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CHAPTER I

Introduction: Adaptive grids in weather and

climate modeling

1.1 Motivation and research questions

Adaptive Mesh Refinement (AMR) techniques provide an attractive framework

for atmospheric flows since they allow an improved resolution in limited regions with-

out requiring a fine grid resolution throughout the entire model domain. The model

regions at high resolution are kept at a minimum and can be individually tailored

towards the research problem associated with atmospheric model simulations.

A solution-adaptive grid is a virtual necessity for resolving a problem with dif-

ferent length scales. In order to avoid under-resolving high-gradient regions in the

problem, or conversely, over-resolving low-gradient regions at the expense of more

critical regions, solution adaptation is a powerful tool saving several orders of mag-

nitude in computing resources for many problems. Climate and weather models, or

generally speaking computational fluid dynamics (CFD) codes, are among the many

applications that are characterized by multiscale phenomena and their resulting in-

teractions. For instance, large-scale weather systems such as midlatitude cyclones

drive small-scale frontal zones, thunderstorms or rain events. These small-scale fea-

tures may then influence the larger scale if, as an example, evaporation processes

1
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and turbulence at the surface trigger sensible and latent heat fluxes. But although

today’s atmospheric general circulation models (GCMs), and in particular weather

prediction codes, are already capable of uniformly resolving horizontal scales of or-

der 20km (e.g. the model IFS of the European Centre for Medium-Range Weather

Forecasts), the atmospheric motions of interest span many more scales than those

captured in a fixed resolution model run. The widely varying spatial and temporal

scales, in addition to the nonlinearity of the dynamical system, raise an interest-

ing and challenging modeling problem. Solving such a problem more efficiently and

accurately requires variable resolution.

Grid refinement techniques in atmospheric modeling are a relatively new and

powerful tool, which will enable the atmospheric science community to address fu-

ture scientific questions. For example, one of today’s most important atmospheric

research problems deals with the role of clouds within the climate system. Cloud

convective processes change the vertical distribution of heat and water substances.

Although small in scale on a cloud-by-cloud basis, the cumulative effect alters the

large-scale flow in general circulation models and is considered one of the key feed-

back mechanisms in climate change scenarios. Today’s climate models with typical

horizontal resolutions of order 200− 300km, and even smaller scale weather predic-

tions codes, do not capture the cloud activities on their computational grids. They

rather treat these processes as sub-grid scale phenomena. Cloud processes, as well

as many other small-scale components like radiation or friction, become part of the

so-called physics parameterization package of a GCM. The parameterizations approx-

imate the cumulative effect of small-scale transactions in order to take their average

effect on the climate system into consideration. It is this, often empirically tuned

but state-of-the-art, forcing mechanism that drives the resolved dynamics scale.
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In the future AMR climate and weather codes might offer an interesting alter-

native to today’s standard uniform grid approaches. If adaptive grids are capable

of actually resolving selected features of interest as they appear, such as convection

in tropical regions, then the corresponding parameterizations can locally be dropped

and replaced by the underlying physics principles. This poses new and interesting

questions concerning the small-scale large-scale flow interactions as well as possible

hydrostatic and non-hydrostatic model interplays. The goal of the adaptive mesh

model run is not only to capture the onset and evolution of small-scale phenomena

but also to simulate their consequent interaction with the surrounding large-scale

flow pattern. Every scale of atmospheric motion affects every other scale due to

the nonlinearity in the equations. Thus the trend of increased spatial resolution

for short-term weather predictions and even long-term climate predictions (Duffy

et al. [2003]) is on-going and today mostly determined by the availability of suffi-

cient computing resources. As a result, resolving the so-called mesoscale phenomena

with typical length scales of tens or hundreds of kilometers has been one of the key

aspects to improving forecasts in past decades. As pointed out by Boville [1991],

improvements can be found in nearly all aspects of the climatic state at finer resolu-

tions. However, Boyle [1993] and Williamson et al. [1995] also noted that improving

the horizontal resolution alone does not necessarily lead to a more accurate climate

prediction. The nonlinear dynamics-physics interactions demand a careful tuning of

the physics parameterizations with respect to the underlying computational mesh.

The discussion about suitable horizontal resolutions raises an important research

problem for atmospheric AMR applications. What are the features of interest for an

adaptive weather or climate simulation and will the adaptive model be capable of

detecting them early on the coarse initial grid? In contrast to today’s typical AMR
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implementations, such as shock-tracking codes in CFD, the features of interest are

less well-defined for atmospheric flows. Shocks or discontinuities that are common

in aerodynamic or astrophysical applications are rarely found in meteorological flows

that are, from a global climate or weather perspective, dominated by large-scale

wave perturbations. In such a rather smoothly varying flow field, detectable features

of interest on a coarse grid may therefore be characterized by the atmospheric wave

activity with corresponding vorticity patterns, pressure gradients, temperature fronts

or tracer distributions.

Adaptive models, even if statically adaptive with only few refinement levels, can

play another key role with respect to today’s orography treatment in GCMs, espe-

cially for climate studies. Static adaptations in mountainous terrain with reinitialized

orography profile can improve the rather crude representation of topographic features

on the computational grid. This will lead to a more realistic topographic forcing of

waves on all atmospheric scales. As an alternative, static refinement options for cli-

mate studies could also include broad bands in the midlatitudes in order to capture

the baroclinic wave activities at higher resolutions (see also the statically adaptive

approach by Prusa and Smolarkiewicz [2003]). The waves are a key mechanism for

the energy transfer from tropical to polar regions and therefore determine the result-

ing energy budgets. Today, it is an open question whether AMR techniques will be

an efficient alternative to the classical nested grid or even stretched-grid approaches

that are currently used to improve local weather or regional climate predictions.

To summarize, dynamically adaptive grids offer an attractive framework for future

high resolution climate and weather studies that can focus on certain geographical

regions or atmospheric events. So far, dynamically adaptive general circulation mod-

els on the sphere are not standard in the atmospheric science community. They are a
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current research trend that is pursued by research groups at the National Center for

Atmospheric Research (NCAR, Boulder, Colorado, USA), the University of Cam-

bridge (Great Britain), the Center for Atmospheric Science (Science Applications

International Corporation, Virginia, USA) and the University of Michigan (Ann Ar-

bor, MI, USA). This thesis is a step towards developing adaptive grid techniques for

future weather and climate predictions.

Whether adaptive atmospheric models for climate and weather predictions will

prevail in the future crucially depends on two major aspects. First, it must be shown

that adaptive atmospheric modeling is not just feasible, but also accurate with re-

spect to the resulting flow patterns and furthermore, capable of detecting the features

of interest reliably. Second, adaptive model simulations must also be computation-

ally less expensive than comparable uniform high resolution runs. As a consequence

(and with respect to the fact that climate modeling is a grand-challenge application)

any adaptive climate model and its numerics need to perform and scale well on to-

day’s distributed-memory parallel computer architectures. Adaptive modeling is a

truly interdisciplinary scientific computing effort. Not only does it raise atmospheric

science questions, but also computer science and applied mathematics aspects.

This thesis will address many of these research questions. It is concentrated on

the design, implementation and analysis of one component of an adaptive climate or

weather model, the so-called dynamical core. Besides the physics parameterization

package, the dynamical core is the second building block of a GCM and describes the

adiabatic equations of motion. The two components dynamics and physics, together

with their processes and closely interconnected nonlinear interactions, are illustrated

in figure 1.1. The encircled areas differentiate the two building blocks. Despite the

large number of interconnections, a dynamical core can quickly be isolated from the
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physics package and is considered an independent program unit in modern software

engineering designs. In particular, this is true for the NASA/NCAR finite-volume

dynamical core used in this thesis which is the foundation for the adaptive grid design.

This hydrostatic dynamical core, based on the so-called 3D primitive equations (PE),

can furthermore easily be transformed into a 2D shallow water system. Therefore,

the adaptive approach can not only be assessed with newly developed 3D idealized

test cases for dynamical cores, but also with the well-established standard test suite

for the shallow water equations on the sphere. This is a distinct advantage of the

model formulation.

1.2 Overview of adaptive and nonuniform grids in climate,
weather and ocean modeling

The advantages of using nonuniform grids with increased resolution over areas

of interest have been discussed in the context of atmospheric regional modeling for

decades (see also Fox-Rabinovitz et al. [1997] for an overview). In particular, nested

grids, stretched grids and dynamically adaptive mesh refinement methods have been

discussed in the literature. The following section gives an overview of past and

current research trends with respect to non-uniform and adaptive grid modeling

ideas. Special attention is paid to atmospheric science applications.

1.2.1 Nested grids

Nested-grid approaches are widely used at National Weather Centers for detailed

local forecasts. Here, a finer grid is permanently embedded in a coarse resolution

model, which periodically updates the initial and lateral boundary conditions of the

refined region. Even multiple nested models are feasible as demonstrated by Ginis

et al. [1998] with a primitive-equation ocean model. This nested-grid configuration
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makes it possible to combine realistic large-scale simulations with mesoscale fore-

casts for selected regions. Such approaches can be either implemented in a one-way

interaction, as in Davies [1976] and Miyakoda and Rosati [1977], or as a two-way

interactive system (Zhang et al. [1986]). The former is the simplest nested-grid ap-

proach since the fine grid information does not affect the solution on the coarse grid.

The latter includes a feedback mechanism that updates the coarse grid fields with the

fine grid solution at any location where the two grids coincide. Nested grid models

are powerful tools for short-term forecasts. Even non-hydrostatic components can

be included in regional models. But the success of a nested forecast mostly relies on

the accuracy of the forcing along the static boundaries. Most often the boundary

update for a fine grid mesoscale domain is driven by independently developed codes

for large-scale systems (as an example see Spall and Holland [1991]). Difficulties arise

when mass, heat and momentum fluxes are inconsistent across the interfaces. This

incompatibility can cause numerical instabilities that seriously degrade the solution

in the entire domain. As a result, nested-grid applications have mostly been used for

short-term integrations that do not crucially rely on exact conservation principles.

From a high-level viewpoint, nested grids with two-way interactions can be viewed

as a variant of a static AMR approach, though typical AMR applications do not

employ multiple model components.

Furthermore, movable nested grids have been developed that are most commonly

used in atmospheric and oceanic feature tracking applications. Examples include the

tropical cyclone prediction system by Ley and Elsberry [1976] and the cyclone air-sea

interaction studies by Falkovich et al. [1995] and Rowley and Ginis [1999]. Here, a

fine grid region or even a cascade of fine grid domains are initially placed over a region

of interest. As demonstrated by Kurihara and Bender [1980] and Wang [2001], the
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grids are then shifted during the model run according to appropriate criteria like the

location of the minimum surface pressure or the gravitational center of the cyclone

(see also Kurihara et al. [1979]). In some cases, nested-grid models require prior

knowledge about future refinement regions, e.g. the main trajectory path (Jones

[1977]). Consequently, they can not be considered truly adaptive since the nesting

remains subjective and inflexible. Despite those different aspects, nested grids and

movable nested grids have one important principle in common. The total number

of grid points stays constant during a model simulation and is determined by the

subjective choice of the initial setup.

1.2.2 Stretched grids

Another kind of variable-resolution model is based on the static, stretched grid ap-

proach. With such an approach, grid intervals outside a uniform fine-resolution area

of interest are stretched uniformly over the rest of the globe (e.g. Staniforth and

Mitchell [1978]). As a result, a single global variable-resolution grid is obtained that

is held fixed during the model integrations. In a later study, Gravel and Staniforth

[1992] concluded that the forecast accuracy and reliability on such a smoothly vary-

ing grid is superior in comparison to abruptly varying meshes. This conclusion was

formulated although, in contrast to the earlier paper, no noise or grid shocks were

found in the abruptly varying systems.

Figure 1.21 shows a stretched grid that is characterized by two high-resolution bands

surrounding the globe (see also the stretched grids by Fox-Rabinovitz et al. [1997],

Fox-Rabinovitz et al. [2001]). Here, the two intersections indicate the regions of

1The figure shows the stretched grid of the model GEM developed by the Canadian Meteoro-
logical Centre, courtesy of Jean Côté.
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interest which can be shifted according to user-defined criteria. For example, the

Canadian Meteorological Center focuses its operational weather forecast model with

stretched grid bands over portions of North America in order to gain resolution and

forecast accuracy for this region (Coté et al. [1998]). Other stretched grids, like the

variable-resolution conformal-cubic grid developed by McGregor [1996] and McGre-

gor and Katzfey [1998], are focused only on a single region of interest. They therefore

avoid the computational overhead invoked by the global band structure. As an al-

ternative, non-uniform resolutions can also be achieved when applying a stretching

coordinate transformation with relocated pole points. This approach has been inves-

tigated by Hardiker [1997] with respect to hurricane forecast studies. Additionally,

the technique proposed by Courtier and Geleyn [1988] with conformal grid trans-

formations has been applied to the operational French numerical weather prediction

system ARPEGE.

In contrast to statically stretched grids, dynamically

Figure 1.2: Stretched grid.

stretched grids offer additional flexibility concerning the

feature of interest during a model simulation. They do

not require prior knowledge about refinement regions

and can therefore be viewed as a globally adaptive vari-

ant of the adaptive mesh approach. Dynamic grid defor-

mations are based on time-dependent global coordinate

transformations. As in the statically stretched case, the total number of grid points

stays constant during the model run, but grid points can now be dynamically focused

according to user criteria. In atmospheric modeling, this continuous dynamic grid

adaptation technique was first applied by Dietachmayer and Droegemeier [1992a]

and Dietachmayer and Droegemeier [1992b]. They used the adaptive zoning method
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by Brackbill and Saltzmann [1982] with weighting functions for idealized studies of

Burger’s equation and frontogenesis experiments. More recent examples include the

adaptive advection tests by Iselin et al. [2002] and the 3D anelastic, non-hydrostatic

dynamics package with grid deformations by Prusa and Smolarkiewicz [2003].

