4.11 and 4.12, respectively, are small and show a reasonable development. For
the modi�ed program the errors are again larger than for the original version. The
reported results in Figures 4.14 and 4.15 refer to m = 5 with �t = 675 s. The enlarged
errors are explained by the larger time steps. In Table 4.5 the results for the modi�ed
program give the impression of stability for all the time step sizes. But the height and
wind errors with �t = 900 s show an unstable behavior after approximately 200 hours
(Figures 4.14 and 4.15). This time step therefore is too large for this test on re�nement
depth m = 5.
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after 2 days after 5 days after 10 days
angle m �t E M E M E M

� = 0 3 3600 0.992 0.998 0.980 0.993 1.617 0.795
3 1800 0.991 0.999 0.976 0.997 0.952 0.994
4 450 0.998 1.000 0.994 0.999 0.989 0.998
5 120 0.999 1.000 0.999 1.000 0.997 1.000

� = 0:05 3 3600 0.992 0.997 0.980 0.993 1.612 0.803
3 1800 0.991 0.999 0.976 0.997 0.952 0.994
4 450 0.998 1.000 0.994 0.999 0.989 0.998
5 120 0.999 1.000 0.999 1.000 0.997 1.000

� = �
2

3 3600 0.992 0.997 0.980 0.992 divergent
3 1800 0.990 0.999 0.975 0.997 0.951 0.994
4 450 0.998 0.999 0.994 0.999 0.988 0.998
5 120 0.999 0.999 0.999 0.999 0.997 0.999

� = �
2
� 0:05 3 3600 0.992 0.997 0.980 0.993 5.017 0.869

3 1800 0.990 0.999 0.975 0.997 0.950 0.994
4 450 0.998 1.000 0.994 0.999 0.988 0.998
5 120 0.999 1.000 0.999 1.000 0.997 1.000

modi�ed program

� = 0:0 3 3600 1.007 1.000 1.018 1.000 1.037 1.001
4 1800 1.005 1.000 1.014 1.000 1.028 1.000
5 900 1.003 1.000 1.008 1.000 1.017 1.000
5 675 1.002 1.000 1.006 1.000 1.011 1.000

� = 0:05 5 900 1.003 1.000 1.008 1.000 1.017 1.000
5 675 1.002 1.000 1.006 1.000 1.011 1.000

� = �
2

5 900 1.004 0.999 1.010 0.999 1.020 0.999
5 675 1.003 1.000 1.007 1.000 1.014 0.999

� = �
2
� 0:05 5 900 1.004 1.000 1.010 0.999 1.020 0.999

5 675 1.003 1.000 1.007 1.000 1.014 0.999

Table 4.5: Zonal geostrophic ow; relative conservation of energy and mass, original
and modi�ed program



Steady State Geostrophic Flow 25

Figure 4.9: Initial state for zonal ow (� = 0:0 and � = �
2
)
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Figure 4.10: Zonal ow, height errors after 120 (top) and 240 hours (below), (� = 0:0),
�t = 120 s
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Figure 4.11: Zonal ow, height error norms for all �, �t = 120 s
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Figure 4.12: Zonal ow, wind error norms for all �, �t = 120 s
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Figure 4.13: Zonal ow, height errors after 120 (top) and 240 hours (below), (� = 0:0),
�t = 675 s, modi�ed program
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Figure 4.14: Zonal ow, height error norms for all �, �t = 675 s, modi�ed program
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Figure 4.15: Zonal ow, wind error norms for all �, �t = 675 s, modi�ed program
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Figure 4.16: Zonal ow, height error norms for all �, �t = 900 s, modi�ed program
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Figure 4.17: Zonal ow, wind error norms for all �, �t = 900 s, modi�ed program
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Figure 4.18: Symmetry of the height errors after ten days due to the space discretization,
(test case 2 left and test case 3 right)

4.3 Steady State Geostrophic Flow with Compact Support

This case is a steady state solution to the non-linear shallow water equations. Because
of the smoothness of the geopotential height and the wind �eld this example is a trivial
test for spectral methods. Similarly to the test case 2, for principal reasons grid point
approaches cannot be expected to work as good on this problem as spectral methods
do. Even for low resolutions the solution is approximated well. The test is performed
using the standard parameter due to [6]. The problem description is as speci�ed in
Section 4.2. After transformation of the initial conditions due to [6] the velocities in
Cartesian coordinates are:

U = � sin� � u

V = cos� � u

W = 0

The height �eld is used as given in [6].

To produce stable results with the unchanged algorithm the time step size has to be
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after 2 days after 5 days after 10 days
angle m �t E M E M E M

� = 0 3 3600 0.961 0.999 0.922 0.999 0.875 0.998
4 1800 0.993 1.000 0.986 0.999 4.642 0.981
4 900 0.992 1.000 0.981 1.000 0.965 0.999
5 225 0.993 1.000 0.996 1.000 0.992 1.000

modi�ed program

� = 0 3 3600 0.975 1.000 0.956 1.000 0.940 1.000
4 3600 1.012 1.000 1.031 1.000 1.065 0.999
5 1800 1.007 1.000 1.019 1.000 1.038 1.000

Table 4.6: Zonal geostrophic ow with compact support; relative conservation of energy
and mass, original and modi�ed program

considerably smaller than expected, as in the previous case. The improved version of
the program is able to use time steps which are three times larger than for the reported
spectral methods. For this case the time step sizes can be increased by a factor of about
4 for m = 4 and even more for m = 5.

Figure 4.19 shows the initial wind and height �elds, while Figure 4.20 reports the
development of the height error. Looking to the wind and height errors again, we have
acceptable small errors, which are again larger for the modi�ed program. But one should
keep in mind the considerably larger time steps.
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Figure 4.19: Zonal ow with compact support, initial wind (above) and height �eld
(below) , �t = 225 s, contour interval 100 m
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Figure 4.20: Zonal ow with compact support, height errors after 120 (top) and 240
hours (below), �t = 225 s
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Figure 4.21: Zonal ow with compact support; height and wind error norms �t = 225
s (original) and �t = 1800 s (modi�ed)
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Figure 4.22: Zonal ow with compact support, height errors after 120 (top) and 240
hours (below), �t = 1800 s, modi�ed program
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4.4 Zonal Flow over an Isolated Mountain

A �rst approximation to realism is the usage of some arti�cial topography. The center
of an arti�cial mountain is placed at the position � = 3

2
� and ' = �

6
. The maximal

height is 2000 m.
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Figure 4.23: Zonal ow over an isolated mountain; topography (contour interval 100 m)

After transformation to Cartesian coordinates the initial wind �eld is given by

U = �u0 cos' sin�

V = u0 cos' cos�

W = 0

A similar wind �eld has also been used in test cases 1 and 2 for � = 0. Here we use the
same de�nitions with u0 = 20:0ms�1. The height �eld is used as given in [6].

This test case has no analytical solution. Therefore, an error estimation requires
a reference solution which has to be computed by some other solving method using a
�ne resolution. The reference solutions used in this and the following two test cases
are taken from the spectral transform shallow water model described in [2]. They are
provided for each day and therefore the error norms are calculated in intervals of 24
hours. The forecast for this test case is computed for ten days.

Table 4.7 contains the relative conservation of the initial values of energy and mass.
With the original program, stable results can be produced with the speci�ed �t . To
produce stable results with the modi�ed version, the time step size can be chosen up to
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after 2 days after 5 days after 10 days
m �t E M E M E M

3 1800 0.988 1.000 0.951 1.000 0.869 1.000
4 900 1.000 1.000 0.985 1.000 0.956 1.000
5 225 1.002 1.000 0.998 1.000 0.997 1.000

modi�ed program

3 3600 1.027 1.000 1.053 1.001 1.083 1.001
4 3600 1.033 1.000 1.079 1.000 1.168 1.001
4 1800 1.016 1.000 1.030 1.000 1.047 1.000
5 1800 1.018 1.000 1.039 1.000 1.080 1.000
5 900 1.010 1.000 1.018 1.000 1.036 1.000

Table 4.7: Zonal ow over an isolated mountain; relative conservation of energy and
mass, original and modi�ed program