1.2.3 Dynamically adaptive mesh refinements

The goal of dynamic grid adaptations pursued in this thesis is not to move the

grid, but rather to refine the grid in advance of any important physical process that

needs additional grid resolution, and to coarsen the grid behind the region. Dynam-

ically adaptive grid approaches have long been used in astrophysical, aeronautical

and other computational fluid dynamics problems (Berger and Oliger [1984], Berger

and Colella [1989]). However, in atmospheric science they were first applied approx-

imately a decade ago when Skamarock et al. [1989] and Skamarock and Klemp [1993]

published their adaptive grid techniques for limited-area models in Cartesian coor-

dinates. For example, Skamarock et al. [1989] described the model problem of a 2D

barotropic cyclone that is embedded in a rectangular refinement block. This block

tracked the cyclone controlled by a local truncation error estimate. The refinements

were limited to one block and the applied nesting of the refinement block within

the coarse model domain developed some discontinuities at the interface boundaries.

These oscillations were then avoided with an extended overlap region at fine-coarse

grid interfaces as also discussed by Skamarock [1988] with a multi-level primitive-

equation model. Both Skamarock and Klemp’s research efforts were based on an

adaptive grid library developed by Berger and Oliger [1984].

Recently, Bacon et al. [2000] and Boybeyi et al. [2001] introduced an adaptive

non-hydrostatic regional weather and dispersion model OMEGA which addresses
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atmospheric transport and diffusion questions. This operational multiscale envi-

ronment model is based on unstructured, triangulated grids with rotated Cartesian

coordinates that can dynamically and statically be adapted to features of interest.

The sophisticated modeling system has mainly been designed to assess real-time, re-

gional hazards as well as plume-modeling scenarios, but it also has adaptive weather

forecasting capabilities. Meanwhile, OMEGA has been used as a hurricane fore-

casting system in limited-area regions on the sphere (Gopalakrishnan et al. [2002],

Bacon et al. [2002]). The hurricanes were well-tracked with triangulated adaptation

regions. Current research activities by the OMEGA team also include the adaptive

simulation of the atmospheric general circulation with physics modules.

Dynamically adaptive advection codes

Atmospheric dynamics on all scales is dominated by the advection process. The

numerical solution of the advection problem is therefore fundamentally important

for the overall accuracy of the flow solvers and tracer transport mechanisms. Various

dynamically adaptive advection codes have been designed so far. Most recently,

Hubbard and Nikiforakis [2003] described the development of an adaptive 3D passive

advection code for tracer transport problems on the sphere (see also brief discussion

in section 1.3). Other dynamically adaptive transport approaches for atmospheric

science applications include the passive 2D advection algorithms by Behrens [1996]

and Behrens et al. [2000] who formulated an adaptive grid triangulation method

in the x-y plane. Kessler [1999] implemented a finite element advection technique

and evaluated different refinement criteria for the adaptive transport process. Other

studies by Stevens and Bretherton [1996] and Stevens et al. [1999] concentrate on

numerical aspects of adaptive multi-level solvers and Tomlin et al. [1997] investigated
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adaptive gridding options for modeling chemical transports with multiscale sources.

In particular, Tomlin et al. [1997] focused on interactions among emission plumes

and the ambient air. This is also discussed by Odman et al. [1997], Sarma et al.

[1999] and Srivastava et al. [2000] in their adaptive air quality studies.

Adaptive and non-uniform shallow water models

The shallow water equations describe the 2D non-linear flow of an incompressible

fluid. They represent the 2D atmospheric flow conditions in a shallow, hydrostatic

atmospheric layer and are therefore considered an idealized testbed for 3D model

developments. Most often, the horizontal discretization for primitive-equation based

dynamics packages is designed and tested within this 2D shallow water framework.

Due to their close resemblance to the full 3D dynamical core equations, adaptive

shallow water models are of particular interest for future adaptive 3D dynamics

packages. Several statically and dynamically adaptive shallow water models have

been proposed in the literature. So far, all dynamically adaptive approaches deal

with the shallow water equations in the x-y Cartesian plane, whereas the statically

adaptive models are predominantly in spherical coordinates. Statically adaptive

models on the sphere have been developed by Ruge et al. [1995], Fournier et al.

[2000], Fournier et al. [2004] and Barros and Garcia [2004]. The first two studies

discuss a refined representation of the orography data, whereas Fournier et al. [2004]

resolved a pre-determined cyclone track in midlatitudes at higher resolutions. Barros

and Garcia [2004], on the other hand, nested a fine-resolution region of interest within

the coarse global mesh and provided intermediate refinement levels in order to ensure

a smooth transition zone. Here the resolution between neighboring grid points can

only differ by a factor of 2. Alternatively, Coté et al. [1993] designed a shallow water
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model on a statically stretched grid that focuses on a selected forecast region.

Dynamically adaptive shallow water models have been designed by Behrens [1995]

and Behrens [1998] who implemented adaptive grid triangulations in the x-y plane.

Hess [1999] investigated the local adaptive approach on block-structured data with

multigrid solvers and Giraldo [2000a] assessed an adaptive triangulation method with

global remeshing capabilities. Here the grid points in the refined areas are not added

locally, but rather the mesh is globally redistributed. Such an approach is based on

a remapping or stretching technique.

So far, a dynamically adaptive shallow water model on the sphere had never been

built. This thesis presents the first dynamically adaptive approach to the solution of

the shallow water equations on the sphere.

1.2.4 Summary: Dynamic grid adaptation

In summary, two fundamental dynamic grid adaptation strategies can be distin-

guished. Grid points can either be globally redistributed (remapping technique) or

locally added and removed (AMR technique). The former approach keeps the total

number of grid points constant while the latter varies the number of grid points

as demanded by time-dependent flow features. Both strategies have different un-

derlying concepts. The goal of global grid redistribution techniques is to find the

most accurate solution for a fixed computational cost, whereas the local adaptive

approach aims at a fixed accuracy for a minimum cost. In particular, this is true

if local refinements are placed in regions with the highest truncation errors based

on truncation error estimates. If flow-dependent refinement criteria are applied that

try reducing errors with respect to a specific flow feature, the overall error of the

simulation might not be significantly reduced. Instead, the errors associated with
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the feature of interest are diminished.

Although all approaches to refining the grid domain are different in nature, they

all have one aspect in common. The varying resolution may cause artificial reflections

and refractions of waves due to compatibility problems at the interface between two

resolutions. For instance, a disturbance that propagates from the fine to a coarser

mesh may undergo false reflection back to the fine grid or aliasing when entering the

coarser domain. These interface-generated problem may further lead to numerical

oscillations that can seriously affect the results over the entire computational domain.

In addition, local interactions in non-uniform grids are no longer isotropic since the

derivatives in horizontal directions might not involve the same scales (Courtier and

Geleyn [1988]). Therefore, an optimal interface should not only allow all resolvable

waves to propagate smoothly with minimal changes in amplitude and phase, but

also needs to conserve the exchanged energy, mass and momentum between the grid

systems (Zhang et al. [1986]). This poses additional questions concerning the optimal

interpolation schemes between refinement levels (Alapaty et al. [1998]).

1.3 Adaptive grid libraries

Public-domain adaptive-mesh libraries have increasingly become available over

the last two decades. The rapid development in recent years shows the importance

of current AMR research activities which are greatly facilitated by enhanced com-

puting resources. This section provides a brief, concise overview of possible starting

points for AMR model developments. From a historic viewpoint, an important mile-

stone was the adaptive mesh package pioneered by Berger and Oliger [1984] which

successfully showed the feasibility and efficiency of adaptive methods for hyperbolic

equations. It can be considered the first viable approach to adaptive modeling for
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CFD applications.

A collection of today’s publicly available adaptive mesh refinement libraries is

listed below. The majority of these software packages support dynamic grid adap-

tations in Cartesian coordinates on structured grids. The range of applications that

utilize the libraries covers a broad field of disciplines. Among them are the classi-

cal CFD areas like models for hydrodynamic and magnetohydrodynamic simulations

with shocks. In addition, particle problems, laser-plasma interactions and electro-

magnetic wave distributions have been successfully tracked with AMR approaches.

Overview of adaptive grid libraries

AMR library by Berger-Oliger The Berger-Oliger AMR library is a collection

of FORTRAN routines for the numerical solution of hyperbolic conservation

laws in 2 and 3 space dimensions. The underlying data structure is based on

rectangular boxes in Cartesian coordinates. The library has been developed

by Berger and Oliger [1984] and Berger and Colella [1989] for serial computer

architectures (see also Berger [2003]).

AMRCLAW AMRCLAW is a joint project between Randall LeVeque (University

of Washington, Seattle) and Marsha Berger (Courant Institute, New York Uni-

versity). The package contains the Berger AMR library (see above, also Berger

and LeVeque [1998]) and LeVeque’s numerics toolbox CLAWPACK, the Con-

servation LAW PACKage (LeVeque and Berger [2003]).

AMR library in BATS-R-US BATS-R-US is a parallel AMR space-weather first-

principles magnetohydrodynamic (MHD) model developed at the University of

Michigan (Ann Arbor, Michigan, see also Hansen et al. [2002]). The data struc-

ture is based on Cartesian self-similar blocks which can be adaptively refined
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in 3 dimensions. The AMR package in BATS-R-US has been the predecessor

of the newly developed spherical adaptive grid library with block data used in

this thesis. The BATS-R-US software has been successful developed and used

in space weather modeling for over 10 years. It is most commonly run to model

the solar-wind interaction with solar-system bodies.

CHOMBO The CHOMBO infrastructure provides a set of tools for implementing

finite difference methods for the solution of partial differential equations on

Cartesian, block-structured adaptively refined rectangular grids. Chombo has

been designed at the Lawrence Berkeley National Laboratory (LBNL, Berkeley,

California). Both elliptic and time-dependent modules are included, as well

as support for parallel platforms and standardized self-describing file formats

(HDF5). In addition, a visualization package ChomboVis is publicly available.

DAGH The Distributed Adaptive Grid Hierarchy (DAGH) is a software framework

that supports adaptive finite difference techniques for the solution of partial

differential equations in Cartesian coordinates. It has been designed for sequen-

tial or parallel computing environments and provides a programming interface

for traditional Fortran 77/90, C or C++ kernels (see also Parashar and Browne

[1999]). The DAGH library is no longer under further development.

AMR++ library in Overture AMR++ is an adaptive mesh refinement class li-

brary that is a part of the Overture framework developed at the Lawrence

Livermore National Laboratory (LLNL, Livermore, California). Overture (see

also Brown et al. [2003]) is an object-oriented library which manages over-

lapping grids for partial differential equations in serial or parallel computing

environments. The AMR toolkit provides additional adaptive mesh refine-
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ment capabilities on these structured, even curvilinear, overlapping grids. The

framework is designed for finite difference or finite-volume methods.

PARAMESH PARAMESH is a collection of Fortran 90 subroutines that allows

the conversion of serial codes with logically Cartesian structured meshes to

parallel codes with adaptive mesh refinements. The data structure is based

on a block-structured approach. The parallel implementation utilizes either

SHMEM calls (communication library originally developed by CRAY) or the

Message Passing Interface MPI. The PARAMESH toolkit has been designed

by the NASA Goddard Space Fight Center, Greenbelt, Maryland (MacNeice

et al. [2003]).

PYRAMID Pyramid is a software library for performing parallel adaptive mesh re-

finement (PAMR) on unstructured meshes. This software library can be used in

a variety of unstructured parallel computational applications, including paral-

lel finite element, parallel finite-volume, and parallel visualization applications

using triangular or tetrahedral meshes. PYRAMID is distributed by the NASA

Jet Propulsion Laboratory, Pasadena, California (Lou and Norton [1999]).

SAMRAI The SAMRAI (Structured Adaptive Mesh Refinement Application In-

frastructure) library is an object-oriented C++ software framework for com-

putational physics applications. It provides tools for structured AMR and

facilitates the development of physics models with modern numerical meth-

ods and parallel, high-performance computing requirements. Like Overture,

SAMRAI has also been developed at LLNL (Hornung et al. [2003]).

With respect to the atmospheric sciences, only the Berger-Oliger approach (Berger

and Oliger [1984]) has been applied to atmospheric science questions so far. The
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underlying concept of this software package supports a Cartesian grid hierarchy of

fine grids that overlay the coarse grid domain. All grids at all refinement levels are

not only maintained, but are actively used for boundary data updates during the

course of the integration. Grid boxes are dynamically created and removed based on

a Richardson-type estimate of the local truncation error. Here, the overall goal is to

maintain a fixed accuracy of the simulation at minimum cost.

The Berger-Oliger library has been applied multiple times in the context of lim-

ited area or regional atmospheric modeling. Examples include Skamarock et al.

[1989] and Skamarock and Klemp [1993] (see also section 1.2.3 on page 11) who

investigated adaptive meshes for regional weather prediction applications in Carte-

sian coordinates. They implemented an adaptive 3D hydrostatic (Skamarock et al.

[1989]) as well as an adaptive non-hydrostatic (Skamarock and Klemp [1993]) model

and simulated flow fields in limited-area regions. Fulton [1997] focused on movable

nested meshes for hurricane track predictions and later used the truncation error esti-

mates for an adaptive multigrid cyclone track application (Fulton [2001]). Blayo and

Debreu [1999] applied the Berger-Oliger approach to an adaptive ocean model and

most recently, Hubbard and Nikiforakis [2003] developed a fully 3D adaptive, passive

advection code on the sphere. This model in spherical coordinates transports a tracer

component with prescribed wind speeds. The grid resolution adapts in 3 dimensions

according to a local gradient indicator of the tracer compound. This model is the

first dynamically adaptive 3D advection code on the sphere. Its numerics is based

on a monotonic, conservative finite-volume approach.
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1.4 Overview of the thesis

The goal of this thesis is to design, build and test a block-structured hydrostatic

dynamical core for GCMs that can adapt its horizontal resolution statically and

dynamically based on user-defined adaptation criteria.