�t = 1800 s, which is eight times higher than for the original program. This is much
larger than the time stepping in the referenced spectral model (�t = 600 s). Comparing
the results (see table 4.7) in case of �t = 1800 s and �t = 900 s there is a small increase
of the energy. Furthermore the error norms are up to two times higher for �t = 1800 s.
Therefore we decided to present only the graphs for �t = 900 s in case of the modi�ed
program. Here the time step size is still four times larger than that of the original
program and 1.5 times larger than for the spectral model. Nevertheless the error norms
of the spectral model and BARGLO have the same order.
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Figure 4.24: Zonal ow over an isolated mountain; initial height �eld with incorporated
topography (h+ hs), contour interval 50 m
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The initialization of the height �eld and the reference solutions for day �ve and day
ten are presented in Figures 4.24 and 4.25. The development of the height �eld as
computed by the original program using �t = 225 s and the deviations to the reference
solutions at day �ve and ten are shown in Figures 4.26 and 4.27. The corresponding
results for the modi�ed program using �t = 900 s are shown in Figures 4.29 and 4.30.
The graphs of the error norms are provided in Figure 4.28. Although the increased time
stepping used in the modi�ed version leads to larger error norms, the errors still have a
reasonable size. Further investigation for a better choice of the di�usion constant may
improve the results, especially in this and the next two test cases.
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Figure 4.25: Zonal ow over an isolated mountain; reference height �eld (h + hs) after
120 (top) and 240 hours (below), contour interval 50 m
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Figure 4.27: Zonal ow over an isolated mountain; height �eld (h+ hs) after 240 hours
(top, contour interval 50 m) and di�erence to reference solution (below, contour interval
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Figure 4.28: Zonal ow over an isolated mountain; height and wind error norms �t =
225 s (original) and �t = 900 s (modi�ed)
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(top, contour interval 50 m) and di�erence to reference solution (below, contour interval
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4.5 Rossby-Haurwitz Wave { Wavenumber 4

Rossby-Haurwitz waves can be considered as the de facto standard for meteorological
tests. This test case consists of a regular pattern, which moves from west to east without
change of shape by a given angular velocity. Only a wave number of R = 4 is included
in the standard test set [6]. Unstable waves R � 5 are not considered.

For this test case, an analytical solution is not known. For evaluation we use the
provided reference solution from a high resolution spectral transform model integration
[2].

As reported in Table 4.8 the original version requires extremely small time steps to
obtain stable results from the initial states (Figure 4.31). 60 s is the largest time step
size for re�nement step m = 5 using the original program. Also for spectral methods the
time step size is smaller (600 s for T42 and 180 s for T106) than the default values (1200
s for T42 and 600 s for T106). The modi�ed version of BARGLO allows �t = 225 s.
This time step size is larger than those reported for experiments with spectral methods.

The initializations of the height �eld and the wind �eld are shown in Figure 4.31. The
reference solutions for day �ve and day ten are shown in Figure 4.32. The development of
the height �eld as computed by the original program using �t = 60 s and the deviations
to the reference solutions at day �ve and ten are presented in Figures 4.33 and 4.34.
The corresponding results for the modi�ed program using �t = 225 s are shown in
Figures 4.35 and 4.36.

Figure 4.37 shows acceptable small height and wind errors, where again the modi�ed
program has slightly larger errors. Compared to similar resolutions with spectral models,
the reference solutions are well approximated by both program versions of BARGLO.

after 2 days after 5 days after 10 days
m �t E M E M E M

3 1800 0.796 0.999 0.737 0.997 divergent
3 900 0.819 0.999 0.665 0.998 0.559 0.997
4 450 0.938 0.999 1.152 0.998 divergent
4 225 0.951 1.000 0.885 0.999 0.796 0.998
5 60 0.989 1.000 0.971 1.000 0.943 0.999

modi�ed program

3 3600 0.786 0.999 0.675 0.998 0.665 0.997
4 1800 0.891 0.999 0.786 0.998 0.694 0.996
4 900 0.927 1.000 0.841 0.999 0.739 0.997
5 225 0.974 1.000 0.953 1.000 0.909 0.999

Table 4.8: Rossby-Haurwitz wave { wavenumber 4; relative conservation of energy and
mass, original and modi�ed program
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Figure 4.31: Rossby-Haurwitz wave { wavenumber 4; initial wind and height �eld
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Figure 4.32: Rossby-Haurwitz wave { wavenumber 4; reference height �eld for 120 (top)
and 240 hours (below), (contour interval 100 m)
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Figure 4.33: Rossby-Haurwitz wave { wavenumber 4; height �eld after 120 hours (top,
contour interval 100 m) and di�erence to reference solution (below, contour interval 10
m), �t = 60 s
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Figure 4.34: Rossby-Haurwitz wave { wavenumber 4; height �eld after 240 hours (top,
contour interval 100 m) and di�erence to reference solution (below, contour interval 20
m), �t = 60 s
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Figure 4.35: Rossby-Haurwitz wave { wavenumber 4; height �eld after 120 hours (top,
contour interval 100 m) and di�erence to reference solution (below, contour interval 10
m), �t = 225 s, modi�ed program
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Figure 4.36: Rossby-Haurwitz wave { wavenumber 4; height �eld after 240 hours (top,
contour interval 100 m) and di�erence to reference solution (below, contour interval 20
m), �t = 225 s, modi�ed program
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Figure 4.37: Rossby-Haurwitz wave { wavenumber 4; height and wind error norms
�t = 60 s (original) and �t = 225 s (modi�ed)
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4.6 Analyzed 500 mb Height and Wind Field Initial Conditions

The following three test cases are based on observed data. They refer to initial condi-
tions for 21 December, 1978, 9 January, 1979 and 16 January, 1979 (each 0000 GMT),
respectively. The provided data sets are initialized via nonlinear normal mode initial-
ization with a high resolution spectral transform model. Although this initialization
scheme is not consistent with the scheme being tested, the initial data sets lead to
reasonable results and it was not necessary to develop a special initialization program.
Details about the initialization are provided in [2].

For all test cases the mean height is set to 10 km. The forecasts are calculated
up to �ve days by the original and the modi�ed model version. Table 4.9 shows the
development of relative mass and energy for all three test cases. Also the error norms for
the wind and height �elds are graphed for the complete test set. Only the presentation
of the resulting height patterns is limited to the case 21 December, 1978, which has a
strong ow over the north pole and which is also discussed in [2].

Analyzing Table 4.9 we observe a signi�cant loss of energy for all resolutions. We
presume that this e�ect is due to a decrease of the wind velocities and the resulting loss
of the kinetic energy. This requires further investigations.

In all test cases the time step sizes can be chosen larger in the modi�ed version than
in the original program. On re�nement depth m = 5 the time step size is increased by
a factor of 4 and we also recognize an improved conservation of the relative energy.

Figures 4.45, 4.46 and 4.47 show the height and wind error norms for the test cases.
The error graphs of the original and modi�ed versions look similar, but one should keep
in mind, that the time step sizes in the modi�ed version are larger than in the original
program. Compared to the error norms in [2], which are calculated by a spectral model
with �t = 600 s, the error norms in Figures 4.45, 4.46 and 4.47 are about three times
larger. [2].

North and south polar stereographic projections (�gures 4.38 { 4.44 and 4.48 { 4.51)
are presented for the 21 December 1978 case. The �gures show the reference height
�elds computed by a spectral model, the height �elds calculated by the two versions of
BARGLO as well as the forecast errors compared to the reference solutions. They are
provided for day 1 (24 hours) and day 5 (120 hours).

Additionally, �gure 4.52 and 4.53 show graphs of the height �eld at every time step at
the grid point closest to 40N and 105W, which is actually located at 40.65N and 104.89W
for re�nement depth m = 5. The graphs for the original version 4.52 obviously present ,
that the initial data set is not completely consistent with the scheme being used. Some
gravity waves occur in the solutions, but they do not disturb the overall structure. In
comparison to the modi�ed version the contours shown in �gure 4.53 are smoother and
gravity wave e�ects only occur in the beginning of the forecast. Summing up the trace of
the curves at 40N, 105W is similar in both �gures. Additionally, the overall appearance
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21 December 1978

after 2 days after 5 days
m �t E M E M

3 1800 0.555 1.000 0.482 1.000
4 900 0.736 1.000 0.640 1.000
5 225 0.881 1.000 0.810 1.000

modi�ed program

3 1800 0.583 1.000 0.543 1.000
4 1800 0.778 1.000 0.740 1.000
5 900 0.901 1.000 0.867 1.000