In this thesis, adaptive grid techniques are applied to a revised version of NASA/

NCAR’s next-generation dynamical core for climate and weather research. This

hydrostatic so-called Lin-Rood dynamics package (Lin and Rood [1997]) is based

on a conservative 2D finite-volume discretization in flux form and utilizes a floating

Lagrangian coordinate in the vertical direction. The algorithmic design and the

numerics are reviewed in chapter II. Furthermore, questions concerning the so-

called pole problem, the convergence of the meridians in spherical coordinates, are

addressed. This includes a discussion about the polar cap treatment and various

polar filters that help stabilize the gravity waves in high latitudes. In addition, the

divergence damping mechanism is explained.

Chapter III introduces the fundamental ideas behind the adaptive mesh refine-

ment strategy used in this thesis. One of the main building blocks of the adaptive

model is an AMR grid library that manages a block-structured data layout in spher-

ical coordinates. This communication library for parallel processors has been newly

developed by Oehmke and Stout [2001] and Oehmke [2004] in the Computer Science

Department at the University of Michigan, Ann Arbor. The block-wise data struc-

ture allows cache-efficient high-performance computations with minimal changes to

the existing finite-volume flow solvers. Besides discussing these computing and per-

formance aspects, chapter III also gives an overview of interpolation techniques for

ghost cell updates and split-join operations in case of adaptations. Additionally, flux
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updates across interfaces are addressed which ensure global mass conservation.

The adaptive dynamical core is run in two model configurations: the full 3D

hydrostatic dynamical core on the sphere and the corresponding 2D shallow water

configuration that has been extracted out of the 3D version. This shallow water setup

serves as an ideal testbed for the horizontal discretization and the 2D adaptive mesh

strategy. 2D test cases are chosen from the standard test suite for the shallow water

equations (Williamson et al. [1992]). An idealized 3D test case is newly derived as

part of this research effort.

Chapter IV concentrates on the assessment of solely static adaptations in the

2D shallow water framework. The shallow water tests evaluate the design and ac-

curacy of a so-called reduced grid setup that can be viewed as a static coarsening

in longitudinal direction at the poles. Furthermore, static refinements in pre-defined

regions of interest are assessed which reveal the stability of the scheme in presence of

the varying resolution at grid interfaces. Appropriate error measures are introduced

which are also used in the following chapters.

Chapter V is focused on dynamic adaptations in the 2D shallow water setup.

Dynamic adaptations are based on flow characteristics and guided by refinement

criteria that detect user-defined features of interest at run time. Possible choices for

refinement criteria are reviewed with emphasis on flow-based refinement indicators,

like vorticity or gradient assessments. The shallow water tests reveal the feasibility

of the dynamically adaptive approach and furthermore are used to compare different

choices for the adaptation criterion.

In chapter VI, 3D idealized dynamical core tests of the static and dynamic

adaptations are presented. This chapter includes the derivation of the newly devel-

oped Jablonowski-Williamson baroclinic wave test case (Jablonowski and Williamson
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[2004]). This test case, together with the new Polvani et al. [2004] test case, shows

that adaptive mesh refinements are a viable choice for future adaptive weather and

climate models. Furthermore, new questions concerning the orography representa-

tion in adaptive model runs are revealed.

Chapter VII provides a summary of the scientific merit and major accomplish-

ments of this thesis. It opens the discussion about future research directions and

points out the challenging steps towards an adaptive, complete General Circulation

Model with physics modules.



CHAPTER II

The hydrostatic finite-volume dynamical core

In this thesis the development of the adaptive dynamical core for weather and

climate research is based on the so-called Lin-Rood finite-volume dynamical core that

has been designed at the NASA Goddard Space Flight Center (NASA/GSFC) in the

late 1990’s. This hydrostatic global dynamics package in flux form is built upon the

Lin and Rood [1996] advection algorithm, which utilizes advanced oscillation-free

numerical approaches to solving the transport equation. In particular, Lin and Rood

[1996] extended a Godunov-type methodology to multiple dimensions and made use

of 2nd order van Leer-type (van Leer [1974], van Leer [1977]) and 3rd order piecewise

parabolic (PPM) methods (Colella and Woodward [1984], Carpenter et al. [1990]).

In 1997, the advection scheme became the fundamental building block of a shallow

water code (Lin and Rood [1997], Lin [1998a]) which then led to the development of

the current 3D, primitive-equation (PE) based, finite-volume dynamics package (Lin

et al. [2001]).

Today, the 3D dynamical core is used operationally for data assimilation appli-

cations at NASA/GSFC and, in 2001, it was included in NCAR’s climate-prediction

system CCSM, the Community Climate System Model. This climate prediction

system contains the Community Atmosphere Model, CAM, with physics and dy-

23
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namics components. In particular, the finite-volume dynamical core is now one of

the three standard dynamics modules in CAM and can be chosen at compile time

for the individual model setup. The Lin-Rood finite-volume core performs well in

NCAR/NASA’s internal comparative studies (S.-J. Lin, personal communication). It

has the potential to become NCAR’s dynamics package of choice for future long-term

climate change scenario calculations (CCSM [2003]).

Chapter II is organized in three sections. The overall model design and its un-

derlying numerical scheme are reviewed in Section 2.1. This includes a discussion

about the governing equations in 2 and 3 dimensions and addresses horizontal as

well as vertical discretization issues. Section 2.2 examines the special treatment of

the polar regions in the regular latitude-longitude spherical grid. Besides the polar

cap concept, filtering techniques are introduced that help stabilize high-frequency

gravity waves in polar regions. Gravity waves are also the main focus of Section 2.3.

Here the divergence damping mechanism and its impact on the resulting flow field

are explained.

2.1 Model design and numerics

2.1.1 Governing equations

The dynamical core is built upon a 2D shallow water approach in the horizontal

plane with floating Lagrangian coordinates in the vertical direction (see also Section

2.1.3). The underlying hyperbolic shallow water system is comprised of the mass

continuity equation and momentum equation as shown in equations 2.1 and 2.2.

Here the flux-form of the mass conservation law and the vector-invariant form of the
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momentum equation are selected (see also Lin and Rood [1997])

∂

∂t
h +∇ · (h~v) = 0 (2.1)

∂

∂t
~v + Ωa

~k × ~v +∇(
Φ +K)

= 0 (2.2)

where ~v = u~i+v~j is the horizontal velocity vector and Ωa = ζ+f denotes the absolute

vorticity. The absolute vorticity is composed of the relative vorticity ζ = ~k · (∇× ~v)

and the Coriolis force f = 2Ω sin ϕ with the latitude ϕ and the physical constant

Ω = angular velocity of the earth (see also Appendix C for an overview of physical

constants). Furthermore, ~k is the unit vector in the vertical direction, ∇ represents

the horizontal gradient operator, Φ = Φs+gh symbolizes the free surface geopotential

with Φs = surface geopotential, h = depth or mass of the fluid and g = gravitational

acceleration. In addition, K = ~v·~v
2

stands for the kinetic energy. A distinct advantage

of this vector-invariant formulation is that the metric terms, which are singular at

the poles in the curvilinear spherical coordinate system, are hidden by the definition

of the relative vorticity.

In three dimensions, the set of equations is very closely related to the shallow

water system when replacing the height of the shallow water system with the pressure

thickness δp of a Lagrangian layer. Furthermore, the thermodynamic equation 2.4

in conservation form is added to the set

∂

∂t
δp +∇ · (δp~v) = 0 (2.3)

∂

∂t
(Θ δp) +∇ · (Θ δp~v) = 0 (2.4)

∂

∂t
~v + Ωa

~k × ~v +∇pΦ +∇K = 0 (2.5)

where δp = −ρgδz is the pressure thickness of a layer bounded by two Lagrangian

surfaces in the hydrostatic system with density ρ and height z. The thermodynamic
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variable Θ is the potential temperature and ∇p symbolizes a newly derived pressure

gradient operator for the finite-volume representation of the pressure gradient force.

This operator constitutes the main difference between the shallow water system and

the 3D model setup. The underlying method has been developed by Lin [1997]

and was furthermore discussed by Janjić [1998] and Lin [1998b]. In this primitive-

equation formulation, the prognostic variables of the dynamical core are the wind

components u and v, the potential temperature Θ and the pressure thickness δp.

The geopotential Φ, on the other hand, is computed diagnostically via the vertical

integration of the hydrostatic relation in pressure coordinates

∂Φ

∂p
=
−1

ρ
(2.6)

with cell-averaged density ρ. In the presence of orography as a lower boundary

condition this integration then starts at the geopotential level Φs of the surface field.

It is important to note that the hydrostatic relationship is the vertical coupling

mechanism for the dynamical system. In addition, the pressure level pn of each

Lagrangian surface can be directly derived when adding the pressure thicknesses

within the vertical column

pn = ptop +
n∑

k=1

δpk for n = 1,2,3, · · · , Nlev (2.7)

Here n denotes the vertical index starting from 1 at the lower bounding surface of the

uppermost Lagrangian layer. The pressure at the model top ptop is prescribed and

set to 2.19hPa in the current formulation. There are a total of Nlev + 1 Lagrangian

surfaces that enclose Nlev Lagrangian layers. The lowermost Lagrangian surface

coincides with the Earth’s surface field and, as a consequence, the surface pressure

is then automatically determined by the pressure pNlev
at the lowest level. In all 3D

simulations presented in chapter VI, Nlev = 26 vertical levels have been selected (see
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also Appendix B for more detailed information on the vertical coordinate system).

They are identical to the vertical levels operationally used for climate studies with

NCAR’s modeling system CCSM.

The rather unusual form of the primitive equations and in particular the mass

continuity equation 2.3 can be derived when integrating the standard form of the

3D continuity equation (see Durran [1999]) in the vertical direction. This is demon-

strated starting from the continuity equation with a generalized vertical coordinate

ξ. Starting from the mass conservation law

∂

∂t

(∂p

∂ξ

)
+∇ξ ·

(
~v

∂p

∂ξ

)
+

∂

∂ξ

(
ξ̇

∂p

∂ξ

)
= 0 (2.8)

with pressure p and ∇ξ as the horizontal gradient operator on constant ξ-surfaces,

the continuity equation for the pressure thickness δp of a Lagrangian layer with

bounding upper and lower surfaces at ξu and ξl can be determined via the vertical

integration
∫ ξu

ξl

[
∂

∂t

(∂p

∂ξ

)
+∇ξ ·

(
~v

∂p

∂ξ

)
+

∂

∂ξ

(
ξ̇

∂p

∂ξ

)]
dξ = 0. (2.9)

In practice, ξ is often replaced by an orography following coordinate system like the

hybrid η coordinate used in the finite-volume dynamical core (see also description in

Appendix B). After rearranging terms, expression 2.9 becomes

∂

∂t

∫ ξu

ξl

∂p

∂ξ
dξ +∇ξ ·

(
~̄v

∫ ξu

ξl

∂p

∂ξ
dξ

)
+

∂

∂ξ

∫ ξu

ξl

(
ξ̇

∂p

∂ξ

)
dξ = 0. (2.10)

The integrated form is then given by

∂

∂t

[
p(ξu)− p(ξl)

]
+∇ξ ·

(
~̄v
[
p(ξu)− p(ξl)

])
+

∂
[
ξ̇up(ξu)− ξ̇lp(ξl)

]

∂ξ
= 0 (2.11)

where the overbar denotes the volume-mean wind speeds. Since there are no vertical

transport processes across the bounding surfaces of a Lagrangian layer, the last term
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on the left hand side vanishes and the general form of the continuity equation for δp

follows

∂

∂t
δp +∇ξ ·

(
~̄v δp

)
= 0 . (2.12)

The integrated form of the momentum equation and thermodynamic equation can

be derived accordingly.

Because of their equivalent designs, the 2D shallow water version can be easily

extracted out of the full 3D dynamical core. The main idea is to eliminate the

influence of the thermodynamic equation in the momentum equation for the shallow

water setup. The thermodynamic equation is linked to the momentum equation only

via the computation of the geopotential gradient. Overall, three steps need to be

performed. First, the number of vertical layers needs to be set to 1. Second, the

potential temperature field Θ must be initialized with the constant 1 K and must

not change during the shallow water run (e.g. the transport and updates of δp Θ

can be omitted). Furthermore, the δp field now stands for the geopotential height

h instead of a pressure thickness. Third, the physical constants cp, Rd and κ need

to be overwritten and set to unity. This guarantees that the operator ∇p in the 3D

momentum equations (explained in Lin [1997]) becomes equivalent to the operator

∇ in the 2D momentum equation (eqn. 2.2).

2.1.2 Horizontal discretization

The finite-volume dynamical core utilizes a flux form algorithm for the horizontal

discretization, which, from the physical point of view, can be considered a discrete

representation of the basic physical laws in the finite-volume space. However, from

the mathematical standpoint, it can be viewed as a numerical method for solving

the governing equations in integral form. This leads to a more natural and often
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more precise representation of the advection processes, especially in comparison to

finite difference techniques. The transport processes are modeled by two-dimensional

fluxes into and out of the finite control-volume where volume-mean quantities are

predicted. This underlying finite-volume principle of the Lin-Rood advection algo-

rithm is reviewed below using the mass continuity equation of the shallow water

equations as an example.

Finite-volume discretization

Finite-volume methods are closely related to finite difference schemes. They are

often viewed as a finite flux-differencing approximation to the differential equation

and derived on the basis of the integral form of the conservation law (see discussion

in LeVeque [2002]). The mass conservation law (equation 2.1) in integral form is

given by ∫ tn+1

tn

∫

Ω

( ∂

∂t
h
)

dΩ dt +

∫

Ω

∫ tn+1

tn

∇ · (h~v) dt dΩ = 0 (2.13)

where Ω represents a control volume. In the following derivation only two-dimensional

control volumes with surface areas AΩ are considered. Using the relationships

∫

Ω

h dΩ = h̄

∫

Ω

dΩ = h̄ AΩ (2.14)

∫ tn+1

tn

(h~v) dt = < h~v >

∫ tn+1

tn

dt = < h~v > ∆t = ~F ∆t (2.15)

where ∆t = tn+1 − tn is the duration of a time step, the overbar denotes a spatially-

averaged quantity, the angled brackets indicate the averaging over a time step ( ~F is

defined as the time-averaged flux vector), equation 2.13 can be rewritten as

∫ tn+1

tn

( ∂

∂t
h̄
)

dt +
∆t

AΩ

∫

Ω

∇ · ~F dΩ = 0 . (2.16)

Applying the Gauss divergence theorem yields

∫ tn+1

tn

( ∂

∂t
h̄
)

dt +
∆t

AΩ

∮

∂Ω

~F · d~n = 0 (2.17)
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in which ~n is an outward-pointing normal to the boundary ∂Ω of the control volume.

With ∫ tn+1

tn

( ∂

∂t
h̄
)

dt = h̄
∣∣tn+1

tn
= h̄n+1 − h̄n (2.18)

the discrete representation of the conservation law becomes

h̄n+1 = h̄n − ∆t

AΩ

4∑
i=1

li ~Fi · ~ni (2.19)

where the sum comprises the 4 line segments with lengths li that surround a rectan-

gular 2D control volume. Fi symbolizes the time-averaged fluxes at the cell interfaces

and ni indicates the normal surface vectors to the ith line segment. Assuming an

orthogonal x-y control volume with surface area AΩ = ∆x ∆y and corresponding

fluxes F and G in x and y direction, equation 2.19 is equivalent to

h̄n+1
i,j = h̄n

i,j −
∆t

∆xi ∆yj

[(
∆yj (Fi+ 1

2
,j − Fi− 1

2
,j)

)
+

(
∆xi (Gi,j+ 1

2
−Gi,j− 1

2
)
)]

(2.20)

= h̄n
i,j −

∆t

∆xi

(
Fi+ 1

2
,j − Fi− 1

2
,j

)− ∆t

∆yj

(
Gi,j+ 1

2
−Gi,j− 1

2

)
(2.21)

in which the indices i, j define the grid point position of the cell center and the half

index represents the boundaries of the grid box.

For a spherical grid, the lengths of the line segments ∆x, ∆y and the surface

area AΩ = ∆xi ∆yj in equation 2.20 need to be substituted with the corresponding

representation in spherical space

∆xi = a cos ϕ ∆λi (2.22)

∆yj = a ∆ϕj (2.23)

AΩ = a2
(
sin ϕj+ 1

2
− sin ϕj− 1

2

)
∆λi (2.24)

with a = Earth’s radius, ∆λi = (λi+ 1
2
− λi− 1

2
) and ∆ϕi = (ϕj+ 1

2
− ϕj− 1

2
) measured

in radians.
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In the NASA/NCAR Lin-Rood finite-volume dynamical core though, a slightly

different flux-differencing approach has been implemented (see Lin and Rood [1997])

that corresponds to equation 2.20 when replacing AΩ with the approximation AΩ =

a2 cos ϕ ∆λ ∆ϕ. As a result, the discrete finite-volume conservation law for the cell-

averaged height field in spherical coordinates becomes

h̄n+1
i,j = h̄n

i,j −
∆t

a cos ϕj ∆λi

(
Fi+ 1

2
,j − Fi− 1

2
,j

)

− ∆t

a cos ϕj ∆ϕj

(
cos ϕj+ 1

2
Gi,j+ 1

2
− cos ϕj− 1

2
Gi,j− 1

2

)
. (2.25)

Here F and G denote the time-averaged 1D numerical fluxes in longitudinal and

meridional direction. In a more compact notation, equation 2.25 can also be written

as

h̄n+1
i,j = h̄n

i,j + Fnet + Gnet (2.26)

where the net fluxes for the grid box i, j are defined as

Fnet = − ∆t

a cos ϕj ∆λi

(
Fi+ 1

2
,j − Fi− 1

2
,j

)

= − ∆t

a cos ϕj ∆λi

δλ F (2.27)

Gnet = − ∆t

a cos ϕj ∆ϕj

(
cos ϕj+ 1

2
Gi,j+ 1

2
− cos ϕj− 1

2
Gi,j− 1

2

)

= − ∆t

a cos ϕj ∆ϕj

δϕ

(
cos ϕG

)
(2.28)

with the standard discrete difference operator δ. This notation closely resembles the

form of the equations in Lin and Rood [1997] and Lin [1998a] when defining the

time-averaged fluxes as X and Y and omitting the subscript ’net’ in equations 2.27

and 2.28.

Equation 2.26 states that the rate of change of the scalar field h is only due to

the net fluxes, which are solely determined by the fluxes through the interfaces of the
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control volume. Such an approach automatically leads to a conservative discretiza-

tion. There are many ways of computing the numerical fluxes F and G which so far

have not been discussed. Here the choices are focused on higher-order Godunov-type

schemes. In particular, the second-order van Leer algorithm (van Leer [1977]) and

the third-order piecewise parabolic method (PPM, Colella and Woodward [1984])

have been selected. These methods are outlined later in this chapter.

The Lin-Rood advection algorithm

The advection algorithm developed by Lin and Rood [1996] is based on the finite-

volume representation shown in equation 2.26. The following section briefly describes

the transport process and flux computations as applied in the NASA/NCAR finite-

volume dynamical core. In order to match the Lin and Rood [1996] notation the

shallow water height h is replaced by a density-like field Q

∂

∂t
Q +∇ · (Q~v) = 0 . (2.29)

When advancing the Q field for one time step from Qn to Qn+1, a sequential operator-

splitting approach

Qx = Qn + Fnet(Q
n) (2.30)

Qyx = Qx + Gnet(Q
x) (2.31)

⇒ Qyx = Qn + Fnet(Q
n) + Gnet(Q

x) + GnetFnet(Q
n) (2.32)

is applied which introduces a directionally anti-symmetric splitting error. A directional-

bias free algorithm can then be obtained when averaging two asymmetric operations

1
2
(Qyx + Qxy) to arrive at

Qn+1 = Qn + Fnet

[
Qn +

1

2
Gnet(Q

n)
]
+ Gnet

[
Qn +

1

2
Fnet(Q

n)
]
. (2.33)
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Equation 2.33 still suffers from a so-called deformational error (Smolarkiewicz [1982])

which is removed by replacing the inner flux form operators with their advective

counterparts f and g. The resulting symmetric scheme, which is implemented in the

finite-volume dynamical core, is given by

Qn+1 = Qn + Fnet

[
Qn +

1

2
gnet(Q

n)
]
+ Gnet

[
Qn +

1

2
fnet(Q

n)
]
. (2.34)

For the inner, advective 1D operators f and g, a first-order upwind method is

employed. The outer 1D fluxes are either modeled by the van Leer [1977] algo-

rithm (scheme I with or without monotonicity constraints) or by the monotonicity-

preserving PPM method (piecewise parabolic method, see Colella and Woodward

[1984] and Carpenter et al. [1990]). The choice of the flux scheme is guided by Lin-

Rood’s two-step algorithmic approach to advancing the prognostic variables from tn

to tn+1 on a so-called D-grid (see also figure 2.1). During the first step, time-centered

velocity components at tn+ 1
2 are calculated on a C-grid with the unconstrained 2nd

order van Leer algorithm. In step 2, these auxiliary time-centered winds are then

used in order to approximate the time-averaged fluxes for the update of the prognos-

tic variables on the D-grid. This is done with the more accurate 3rd order monotonic

PPM method. The use of the time-centered wind speeds at the staggered C-grid po-

sitions avoids tackling a so-called Riemann-problem for the approximation of the

time-averaged fluxes at cell interfaces.

The grid staggering techniques are illustrated in figure 2.1. In the dynamical

core, all staggering options displayed in figure 2.1 are employed at different stages

of the algorithm (see details in Lin and Rood [1997]). Wind data other than the

prognostic wind fields on the D-grid are interpolated via linear interpolations.

In practice, it has been observed (Lin and Rood [1997]) that the PPM method
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u v

v u

u, vu, v

u, v u, v

D grid C grid B grid A grid

u, vΦ,ΦΦ Φ

Figure 2.1: Grid staggering techniques (named after Arakawa, see Arakawa and Lamb
[1977]). u and v indicate the positions of the zonal and meridional wind,
Φ symbolizes a scalar quantity, e.g. the geopotential, which is defined at
the cell center.

does not lead to superior results in polar regions in comparison to the more economi-

cal 2nd order van Leer approach. Since the chosen computational latitude-longitude

grid converges at the pole points (figure 2.2) an increased resolution in longitudinal

direction is provided in physical space. With respect to accuracy, this allows switch-

ing from the PPM method to the van Leer scheme poleward of 75◦ N/S. On the other

hand, the flux calculations in the meridional direction remain unchanged (PPM).

Test results with and without the switch of the al-

Figure 2.2: Regular grid.

gorithm are almost indistinguishable from each other

while the former reduces the computational costs on

the order of 10-15%. Furthermore, the switch to the

van Leer approach in polar regions is beneficial as it

adds slightly more implicit diffusion. This helps stabi-

lize high-speed gravity waves in high latitudes as dis-

cussed in Section 2.2.2.
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Numerical schemes: van Leer and PPM method

The advection method implemented in the Lin-Rood dynamical core can be

viewed as a multi-dimensional extension of higher-order Godunov-type schemes like

the van Leer or PPM method. These are based on the reconstruct-evolve-average

approach (REA as explained by LeVeque [2002]) and use piecewise linear (van Leer)

or piecewise parabolic (PPM) subgrid distributions for the piecewise continuous re-

construction of the flow field. The transport problem is then solved exactly and new

initial data at time tn+1 are obtained by averaging the transported quantity over

each control volume.

The advection step is upstream-biased and monotonic if limiters are applied to the

subgrid distributions. These are used in case of PPM (see details in Lin and Rood

[1996]) which leads to a total variation diminishing (TVD) method. The selected

slope limiter is the monotonized central-difference limiter (MC limiter) proposed by

van Leer [1977] which is applied as a pure 1D operator during the reconstruction

step. Limiting can enforce a strictly monotonic advection algorithm in the 1D case.

However, very minor violations of the monotonicity constraint in the two-dimensional

flow are possible and have indeed been observed by Lin and Rood [1996] and in the

adaptive grid runs in Chapter V.

In general, the selected order of the subgrid distribution determines the overall

accuracy of the transport scheme. In the van Leer case with piecewise linear re-

constructions, the resulting fluxes (for example the fluxes F at an interface in the

longitudinal direction) are first-order accurate. On an equidistant 1D grid this leads

to a locally second-order advection algorithm since the leading error term cancels

when calculating the flux difference. The numerical fluxes are given by (see also
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Allen et al. [1991] or Lin et al. [1994])

Fi+ 1
2

=





ui+ 1
2

[
Qi + ∆Qi

2

(
1− u

i+1
2
∆t

∆xi

)]
for ui+ 1

2
≥ 0

ui+ 1
2

[
Qi+1 − ∆Qi+1

2

(
1 +

u
i+1

2
∆t

∆xi+1

)]
for ui+ 1

2
< 0

(2.35)

where Q stands for the transported quantity and ∆Q symbolizes the slope of the

linear subgrid distribution in the longitudinal direction. Here the slope is evaluated

with a central differencing approximation ∆Qi = 1
2
(Qi+1 − Qi−1) and can further

be limited as indicated above (see also Lin et al. [1994] for a comparison of suitable

slope limiters or alternative positive definite constraints). The same basic algorithm

applies to the fluxes G in meridional direction.

In order to gain accuracy in the PPM case, the piecewise polynomials in a con-

trol volume are approximated by parabolic functions with two degrees of freedom,

denoted with δax and bx (Nair and Machenhauer [2002], compare also to notation

δa, a6 in Carpenter et al. [1990]). They represent the slope and the curvature of the

parabola

h(x) = h̄ + δax x + bx
( 1

12
− x2

)
(2.36)

with h̄ = cell average (see also van Leer [1977]). This quadratic subgrid distribution

is further analyzed in Section 3.3.1 on page 91 with respect to the interpolation

mechanisms in an adaptive grid run. The resulting fluxes of the PPM algorithm are

derived in Colella and Woodward [1984]. The PPM advection scheme is 3rd order

accurate for linear advection problems on uniform 1D grids.

The advection algorithm is the fundamental building block of the horizontal dis-

cretization. It is not only used to predict the time evolution of the mass (eqn. 2.3)

and potential temperature field (eqn. 2.4), but also determines the absolute vorticity
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fluxes and kinetic energy in the momentum equation (eqn. 2.5). Further details are

presented in Lin and Rood [1997].

If the PPM scheme is selected as the primary transport algorithm for an adaptive

mesh refinement (AMR) design, Berger and Colella [1989] ask

Why is an adaptive grid needed provided that the solution technique, a

third-order Godunov scheme, has quite high resolution? Provided AMR

is used is it still necessary to use a high order scheme or could we reduce

the order of the accuracy and therefore the computational cost ?