9 January 1979

after 2 days after 5 days
m �t E M E M

3 1800 0.583 1.000 0.494 1.000
4 900 0.761 1.000 0.676 1.000
5 225 0.890 1.000 0.832 1.000

modi�ed program

3 3600 0.671 1.000 0.667 1.000
4 1800 0.807 1.000 0.786 1.000
5 900 0.912 1.000 0.892 1.000

16 January 1979

after 2 days after 5 days
m �t E M E M

3 1800 0.533 1.000 0.476 1.000
4 900 0.748 1.000 0.657 1.000
5 225 0.884 1.000 0.824 1.000

modi�ed program

3 1800 0.587 1.000 0.529 1.000
4 1800 0.785 1.000 0.744 1.000
5 900 0.900 1.000 0.873 1.000

Table 4.9: Analyzed 500 mb height and wind �eld; relative conservation of energy and
mass, original and modi�ed program
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Figure 4.38: Initial height �eld for 21 December 1978 case, north (left) and south polar
stereographic projection (right), contour interval 50 m

of the curves is well met in comparison to the corresponding graphs in [2], even though
the grid point locations are naturally not identical. Only the courses of the curves are
less clear-cut, especially concerning the extreme values.
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Figure 4.39: Reference solution for day 1 of 21 December 1978 case, north (left) and
south polar stereographic projection (right), contour interval 50 m
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Figure 4.40: Reference solution for day 5 of 21 December 1978 case, north (left) and
south polar stereographic projection (right), contour interval 50 m
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Figure 4.41: Height �eld for day 1 of 21 December 1978 case, north (left) and south
polar stereographic projection (right), contour interval 50 m
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Figure 4.42: Di�erence with reference solution for height �eld for day 1 of 21 December
1978 case, north (left) and south polar stereographic projection (right), contour interval
15 m (dashed lines negative, solid lines positive)
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Figure 4.43: Height �eld for day 5 of 21 December 1978 case, north (left) and south
polar stereographic projection (right), contour interval 50 m
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Figure 4.44: Di�erence with reference solution for height �eld for day 5 of 21 December
1978 case, north (left) and south polar stereographic projection (right), contour interval
25 m (dashed lines negative, solid lines positive)
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Figure 4.45: Height and wind error norms for case 21 December, 1978, �t = 225 s
(original) and �t = 900 s (modi�ed)
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Figure 4.46: Height and wind error norms for case 9 January, 1979, �t = 225 s (original)
and �t = 900 s (modi�ed)



500 mb Height and Wind Field 65

Figure 4.47: Height and wind error norms for case 16 January, 1979, �t = 225 s
(original) and �t = 900 s (modi�ed)
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Figure 4.48: Height �eld for day 1 of 21 December 1978 case, modi�ed program, north
polar stereographic projection (left), south polar stereographic projection (right), con-
tour interval 50 m
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Figure 4.49: Di�erence with reference solution for height �eld for day 1 of 21 December
1978 case, modi�ed program, north polar stereographic projection (left), south polar
stereographic projection (right), contour interval 15 m (dashed lines negative, solid lines
positive)
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Figure 4.50: Height �eld for day 5 of 21 December 1978 case, modi�ed program, north
polar stereographic projection (left), south polar stereographic projection (right), con-
tour interval 50 m
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Figure 4.51: Di�erence with reference solution for height �eld for day 5 of 21 December
1978 case, modi�ed program, north polar stereographic projection (left), south polar
stereographic projection (right), contour interval 25 m (dashed lines negative, solid lines
positive)
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Figure 4.52: Height �eld at grid point closest to 40N, 105W for m = 5, original program
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Figure 4.53: Height �eld at grid point closest to 40N, 105W form = 5, modi�ed program
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4.7 Rossby-Haurwitz Wave { Wavenumber 1

This last reported test does not belong to the o�cial test set. But it was used by the
DWD as an initial test case. For this test, simulating an extremely smooth phenomenon
the improvement of the program by the new time stepping is not severe.

after 2 days after 5 days after 10 days
m �t E M E M E M

3 3600 0.964 1.000 0.902 1.000 0.782 1.000
4 1800 0.990 1.000 0.975 1.000 0.943 1.000
5 900 0.997 1.000 0.993 1.000 0.986 1.000

modi�ed program

3 3600 1.058 1.000 1.125 1.001 1.165 1.002
4 3600 1.096 1.000 1.254 1.001 1.524 1.002
4 1800 1.038 1.000 1.092 1.001 1.154 1.001
5 1800 1.046 1.000 1.116 1.001 1.218 1.001
5 900 1.021 1.000 1.049 1.000 1.088 1.000