As shown in Woodward and Colella [1984] a higher order method still gives more

resolution per computational cost than a simpler, lower order scheme on a finer

grid. Therefore it is not recommended to decrease the order of accuracy even in the

AMR application. Lin and Rood [1997] also confirmed that the PPM simulations

are far more accurate and less diffusive, especially in a long-term 60-day shallow

water test run with uniform resolution. Minor deviations after day 14 grew into

clearly visible differences of the height field by day 30 when comparing the van Leer

scheme to the PPM advection algorithm. This is an important observation for long-

term climate studies. Consequently, since the PPM method is more expensive than

simple schemes the computational savings of an AMR run versus a uniform grid run

can be substantial as demonstrated later in Chapter V.

2.1.3 Vertical representation

The vertical discretization utilizes a “Lagrangian control-volume” approach, which

is based on a terrain-following “floating” Lagrangian coordinate system and a fixed

“Eulerian” reference frame. The underlying idea is to start the time integration from

the terrain-following Eulerian reference system. The finite-volumes are then allowed
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to float vertically as dictated by the hydrostatic flow and, as a consequence, the

two Lagrangian surfaces bounding the finite-volumes will deform as illustrated in

figure 2.3. This deformation can be strong, especially in the presence of persistent

x-z cross section of the atmosphere

Lagrangian surfaces

Earth’s surface

model top

T = t

flux flux

orography

δp

T = t + dt

Figure 2.3: Terrain-following Lagrangian control-volume coordinate system of the
Lin-Rood dynamical core. The pressure thickness δp of a cell is propor-
tional to the total mass. The cell boundaries deform during the forecast
(right) and after specific time intervals they are mapped back onto a
fixed Eulerian reference system (not shown).

diabatic heating and cooling which ultimately will degrade the accuracy of the 2D

flow simulation within a Lagrangian layer. Therefore, the surfaces are mapped back

monotonically and conservatively to the fixed Eulerian reference system. Here, a

hybrid σ − p coordinate system has been chosen for the reference framework, which

is most commonly called an η system (see also Simmons and Burridge [1981]). The

η coordinate is a combination of the orography-following σ coordinate and fixed

pressure levels. Further explanations are given in Appendix B on page 249.

It is essential to note that Lagrangian surfaces are non-penetrable material sur-

faces that do not allow transport processes across the boundaries. This approach

effectively reduces the dimensionality of the transport problem from 3 to 2. The 3D

model can therefore also be viewed as a vertically staggered shallow water system

with 2D transport algorithms within each layer. The periodic vertical remapping

step essentially performs the function of a conservative vertical advection process as
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viewed from the fixed Eulerian reference frame (van Leer [1979],?]). It vertically re-

distributes mass, momentum and total energy from the floating Lagrangian volumes

back to the fixed coordinate system. In the adaptive dynamical core formulation, a

one-hour remapping interval has been chosen.

The conservative and monotonic mapping is described in detail in the theoretical

basis document by Lin et al. [2001]. Here a brief overview of the fundamental 3-step

principle is given. In general, the one-dimensional mapping is based on a vertical

reconstruction of the pressure thickness (mass) δp, the wind components u, v and

the volume mean total energy Γ which is composed of the mean internal, potential

and kinetic energy. In step 1 of the algorithm, monotonic piecewise parabolic sub-

grid distributions of the aforementioned quantities are computed (compare also to

PPM algorithm by Colella and Woodward [1984]). These are then used to calculate

the redistributed δp, u, v and Γ values in the Eulerian reference frame (step 2). In

order to ensure conservation, the hydrostatic pressure is selected as the mapping

coordinate. Finally the layer-mean internal energy, and consequently the tempera-

ture, are recovered using the redistributed total, kinetic and potential energy. This

step guarantees the conservation of the total energy. Any dissipated kinetic energy

that is lost during the remapping process gets automatically transformed into local

frictional heating.

2.1.4 Summary

In summary, the novel attributes of the Lin-Rood finite-volume dynamical core

are:

• its built-in physical conservation laws.

• the terrain-following, “floating” Lagrangian vertical coordinate which elimi-
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nates vertical advection and therefore reduces the dimension of the problem

from 3 to 2.

• a monotonicity-preserving and mass-, momentum- and total energy-conserving

algorithm that maps the vertical coordinate back to a “fixed” Eulerian reference

coordinate.

• the two-dimensional conservative transport between two bounding “horizontal”

Lagrangian surfaces that define the control volume (Lin and Rood [1996]). The

transport algorithm is free of Gibb’s oscillations.

• the precise representation of the terrain. An accurate and physically consis-

tent finite-volume integration of the pressure gradient force for the Lagrangian

control-volume is used (Lin [1997], Lin [1998b]).

• the highly efficient computational design of the algorithm which has been de-

veloped for vector- or RISC based parallel computers. The algorithm is highly

local in nature, which not only has an advantage for modeling flows with sharp

gradients, but also makes the code more suitable for domain decomposition

techniques in distributed computing environments (resulting in low communi-

cation overhead on parallel processors).

2.2 Pole problem in latitude-longitude grids

NASA/NCAR’s finite-volume dynamical core is implemented in spherical coordi-

nates on a regular latitude-longitude grid. As a result, the meridians converge at the

pole points as illustrated in figure 2.2 on page 34. Most commonly, this is called the

pole problem on the spherical grid. It leads to extremely small grid boxes or, more
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appropriately finite-volumes, in the immediate vicinity of the poles. This is further

quantified in table 3.1 in Chapter III.

Although the longitudinal resolution in radians stays nominally constant, the

physical distance between neighboring nodes in the longitudinal direction contracts.

As a consequence, the Courant-Friedrichs-Lewy (CFL) stability condition near the

pole is rather restrictive in comparison to the midlatitudes or the tropical region.

In order to maintain numerical stability in the explicit finite-volume scheme, the

CFL < 1 condition poses a severe time step limitation. In an explicit method, the

time step is then determined by the CFL condition for the fastest traveling wave in

the system. In a hydrostatic fluid, these are the gravity waves at speeds of order

200− 300m/s.

In addition, pole points in the spherical grid raise a different problem. They are

singularities in the curvilinear coordinate system that do not allow the evaluation

of metric terms directly at the poles. Therefore, special polar treatment is needed

with respect to wind speed and vorticity considerations. These aspects are covered

in Section 2.2.1. In Section 2.2.2, filtering strategies are presented that help relax

the severe polar time step restriction.

2.2.1 Polar cap

Polar stereographic projections

The wind speeds at the poles in the spherical coordinate system are multi-valued

vector components, although in physical (e.g. Cartesian) space the vector is uniquely

defined. This is a consequence of the rapidly varying spherical unit vectors at high

latitudes as illustrated by the orientation of the coordinate directions for u and v in

figure 2.4. In particular, the spherical wind components undergo a complete reversal
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Figure 2.4: Orientation of the local unit vectors in spherical coordinates near the
North Pole. The wind vector at the pole is indicated by the thick arrow,
the wind components u and v in a stereographic projection are labeled
with ’NP’.

of sign when viewed from the local coordinate system of a cross polar position.

Therefore, even a very smoothly varying wind field in polar regions, as observed

from space, appears to change quickly in the spherical representation.

Due to the singularities of the pole points in the spherical grid, the wind speeds

at the poles can not be directly computed. A standard solution to this problem

has long been proposed in the literature (e.g. see Williamson and Browning [1973]

or Phillips [1959]). The basic idea is to apply a coordinate transformation or map

projection to the polar region in order to compute a unique solution to the transport

problem in the transformed system. The solution can then be mapped back onto the

spherical mesh.

Alternatively, this idea can also be used to approximate the wind components

at the pole points. Instead of solving the transport problem in the map-projected



43

system, the wind vector is then estimated based on the averaged wind information

at the adjacent neighbors in the closest latitudinal ring around the pole. This is the

so-called polar cap. Typically, a polar stereographic projection is used for the trans-

formation. The wind vector in the polar tangent plane is then uniquely defined and

can be projected back in order to recover the multi-valued spherical representation.

The corresponding formalism for the North Polar stereographic projection is given

by (see also Phillips [1959])

uNP =
1

N

N∑
i=1

[− ui sin λi − vi cos λi

]
(2.37)

vNP =
1

N

N∑
i=1

[
ui cos λi − vi sin λi

]
(2.38)

where N stands for the number of grid points along the subpolar latitude circle

and (ui, vi) symbolize the wind components in spherical coordinates. This averag-

ing procedure incorporates all subpolar neighbors and, as an aside, requires extra

communication on parallel computer architectures. The resulting unique wind rep-

resentations uNP and vNP in the north polar tangent plane are then used for the

consequent remapping step

ui = −uNP sin λi + vNP cos λi (2.39)

vi = −uNP cos λi − vNP sin λi (2.40)

that retrieves the multi-valued components. This relationship is illustrated in figure

2.5 where the North Pole is symbolically stretched out in the longitudinal direction.

The equivalent expressions for the Southern Hemisphere are specified below (eqn.

2.41-2.44). Here it needs to be taken into account that the sense of the meridional
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Figure 2.5: Relationship between the multivalued wind components in spherical co-
ordinates and the unique wind vector in a North Polar stereographic
projection labeled with ’NP’ (see also figure 2.4).

wind at the South Pole (SP) is reversed in comparison to the North Polar represen-

tation

uSP =
1

N

N∑
i=1

[− ui sin λi + vi cos λi

]
(2.41)

vSP =
1

N

N∑
i=1

[
ui cos λi + vi sin λi

]
. (2.42)

As before, the remapping step

ui = −uSP sin λi + vSP cos λi (2.43)

vi = uSP cos λi + vSP sin λi (2.44)

recovers the spherical wind components at the South Pole.

Vorticity calculation

In the chosen set of equations (see Section 2.1.1), the absolute vorticity Ωa = ζ+f

is treated as a transported variable. As a consequence, the relative vorticity ζ as well

as the Coriolis term f need to be computed in the whole model domain including

both pole points. This can easily be done for the Coriolis parameter, but poses a

problem for the standard relative vorticity formulation in spherical coordinates.

In spherical coordinates, the relative vorticity is defined by

ζ = ~k · (∇× ~v) =
1

a cos ϕ

[∂v

∂λ
− ∂u cos ϕ

∂ϕ

]
(2.45)
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which requires the evaluation of the metric term 1
cos ϕ

at any given location. Such a

term is undefined at both poles, although from a physical standpoint the vorticity is

well-defined throughout the model domain. Therefore, a different approach has been

applied at the pole points. The underlying idea is based on an alternative circulation

measure and the Stokes’ theorem which allow the non-singular computation of the

vorticity at arbitrary points in the mesh.

Besides the definition shown in equation 2.45, the vertical component of the

relative vorticity ζ is also defined as the circulation C about a closed contour in the

horizontal plane divided by the area A of the enclosed region.

ζ =
C

A
= lim

A→0

( ∮
~v · d~l

)
A−1 (2.46)

This relationship is exact in the limit where the area A approaches 0 (see also Holton

[1992] for further details). In a discrete spherical system, the circulation about a

closed latitude ring, in particular near the poles, can be approximated by

∮
~v · d~l =

∮
|~v| cos ϕ dl

=

∫ 2π

0

u cos ϕ a dλ

≈
N∑

i=1

ui cos ϕa ∆λi (2.47)

=
2 π

N
a cos ϕ

N∑
i=1

ui for constant ∆λ only. (2.48)

where dl represents a line element of the contour, u stands for the locally tangential

(here longitudinal) component of the velocity vector ~v, N symbolizes the number of

grid points along the latitude circle, ∆λ stands for the longitudinal grid resolution

in radians, a is the Earth’s radius and ϕ is the chosen latitute for the line integral.

Typically, this latitude is determined by the position of the closest neighbors sur-

rounding the poles (polar cap). The vorticity is then given by ζ = C/A where the
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area of the (north) polar cap A is equal to

A =

∫ 2π

0

∫ π
2

π
2
−∆ϕ

2

a2 cos ϕdϕ dλ

= 2 π a2

(
sin

(π

2

)
− sin

(π

2
− ∆ϕ

2

))

= 2 π a2

(
1− sin

(π

2
− ∆ϕ

2

))
. (2.49)

Here the area of the north polar cap is computed at the latitude ϕ = (π
2
− ∆ϕ

2
) where

∆ϕ represents the constant latitudinal grid spacing at the pole in the adaptive model.

The south polar cap calculation can be derived accordingly. Based on equations 2.48

and 2.49 it follows that the resulting relative vorticity value at the North Pole is

equal to

ζ =
C

A
=

cos ϕ
∑N

i=1 ui

N a
(
1− sin (π

2
− ∆ϕ

2
)
)

which substitutes for the standard relative vorticity calculation (eqn. 2.45). The for-

mulation derived above requires an identical grid resolution along the chosen subpolar

latitude circle. As a consequence, the adaptive grid strategy discussed in Chapter

III must take this requirement into account.

2.2.2 Polar filters

As discussed earlier in this chapter, the maximum stable time step in an explicit

time stepping scheme is constrained by the CFL condition for the fastest propagating

modes, which are the gravity modes in a hydrostatically approximated atmosphere or

ocean model. A non-hydrostatic model contains additional sound waves that travel

at comparable speeds of order 300ms−1. These high-frequency but low-energy waves

are often of minor geophysical importance for accurate climate or weather forecasts.

They are most commonly considered noise for the large scale slow-moving waves

of interest, the Rossby-wave modes, with typical wind speeds that are an order of



47

magnitude slower than gravity wave motions. The accuracy of the forecast solely

depends on the ability of the model to capture these relevant atmospheric processes.

Gravity waves, if incorrectly treated in the explicit forecasting system, can sig-

nificantly add noise to the solution or may even cause numerical instabilities. Other

sources for numerically unstable integrations include nonlinear instabilities, e.g. the

aliasing effect (see also Haltiner and Williams [1980] or Durran [1999]), that can

lead to a spurious growth of short unresolvable waves, which if left unchecked create

unstable simulations.

The following example illustrates the severity of the time step problem on a

spherical grid. In a shallow water model, the gravity wave speed is given by c =
√

gh

with the gravitational constant g and the height h of the shallow water system.

A representative height of h = 10km leads to a gravity wave speed of 313m/s.

Considering that typical horizontal resolutions for climate studies are of order 2.5◦×

2.5◦ with 144x72 grid points, the shortest grid distance closest to the poles (here e.g.

at ϕ = 88.75◦) is determined by the circumference of this latitude ring divided by

the number of longitudinal grid points. Here the shortest physical spacing between

neighbors is given by ∆x = 2π a cos(88.75◦)/144 = 6064.48m. As a consequence,

the CFL = u ∆t
∆x

< 1 condition requires a time step of about 19.37s for stable

calculations. This small time step at such a coarse resolution is very impractical,

especially with respect to future adaptive mesh refinements in polar regions. In

particular, the time step needs to be divided by a factor of 4 at the next refinement

level 1.25◦ in order to obey the CFL < 1 condition. Here a factor of 2 comes from

the doubling of the number of grid points that reduces the grid distance by a factor

of 2. The second factor of 2 emerges due to the metric term cos ϕ in the distance

calculation. The refined grid points lie even closer to the poles which effectively
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halves the circumference of the shortest polar latitude ring (see also table 3.1 on

page 74).

In order to obtain a reasonably efficient numerical scheme, several strategies can

be pursued that circumvent the rather severe time step limitations imposed by high-

speed but physically insignificant waves. As pointed out above, these techniques

are especially important for models with regular latitude-longitude grids, since the

convergence of the meridians provide an unnecessarily high longitudinal resolution for

gravity waves in polar regions. Gravity waves contain comparatively small amounts

of energy which justifies a slightly inaccurate treatment of these wave motions1. In

particular, gravity waves are not important for short-term synoptic or planetary-

scale circulations. For long-term climate studies though, the zonal drag force owing

to gravity waves must be included in the momentum balance, most commonly in

form of a parameterization.

The standard numerical approaches to stable simulations with increased global

time steps are listed below.

1. Use of massive dissipation (e.g. explicit diffusion), which acts mainly on the

shortest waves.

2. Implicit or semi-implicit numerical scheme for gravity waves.

3. Filtering of the high frequency modes in the longitudinal direction without

changing the well-resolved low frequency waves. Examples include Fourier or

digital filtering techniques.

1This conclusion does not apply to atmospheric science questions that are particularly targeted
at gravity-wave induced mesoscale phenomena.
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4. Fractional step methods: Time-splitting approach in polar regions with itera-

tive sub-cycling of terms in the equation that are responsible for gravity waves.

5. Use of a reduced grid which effectively increases the grid spacing in polar

regions.

6. Use of alternative computational meshes (icosahedral grid or a cubed sphere)

that avoid converging grid lines at the poles.

Other techniques include the use of a modified set of equations, so-called filtered

equations, that do not contain the high-speed modes. It is important to note that

the CFL condition can be violated in options 1-3, whereas it needs to be fulfilled in

options 4-6, provided no additional filtering is applied. Options 1-3 are most com-

monly used in today’s GCMs, but an increasing trend towards alternative gridding

schemes has been observed in recent years (Majewski et al. [2002], Giraldo and Ros-

mond [2004], Fournier et al. [2004]). Using an alternative grid with appropriate time

step might not entirely prevent a model from becoming unstable. Aliasing errors, or

the misrepresentation of unresolved waves at longer wavelengths, tend to accumu-

late energy at the finest grid point scales in a nonlinear model. This effect is due

to nonlinear wave interactions and also called nonlinear computational instability

(Haltiner and Williams [1980]). The energy may need to be removed by a filter on a

periodic basis depending on the particular numerical method. Alternatively, a strong

diffusion mechanism, whether explicit or implicit as part of the numerical scheme,

could provide the necessary dissipation.
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Polar filtering strategy in the finite-volume dynamical core

In the adaptive finite-volume dynamical core, the polar filtering technique (option

3) has been selected that slightly deviates from the polar filtering mechanism used in

NASA/NCAR’s finite-volume model (Lin et al. [2001]). The filtering is exclusively

applied at latitudes poleward of 60◦ N/S and selectively dampens the fast-traveling

modes in the longitudinal direction. A combination of a Fast-Fourier-Transformation

(FFT) filter developed at ECMWF and a digital 2nd order Shapiro filter is used. This

is a similar approach as applied by Kalnay-Rivas et al. [1977]. The FFT algorithm

is confined to few latitude circles closest to the poles whereas the more economical

digital filter covers the remaining model domains down to 60◦ N/S. As a result, the

maximum stable time step is now mostly determined by the CFL condition for gravity

waves at 60◦ N/S which is far less restrictive than the previous example. In particular,

when assuming the same 2.5◦ resolution with a grid spacing of 134.678km at 60◦

N/S, this leads to a maximum stable time step of ∆t = 134678m/313ms−1 = 430s.

Though, in the presence of high advective wind speeds in polar regions this time

step might need to be reduced. The gravity wave time step limitation at 60◦ N/S

is then overwritten by the now even more restrictive advective flow speed. Further

more aggressive filtering at lower latitudes could allow an even longer maximum

time step with respect to gravity wave motions but possibly with some adverse side

effects on the flow fields. This can be observed if filter effects are cumulative in time.

This is true for the digital Shapiro filters (Shapiro [1970]) especially when selecting

a low-order filtering mechanism.

Filtering techniques have long been used for global atmospheric modeling. Ex-

amples include Williamson and Browning [1973], Williamson [1976], Takacs and

Balgovind [1983] and Purser [1988a] who examined different FFT filtering strategies
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and their advantageous or detrimental effects. For instance, Takacs and Balgovind

[1983] compared the filtering of tendencies versus the filtering of the prognostic vari-

ables which led to a discussion of conservation properties. In general, filtering pre-

vents nonlinear instabilities, but conservation properties are lost unless a-posteriori

restoration mechanisms are applied (Takacs [1988]). For example the conservation

of mass principle is violated if the mass variable needs to be filtered for numerical

stability reasons. Similar difficulties emerge with respect to the conservation of total

energy. In the adaptive finite-volume dynamical core, filtering of the prognostic mass

variable h or δp is not applied, whereas the filtering of the horizontal wind speed

components u and v has been found to be imperative for stable calculations. Other-

wise, a false energy cascade to small scales develops in polar regions with significant

energy build-ups and instabilities after short time intervals (see discussion below).

Digital filter

The digital filtering technique selected for the adaptive dynamical core simula-

tions is a one-dimensional 2nd order Shapiro filter (Shapiro [1975]). It replaces the

original 3-point digital filter with variable coefficients developed by S.-J. Lin (un-

published) that is applied in the subtropics and midlatitude regions up to 66◦ N/S

(NASA/NCAR version). Its filter coefficients depend not only on the given latitude

ϕ but also on the underlying grid resolutions ∆λ, ∆ϕ so that the filter is strongest at

66◦ N/S and becomes weaker towards the equator. Although this strategy works well

for uniform grids, it poses a problem for an adaptive grid simulation with varying

resolutions along latitude circles. In order to provide a consistent, quasi-resolution-

independent filtering technique, the digital filters proposed by Shapiro [1970], Ray-
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mond and Garder [1988], Raymond [1988] and Purser [1987] have therefore been

assessed. These filters are based on constant coefficient, one-dimensional grid point

operators where the order n of the filtering technique depends on the width of the

numerical stencil. In general, the wider the stencil (= 2n+1), the more scale-selective

the filter which leads to less dampening of the flow-relevant longer waves.

The smoothing operation of the so-called optimal 2nd order Shapiro filter (Shapiro

[1975]) is defined by

f̄i =
1

16

(− fi−2 + 4fi−1 + 10fi + 4fi+1 − fi+2

)
(2.50)

where the overbar denotes the smoothed variable f at grid point index i. This

filter completely eliminates the unwanted 2∆x waves and significantly reduces the

amplitudes of other poorly-resolved short waves, especially the 4∆x wave that also

tends to accumulate energy during the model integration. Its response or damping

function ρn(k) is given by (Shapiro [1971])

ρn(k) = 1− sin2n
(
k
∆x

2

)

= 1− sin2n
(
π

∆x

L

)
(2.51)

where k, the wavenumber, is 2π/L and L is the wavelength of the components in

terms of the grid resolution ∆x. n stands for the order of the filter. The response

of different Shapiro filters with respect to the wave spectrum is illustrated in fig-

ure 2.6 on the next page. The figure shows the filter responses after 1 and 1000

applications and clearly depicts the cumulative character of the smoothing opera-

tion, especially for low order filters. This is not a concern for waves close to the pole

points (compare also figure 2.8 on page 57), but must be taken into consideration in

case filtering techniques are to be applied at lower latitudes. For example, if filtering

in midlatitudes or even in the tropics becomes necessary due to stability reasons, a
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Figure 2.6: Response function of different Shapiro filters after (a) 1 application and
(b) 1000 applications. n indicates the order of the Shapiro filter.

low order filter like the 2nd order Shapiro filter must be avoided and replaced by

either a highly scale-selective FFT or higher order digital filters like the commonly

used 8th or 16th order Shapiro filter. An 8th order Shapiro operator effectively elim-

inates all components with wavelengths less than four grid intervals but does not

damp the waves with wavelengths greater than six grid intervals (Shapiro [1975]).

This filter has been successfully applied by Ruge et al. [1995].

In practice, a high order digital filter is desirable but can not be easily imple-

mented in the block-structured adaptive grid model discussed in this thesis (the block

structure is explained in Chapter III). The wide numerical stencils of the higher or-

der methods pose a problem for the data structure that is based on independent,

comparatively small, block units with e.g. 9x6 cells plus surrounding ghost regions

with 3 cells in each direction. In particular, the 2nd order Shapiro filter applied

here has a 5-point stencil which already requires the use of 2 ghost cells at a block

boundary. A 3rd order Shapiro filter is still feasible in the 3-ghost-cell setup without

sacrificing the order of the filtering mechanism close to the block boundaries. Any
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higher order filter would suffer from this boundary effect or would require a wider

ghost cell region.

Applications of the Shapiro filter

The following section provides a brief overview of the advantages and disadvan-

tages of the Shapiro filtering approach. In general, filtering is solely applied in the

longitudinal direction poleward of 60
◦

N/S, whereas filtering in the meridional di-

rection does not need to be considered with one exception. Despite the longitudinal

filtering, shallow water test runs with uniform grids have shown that numerical noise

can still develop in close proximity to both pole points. This effect is displayed in

figure 2.7 using the McDonalds and Bates [1989] test case. Here the meridional

wind v at day 4 is presented with and without one additional smoothing operation

in meridional direction across the pole points. The effect can clearly be observed

in subfigure (b). The noisy but stable perturbations (subfigure a), which originate

solely at the poles, are successfully dampened by this strategy. The same conclusion

can be drawn for similar perturbations in shallow water test case 5 (not shown, see

also Appendix A for explanations of the test cases).

Filtering techniques must be carefully handled. As discussed earlier, strong low

order filters, like the 2nd, 3rd or 4th order Shapiro filters, applied at low- or midlat-

itudes can significantly diffuse and degenerate the flow pattern and should therefore

only be rarely used, if not completely avoided. An example that illustrates the detri-

mental effects of rather aggressive and unnecessary filtering is presented in figure

2.8. The example depicts test case 6 of the standard shallow water test suite. This

flow field comprises a wave number 4 pattern that should move to the east without
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Figure 2.7: Meridional velocity v at day 4 (McDonalds and Bates [1989] test case).
(a) No additional Shapiro filtering of v in meridional direction at the
poles, (b) additional Shapiro filtering of v (confined to the circle closest
to the poles). Contour interval is 2.5 m/s. Resolution is 2.5◦× 2.5◦ with
∆t = 240s.
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changing its shape (compare also to figure A.13 on page 235 for the high resolution

reference field). In both model runs, an identical FFT filter is applied to the hor-

izontal wind components poleward of 75◦ N/S. Additionally, the strong 2nd order

Shapiro filter is used at every time step in (a) the regular model domain 60◦ − 75◦

N/S and (b) the whole remaining 75◦ S - 75◦ N model area. Figure 2.8 shows the

geopotential height field at model day 14. It can clearly be seen that the additional

digital filtering in midlatitudes and the tropics leads to a very diffusive and inac-

curate solution in comparison to the reference run. The filter effects significantly

accumulate during the course of the 3360 time step simulation (see also cumulative

effect in figure 2.6 on page 53).

The difference of the strongly filtered flow pattern with the NCAR reference

solution (A.13d) is further quantified in figure 2.9 on page 58. Here, the difference

field of the meridional velocity v at day 14 is displayed which shows a ±21 m/s or

almost 25% decrease in the top wind speeds. The errors are pure amplitude errors

without changes in the phase speed of the wave.

As an alternative to 2nd order filtering, a 3rd order or 7-point stencil Shapiro filter

can also be applied poleward of 60◦ N/S. This leads to almost indistinguishable flow

patterns in most cases. Though one difficulty has been encountered when applying

the 3rd order Shapiro filter to shallow water test 3 which consists of a steady state flow

with compact support (see Appendix A). The slightly more lenient filter response

function of the 3rd order filter (compare figure 2.6) allowed the growth of a 4∆x

numerical instability (not shown) when long time steps were used (∆t = 600s, 2.5◦

grid). These waves, as well as the even shorter 3∆x or 2∆x waves, are only marginally

resolved on the computational grid. In practice, the slightly stronger 2nd order

Shapiro filter is therefore recommended. It is the default option for all following
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Figure 2.8: Geopotential height at day 14 (test case 6). (a) 2nd order Shapiro filter
is applied to the wind fields u and v poleward of 60oN/S. (b) Same filter
is applied in the whole 75◦ S - 75◦ N domain. Contour interval is 100 m.
Resolution is 2.5◦ × 2.5◦ with ∆t = 360s.
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Figure 2.9: Differences of the Shapiro-filtered run (filtered in the whole domain) with
the analytic solution. Here, the meridional wind v at day 14 (test case
6) is shown. Contour interval is 3 m/s.

model runs.