Table 4.10: Rossby-Haurwitz wave { wavenumber 1; relative conservation of energy and
mass, original and modi�ed program

5 A Concept for Parallelization

This concept aims towards the parallelization using a moderately parallel architecture
not necessarily with distributed memory. Nevertheless, the concept is described on
basis of a data partitioning and having message passing in mind. As the Figure 3.2 in
Section 3.1 shows, the data structure is nicely regular. From the beginning there are
at least �ve regular parts. Each of the parts itself consists of two large rhomboids, or
four triangles, respectively. This structure origins from the initial mesh. Using more
re�nement steps does not disturb the regularity at all. Even the midpoints of the created
triangles form nicely regular data �elds. They are easily subdivided to supply each of
the processor with the data for the calculations. All currently performed operations are
local. Already in the sequential code at certain times in the algorithm some boundary
update between adjacent parts of the initial structure is performed. This is at least the
time when a parallel version should distribute new values. If the original subdomains
are subdivided into even smaller ones, the communication should not only distribute
values at the segment boundaries as it is done already now, but also communicate values
at the newly created interior boundaries.

A recommended vehicle to do this, especially in three dimensions (where we assume
a similar data structure) could be the GMD communications library [5] which can be
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Figure 4.54: Rossby-Haurwitz wave { wavenumber 1, initial wind and height �eld
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Figure 4.55: Rossby-Haurwitz wave { wavenumber 1, height �eld after 120 and 240
hours, �t = 900 s, contours from 5.300 to 6.500 m
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Figure 4.56: Rossby-Haurwitz wave { wavenumber 1, height �eld after 120 and 240
hours, �t = 1800 s, contours from 5.300 to 6.500 m, modi�ed program
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placed on top of a message passing interface standard (MPI or PARMACS) and as a
bene�t the portability comes out in a natural way. This library assumes the concept of
block-structured grids. The blocks can be created by subdividing the global data space
only in x- and y-direction. This keeps the vertical data points together, as it is often
desired due to the physical coupling in this direction. Nevertheless, the computation
can be done on more or less rectangular data blocks.

6 Conclusion and Outlook

The grid point oriented approach based on an icosahedral grid is used to run the well-
known shallow water benchmark suite. The approach o�ers some principle advantages

1. almost uniform triangular mesh

2. no special treatment at the poles

3. leading to a rectangular data structure

4. locality of the grid operators

In spite of these nice features, the original program showed a dramatic instability. By
improving the time stepping algorithm a considerable improvement has been demon-
strated.

test case �t original �t modi�ed �t spectral

cosine bell 900 s 1800 s 600 s
geostrophic ow 120 s 675 s 600 s
ow with compact support 225 s 1800 s 600 s
isolated mountain 225 s 1800 s 600 s
Rossby{Haurwitz wave (4) 60 s 225 s 180 s
500 mb Height/wind �eld 225 s 900 s 600 s
Rossby{Haurwitz wave (1) 900 s 900 s {

Table 6.1: Overview of time step sizes for the di�erent test cases, re�nement depth
m = 5, T106

In all situations the time step size could be chosen larger than those reported for
spectral methods. This indicates to possible advantages compared to spectral methods:
The number of points in such grid point approaches may become similar or less to that
of the reduced grids like in the IFS and the time step may become larger, optimal order
methods are applicable and local re�nements are more easily incorporated. Each of
these features is important and justi�es further work towards such a grid point oriented
approach.
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Further investigations should also compare the properties of approaches using either
plane triangles or spherical triangles. Additionally, a systematic study of the inuence of
the di�usion constant K4 should be performed. Another step to do is the parallelization
of the program or of its next version. Depending on the data structure of the intended
3D-version, the parallelization can be started using the 2D program. Furthermore there
is need to investigate the discretization more closely { both in time and in space. Some-
times the errors indicate to problems with the spatial discretization. Considerations
of the order of discretization are important. What would higher order discretization
techniques o�er? Stability analysis has not yet been performed in a way to o�er the
best result. We only obtained a better result than the �rst approach.
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