The crucial need for a filtering mechanism in the polar 60◦−75◦ N/S range is fur-

ther depicted in figure 2.10 which displays the flow field of test case 3 in the Northern

Hemisphere. Test results for the geopotential height field after a 23-hour simulation

are shown with and without the digital 2nd order Shapiro filtering technique. An

FFT filter is applied poleward of 75◦ N/S. Here, the chosen time step ∆t = 600s

purposely violates the CFL condition for gravity waves in the polar region and as a

consequence, a numerical instability at 75◦ N develops in subfigure (a). This position

clearly marks the edge of the FFT filtering mechanism.

Besides filtering, two alternative approaches to stable solutions have also been

examined for this scenario. First, the time step has been reduced in order to resolve

the gravity wave activity in polar regions south and north of 75◦ N/S. Second, a so-

called reduced grid setup with 2 reductions has been tested that effectively increases

the longitudinal grid spacing poleward of 60◦ N/S. This concept is explained in detail

in Chapter IV. As before, the FFT filter is still applied in regions poleward of 75◦

N/S. All alternative strategies suppressed the unstable waves successfully and led to
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Figure 2.10: Geopotential height field after 23 model hours (test case 3) plotted on
a North polar stereographic projection (outer circle is the equator).
(a) No Shapiro filtering poleward of 60o, (b) 2nd order Shapiro filter
is applied poleward of 60o. Contour interval is 100 m. Resolution is
2.5◦ × 2.5◦ with ∆t = 600s.
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almost indistinguishable test simulations.

In conclusion, digital filtering promotes computational stability by eliminating

or severely dampening the highly noisy short waves at high latitudes. The filtering

must be selectively applied in order to avoid a detrimental damping effect in the

midlatitudes or tropical regions. In the finite-volume dynamical core, digital filter-

ing techniques complement, but do not substitute for the even more effective FFT

filtering technique used near the pole points. Attempts to replace the FFT filter with

a digital Shapiro [1975] or Purser [1987] algorithm did not prevent the numerical

instabilities at the latitude circle closest to the poles. Therefore, all adaptive model

runs presented in this thesis employ the FFT filtering technique in blocks adjacent

to the pole points (see also Chapter III concerning the block data structure). As an

important consequence, all blocks at the poles are kept at the same refinement level

in order to fulfill the global longitudinal data dependencies of the FFT algorithm.

This constraint has also been formulated for the vorticity calculation at the poles in

Section 2.2.1.

2.3 Divergence damping

In a model simulation, gravitational noise can severely contaminate the atmo-

spheric flow patterns and needs to be removed during the calculation (as discussed

in the preceding section 2.2.2). One alternative approach to reducing gravitational

noise is the use of a divergence damping mechanism that selectively dampens the

amplitude of the velocity divergence fluctuations. This effectively reduces the grav-

ity wave activity since gravity waves are associated with high-frequency variations

of the divergence field. Here, a weak divergence damping mechanism is applied in

the whole model domain which is based on S.-J. Lin’s divergence damping imple-
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mentation (unpublished). Such a damping mechanism is typically included in the

horizontal momentum equation as shown in equation 2.52 (for an explanation of the

symbols see also equation 2.2 in section 2.1.1).

∂~v

∂t
= −Ωa

~k × ~v −∇
(
Φ +K − cD

)
(2.52)

Here c is the coefficient of the divergence damping and D denotes the divergence. In

spherical coordinates D is given by

D =
1

a cos ϕ

[∂u

∂λ
+

∂

∂ϕ
(v cos ϕ)

]
(2.53)

≈ 1

a cos ϕ

[∆u

∆λ
+

∆(v cos ϕ)

∆ϕ

]
(2.54)

where a is the radius of the Earth (see also appendix C) and (λ, ϕ) denote the lon-

gitude and latitude. The second expression 2.54 shows the discretized form with the

finite-difference operator ∆ that involves the two surrounding neighbors at staggered

grid locations. ∆λ and ∆ϕ are the longitudinal and latitudinal grid distances in ra-

dians, respectively. It must be noted that the inclusion of the divergence damping

does not modify the character of the hyperbolic equation. It can be considered an

additional right hand side term that adds some diffusion to the momentum equation.

In the current shallow water formulation, the empirical divergence damping co-

efficient c is computed as a time step, resolution and latitude dependent parameter.

It is defined by

c =





a2 cos ϕ ∆ϕ ∆λ
32 ∆t

for cos ϕ ≤ 0.5

a2 ∆ϕ ∆λ
64∆t

for cos ϕ > 0.5

. (2.55)

with the units areaA
time

= m2

s
. ∆t denotes the time step. In polar regions (poleward

of 60◦N/S) the corresponding area A is chosen to be the approximated area of the
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actual grid cell at the latitude ϕ

A =

∫ λ+∆λ

λ

∫ ϕ+∆ϕ

ϕ

a2 cos ϕ dϕ dλ (2.56)

≈ a2 cos ϕ ∆ϕ ∆λ . (2.57)

In the midlatitudes and the tropics though, the area is set to the approximated area

of a grid cell at the equator (with cos ϕ = 1). After inserting equations 2.55 and 2.54

into equation 2.52 it follows

∂~v

∂t
= −Ωa

~k × ~v −∇
(
Φ +K − [

cu ∆u + cv ∆(v cos ϕ)
])

(2.58)

where cu and cv symbolize the damping coefficients that are already divided by the

metric terms of the discretized divergence operator (eqn. 2.54). In the tropics and

midlatitudes with cos ϕ > 0.5, cu and cv are given by

cu =
a ∆ϕ

64 ∆t cos ϕ
(2.59)

cv =
a ∆λ

64 ∆t cos ϕ
. (2.60)

In the polar regions with cos ϕ ≤ 0.5 the coefficients are

cu =
a ∆ϕ

32 ∆t
(2.61)

cv =
a ∆λ

32 ∆t
(2.62)

accordingly. Here the cu and cv coefficients no longer depend on the given latitude.

In contrast to S.-J. Lin’s derivation of the divergence damping mechanism (unpub-

lished), the coefficients cu and cv have been multiplied by an empirical factor of

2 in order to moderately increase the damping effect. This eliminates very mild

oscillations at lower and mid-latitudes which have been observed with the original

coefficients (in the absence of S.-J. Lin’s digital filtering technique in midlatitudes,

unpublished).
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In case of an identical grid resolution ∆λ = ∆ϕ in both dimensions this formula-

tion leads to the profiles illustrated in figure 2.11. The figure shows the coefficients
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Figure 2.11: Coefficients cu = cv for the divergence damping mechanism at different
resolutions ∆λ with varying time steps.

cu = cv for selected grid resolutions ∆λ and some corresponding time steps.

It is important to note that the divergence damping coefficient c in equation 2.55

is rather small in comparison to typical values suggested in the literature. Depending

on the grid resolution, the latitude and the time step the coefficient is most often

close to 106m2s−1. This is the lower limit for divergence damping coefficients pub-

lished in the literature. For example, McDonalds and Bates [1989] and Bates et al.

[1990] used constant coefficients of order 106 − 107m2s−1. In addition, Haltiner and

Williams [1980] reported on typical coefficients of order 107 − 108m2s−1. In their

model simulations the gravitational noise was greatly reduced. But it was also con-

cluded that negative side effects can be observed as coefficients exceed 107m2s−1. In

a full GCM, it led to abnormal high pressure buildups in the vicinity of orography

and eliminated precipitation in an 8-layer primitive-equation model.

In the 2D finite-volume dynamical core the damping is rather mild and does

not degrade the overall solution. In the 3D version, the coefficients additionally
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depend on the vertical level (S.-J. Lin, unpublished). The effective diffusion of the

velocity divergence helps stabilize the flow patterns and complements the Shapiro

and Fourier filtering techniques, already applied in polar regions. In order to assess

the damping effect more closely, non-adapted shallow water experiments with and

without divergence damping have been performed. The tests are based on the steady-

state shallow water test 2 with an α = 90◦ rotation angle at a uniform 2.5◦ × 2.5◦

resolution (see also appendix A). The time step is ∆t = 360s. Figure 2.12 on

the next page illustrates the difference of the zonal velocity field with the analytic

solution at day 10 for both model runs. It can clearly be seen that the divergence

damping smoothes the spurious oscillations in the error field. The abrupt decrease

in noise poleward of 60◦ N/S is a consequence of the additional digital Shapiro and

FFT filtering at those latitudes. In order to assess the effect of the time step on the

smoothness of the flow pattern, test case 2 has been repeated using a reduced time

step (∆t = 150s) and no damping mechanism. The tests showed that the spurious

oscillations were not prevented and resulted in an even noisier field (not shown).

In all test cases shown in the thesis, divergence damping has always been applied

although most of these idealized tests do not need the damping mechanism with

respect to computational stability. In general, the divergence damping effect will

become more important in full GCM model simulations with real orography.
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Figure 2.12: Differences of the zonal wind u with the analytic solution at day 10 (test
case 2, α = 90), (a) without divergence damping, (b) with divergence
damping. Contour interval is 0.05 m/s.





CHAPTER III

Adaptive mesh refinements in spherical geometry

In the past, dynamically adaptive mesh refinements for atmospheric science ap-

plications have been mostly concerned with refinement regions in limited-area models

on a Cartesian grid. Cartesian grids are well-suited for AMR techniques due to their

regular structure and clear relationships among neighboring grid points. For exam-

ple, the location of a neighbor in the Cartesian system is unambiguously defined by

its coordinate position.

In a spherical coordinate system this is not necessarily true. The main differences

occur due to the singular nature of the spherical grid at the pole points. The iden-

tification of neighbors across the poles, together with their special treatments, adds

extra complexity to the AMR problem in spherical geometry. As a consequence, an

adaptive grid library for AMR applications on the sphere must be able to address

these additional pole point issues.

This chapter gives an overview of an adaptive mesh refinement strategy in spher-

ical geometry that has been applied to the NASA/NCAR finite-volume dynamical

core. The two main building blocks of the adaptations are the underlying block data

structure and a newly-developed spherical adaptive grid library for parallel computer

architectures (Oehmke and Stout [2001]). This data structure, the refinement princi-

67
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ples, a reduced grid setup and the corresponding model resolutions are introduced in

Section 3.1. Section 3.2 is primarily focused on the software engineering aspects of

the adaptive mesh approach. First, the design of the spherical adaptive mesh library

is reviewed which leads to a brief discussion about the AMR software concept of

the dynamical core. In addition, performance issues are addressed. In Section 3.3

the fine-coarse grid interfaces in an adaptive grid simulation are closely examined.

This includes an assessment of suitable interpolation strategies and surveys the grid

arrangements and flux interactions at the grid interfaces.

3.1 The adaptive finite-volume dynamical core

3.1.1 Block data structure

The foundation of the AMR design is based on a block-structured data layout

that allows cache-efficient, high performance computations with minimal changes to

the transport algorithms of the finite-volume dynamical core. The concept of the

block data structure is displayed in figure 3.1 that shows an orthographic projection

of the Earth with a regular and block-structured grid point distribution. Each self-

Figure 3.1: Distribution of grid points over the sphere (orthographic projection cen-
tered at 0E,45N), without a block-structure (left) and with the block-
structure (right). The resolution is 5◦ in both figures.

similar block comprises a constant number of Nx × Ny grid cells in longitudinal
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and latitudinal direction. The computational grid covering the Earth can then be

viewed as a collection of individual blocks that are independent data units. Here the

block data principle is solely applied to the horizontal directions so that the whole

vertical column is contained in a block in case of 3D model setups. Other block data

approaches, as described in Stout et al. [1997] or MacNeice et al. [2003], employ a

3D strategy that includes a block distribution in the third dimension.

The block data structure is well-suited for adaptive mesh applications. The basic

AMR principle is explained in figure 3.2. Starting from an initial mesh at constant

resolution with for example 3 × 3 cells per block, a ‘parent’ block is divided into 4

‘children’ in the event of refinement requests. Each child becomes an independent

new block with the same number of grid cells in each dimension, thereby doubling

the resolution in the region of interest. Coarsening, on the other hand, reverses the

Coarsen

Refine

Figure 3.2: Refinement and coarsening principles with 2 refinement levels. Each
block contains 3x3 cells.

refinement principle. Then 4 children are coalesced into a single self-similar parent

block which reduces the grid resolution in each direction by a factor of 2. In the

present AMR design, neighboring blocks can only differ by one refinement level.

This guarantees accurate inflow and outflow conditions at the interface boundaries

and leads to continuously cascading refinement regions.
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An example of such a cascading grid projected onto the sphere is given in figure 3.3.

Here a single region of interest, an idealized mountain as indicated by the contour

lines, is refined at a maximum refinement level of 3. The figure clearly depicts the

consequent refinement requests in order to ensure the adaptation constraint. In

addition, the blocks adjacent to the pole are held at a constant refinement level.

This fulfills the requirements of the polar cap and gravity wave treatment in the

polar region as discussed in Section 2.2.

Each block is a logically rectangular unit with ad-

1000

Figure 3.3: Adapted blocks.

ditional ghost cell regions around its boundaries. As a

result, the information along adjacent block interfaces

is shared which allows the use of an iterative solution

procedure. The flow solver is then individually applied

to all blocks within the grid before ghost cell updates

along the boundaries become necessary. Here, 3 ghost

cells in each direction are added in order to satisfy the requirements of the solution

technique.

There are two types of interfaces in the adaptive grid setup as illustrated in fig-

ures 3.4 and 3.5. If the adjacent blocks are at the same refinement level (figure

3.4) the neighboring information can easily be exchanged since the data locations

Ghost cells Computational cells

Figure 3.4: Ghost cell updates for blocks at the same refinement level.



71

overlap. The ghost cell data are then assigned the appropriate solution values of the

neighboring block which is indicated by the gray-shaded areas. If on the other hand

the resolution changes between adjacent blocks (figure 3.5), interpolation and aver-

Computational cells

Ghost cells

Figure 3.5: Ghost cell updates for blocks at different refinement levels.

aging routines become necessary in order to fill in the missing ghost cell information

at different grid point positions. These techniques are further explained in Section

3.3.1. Special attention is paid to ensure conservation principles along the varying

grid interfaces.

It is important to note that blocks do not overlay each other in the current setup.

Instead, each block is assigned a unique surface patch on the sphere. This is in

contrast to alternative approaches presented in the literature (Berger and Colella

[1989], Brown et al. [2003]). For example, Berger and Colella [1989] reported on a

block data AMR principle with variable block sizes that maintains all the blocks at all

refinement levels during the course of an integration. The flow is solved concurrently

on the coarse and overlaying fine meshes. The fine resolution regions then overwrite

the coarse resolution data wherever the properly nested grids overlap.

Adaptive blocks are also well-suited for parallel computing concepts with a dis-

tributed memory architecture. Since blocks are treated as independent units they

can easily be distributed among many processors. During the simulation each pro-
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cessor loops over its assigned blocks in order to solve the PDEs on a block-by-block

basis. At the end of the time step procedure the processors are synchronized which

allows the update of the ghost cell regions across the communication network.

Self-similar blocks are flexible and from a computational viewpoint efficient units

that can be used for static and dynamic adaptations. Static refinements are placed

in user-determined regions of interest, like mountain ranges or coastlines, at the

beginning of a forecast. This approach even allows an accurate reinitialization of the

initial data after refinements occurred, for example with an improved representation

of the orography profile. Another static adaptation option is the reduced grid that

statically coarsens the longitudinal resolution in polar regions (see also Chapter IV).

Dynamic adaptations, on the other hand, are a powerful method when features of

interest are to be tracked according to user-defined refinement criteria. These can

include flow-dependent indicators or measures of the numerical error (discussed in

Chapter V).

3.1.2 Model resolution

The horizontal resolutions as well as the total number of blocks in an adaptive

grid run can vary considerably during the course of an integration. Although there

are from a computational standpoint no limits other than memory size and processor

speed, the physical problem to be solved might well pose restrictions on the adaptive

grid simulation. This is in particular true for hydrostatic dynamical cores in atmo-

spheric science. The range of sensible resolutions varies from hundreds of kilometers

to tens of kilometers which sets an upper limit on the number of suitable refinement

levels. This limit is on the order of 3-5 depending on the initial coarse resolution.

In contrast, other adaptive mesh applications like BATS-R-US, the interplanetary
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magnetohydrodynamics model at the University of Michigan (Hansen et al. [2002]),

typically work with 10-15 refinement levels (Stout et al. [1998]).

The initial uniform grid setup not only determines the coarsest horizontal resolu-

tion for the adaptive model run, but also the geometrical flexibility of the adaptations.

Here a trade-off must be considered since an increased number of cells per block leads

to more efficient but less flexible adaptive model simulations. From a computational

viewpoint, these larger blocks are more efficient since, as an example, the ghost-cell

to computational-cell ratio is improved. But on the other hand, large block sizes

can not be optimally adapted and are therefore less flexible with respect to refining

local atmospheric phenomena. These aspects are further discussed in Section 3.2.3.

The initial resolution solely depends on user-defined input parameters. These are

the number of blocks in longitudinal and meridional direction (Bx × By) as well as

the number of cells per block (Nx × Ny) in each dimension. The only constraints

are Bx, By ≥ 2 (with Bx = even) and Nx, Ny ≥ 6. The latter guarantees that the

3-ghost-cell region of a neighboring coarse block is completely contained in the fine

block. The former is necessary in order to find unique neighboring blocks across the

pole points.

Typical resolutions considered here are mainly driven by the flexibility argument.

Therefore, the number of cells per block is rather marginal with respect to computa-

tional efficiency. Unless noted otherwise, most model runs presented in the following

chapters start with the initial parameter set [Bx = 8, By = 6, Nx = 9, Ny = 6] which

describes a global 5◦×5◦ resolution. The maximum refinement level is set to 4. Table

3.1 gives an overview of the corresponding resolutions in spherical coordinates and

physical space. The effect of the converging meridians in polar regions can clearly

be seen which significantly reduces the physical grid spacing. This has far-reaching
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Refin. Resolution Max. # grid points Resolution ∆x (km) at different ϕ

level ∆λ, ∆ϕ lon x lat (full grid) equator 60◦ N/S 75◦ N/S near pole

0 5◦ 72 x 36 556.0 278.0 143.9 24.26

1 2.5◦ 144 x 72 278.0 139.0 72.0 6.06

2 1.25◦ 288 x 144 139.0 69.5 36.0 1.52

3 0.625◦ 576 x 288 69.5 34.8 18.0 0.38

4 0.3125◦ 1152 x 576 34.8 17.4 9.0 0.09

Table 3.1: Refinement levels and corresponding global grid resolutions on the sphere.

consequences with respect to numerical stability and time stepping issues as already

discussed in Section 2.2.2. Furthermore, it can be observed that the grid spacing

at refinement level 4 approaches the limits of the hydrostatic approximation. The

hydrostatic approximation, or the neglect of the vertical acceleration in the verti-

cal momentum equation, is well-represented in the atmosphere down to horizontal

scales around 10 km. At smaller scales, additional dynamical effects, like internal

wave breaking events, start to become important. Therefore, the adaptive model is

restricted to 4 refinement levels when starting with a coarse initial 5◦ × 5◦ setup.

In case of a more typical 2.5◦ × 2.5◦ climate resolution, which corresponds to the

spectral T42 setup, 3 refinement levels are feasible before non-hydrostatic motions

should be taken into consideration. In addition, questions arise whether an even

higher horizontal resolution would be still consistent with the fixed non-adapted

vertical resolution (Lindzen and Fox-Rabinovitz [1989], Fox-Rabinovitz and Lindzen

[1993]).

In a realistic model setup, for example for weather prediction applications, an even

finer initial grid must be considered. Otherwise the calculation might suffer from a

severe underrepresentation of the initial field at the 5◦ × 5◦ resolution (Simmons
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and Hollingsworth [2002]) and no significant improvements of the simulation can be

expected by an adapted model run. This is due to the fact that the initial data on

adapted blocks are interpolated from the coarse parent grid. However, in idealized

test cases an initial resolution of 5◦ × 5◦ is often sufficient since the initial data are

considerably smooth. This is particularly true for the shallow water test cases 2,3,5

in Chapters IV-V and the 3D baroclinic wave simulations in Chapter VI.

Reduced grid resolution

Adaptive blocks can also be used to define a static coarsening step in longitudinal

direction at the beginning of the forecast. These coarsenings are confined to the

polar regions and are most commonly called a reduced grid arrangement (see also

figure 4.1 on page 121). Numerous reduced grid setups have been proposed in the

literature and a detailed overview is given in Chapter IV. The reduced grid proposed

here is a new variant since it is based on the self-similar adaptive block design which

offers less flexibility with respect to the positions of the reduction levels. Therefore,

a finer initial grid based on the parameter set [Bx = 16, By = 12, Nx = 9, Ny = 6] has

been chosen. This 2.5◦× 2.5◦ grid resolution allows two reduction levels poleward of

60◦ N/S which marks the southern/northernmost limit for the selected design. The

corresponding grid resolutions for a uniform grid with 1 and 2 reduction levels at

75◦ N/S and 60◦ N/S, respectively, are listed in table 3.2. The table clearly depicts

the increase in the grid spacing in polar latitudes. As a consequence, the time step

is less restricted by the CFL numbers near the poles (see also discussion in Section

2.2.2).
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Reduced Resolution ∆λ x ∆ϕ at different ϕ Resolution ∆x (km) at different ϕ

grid equator 60◦ N/S 75◦ N/S equator 60◦ N/S 75◦ N/S near pole

0 (fg) 2.5◦ x 2.5◦ 278.0 139.0 72.0 6.06

1 (rg1) 2.5◦ x 2.5◦ 5◦ x 2.5◦ 278.0 139.0 143.9 12.13

2 (rg2) 2.5◦ x 2.5◦ 5◦ x 2.5◦ 10◦ x 2.5◦ 278.0 278.0 287.8 24.26

Table 3.2: Characteristics of the reduced grid configurations in comparison to the
regular longitude-latitude grid (full grid).

3.1.3 Grid point positions

As pointed out in Section 2.1.2 the prognostic data in the finite-volume dynamical

core are arranged on an Arakawa D-grid (figure 2.1 on page 34). In case of adapta-

tions this leads to a slightly more complicated grid staggering pattern in comparison

to the most commonly used Arakawa A-grids in adaptive CFD applications. The

assignment of the variables u, v and Φ to their grid locations is shown in figure 3.6.

Here the coarse cell, as indicated by the blue color, is split into 4 children whose

positions are marked in black.

Φ

Φ Φ

Φ

u

v

u

Φvv

u

vv

u u

Figure 3.6: Splitting of one coarse cell into 4 fine-grid cells. The location of the
coarse data is indicated in blue, the fine grid data are in black.

This grid has a built-in asymmetric property. Since the velocity components are

defined at staggered positions, the scalar quantities Φ in a block with Nx ×Ny grid

cells are not completely surrounded by the velocity field. The northernmost and
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easternmost boundaries of the block do not contain prognostic wind data and the

missing information is provided by the ghost regions. This is not a problem in a

uniform grid simulations since neighboring blocks are at the same resolution and

replace the missing ghost cell information with accurate data. But it has important

implications with respect to transport processes at the interfaces of an adapted grid

where ghost cell information needs to be interpolated. When examining the flux

calculations at a fine-coarse grid boundary, it can be observed that the precision of

the flux computation relies on the direction of the wind speed. This is illustrated

in figure 3.7 which depicts a simple monotone approximation to the advective flux,

the upstream or donor cell method. Here the meridional flux G at the cell edge is

Φ

v

v

Φ

Φ

v

v

v

Ghost cell data

Flux calculation at

North

South

the cell interfaces v

Figure 3.7: Flux calculations at a fine-coarse grid interface with asymmetric coordi-
nate positions.

calculated by G = vΦ with respect to the upstream direction. The figure shows two

fine-coarse grid interfaces with opposite v wind directions. The goal is to compute G

at the northernmost interface of the refined block. The available information for the

flux computation is either given as a true model variable (black) or as a ghost-cell

value (red). In the left part of the figure with a northerly wind component a flux

calculation at the cell interface involves the 2 ghost-cell data indicated in red. Both
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values enclosed in the gray-shaded box are interpolated from the neighboring coarse

cell. This might be slightly less accurate than the comparable flux computation

shown on the right hand side. With the southerly wind direction, the flux can now

be computed with the true variable Φ and 1 interpolated wind component (ghost cell

in red in the gray-shaded box).

The differences in the precision of the fluxes at the boundaries are marginal but

certainly have an impact over time, especially if low order interpolation schemes

are used for the ghost cell updates at the boundaries. For example, it has been

observed in shallow water test case 6 with first-order interpolations that a reduced

grid simulation developed an asymmetric solution in the two Hemispheres over time.

This effect was then diminished when applying a second-order interpolation scheme at

the interfaces which enhanced the accuracy of the ghost cell information (figure 4.8 on

page 131).

If asymmetric solutions are to be reduced further, true overlap regions can be

introduced (e.g. with the width of 1 for the velocity field at the northernmost or

easternmost boundary). Then the wind components can be computed concurrently

at the interface on the two meshes, though at staggered locations (see figure 3.6).

Special care must be taken to avoid spurious noise. This can include a synchroniza-

tion step that assigns the averaged fine-grid wind data to the coarse neighboring

cell. Whether the asymmetric property can be completely avoided by this procedure

remains open. As indicated on the left hand side in figure 3.7, even the simple flux

calculation still involves a second ghost value Φ. Furthermore, many more ghost cell

data are involved in higher order flux calculations like the van Leer or PPM method

outlined in Chapter II. The same ideas apply to the zonal fluxes in the W-E direction

at the easternmost boundary.
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3.2 Software engineering aspects

3.2.1 Adaptive spherical grid library

Besides the block-structured data layout, the second building block of the adap-

tive finite-volume dynamical core is a newly-developed spherical adaptive grid li-

brary for parallel computer architectures. This library has been designed by Oehmke

[2004] and Oehmke and Stout [2001] who give detailed information on the underlying

principles and software engineering aspects. The following section presents a brief

overview.

The AMR library manages the block data structure on the sphere and adds the

adaptive grid functionality. All details of the AMR technique are hidden inside the

library. The user then utilizes the library functions by subroutine calls and provides

additional user-specific routines that, for example, compute the interpolations within

ghost cell regions. The characteristics and functions of the library are:

Sphere The library provides functions for the creation of a sphere or a reduced

sphere with a block-structured data layout. It maintains the geometric in-

formation for the initialization of the spherical coordinates and later allows

the reinitialization of the blocks after adaptations occur. Each block covers a

unique surface patch on the sphere.

Book-keeping The library maintains the adjacency information for all blocks at

arbitrary refinement levels including the blocks at the pole points.

Iterators Iterators allow users to loop over all the blocks on a processor. They

can be viewed as pointers that pick out the next independent block index for

user-specific computations. Consecutive blocks may lie at arbitrary positions

on the sphere.
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Communication The library provides transfer functions that enable the ghost cell

updates especially on distributed memory machines. The communication is

based on the message passing interface MPI (for distributed neighboring blocks)

or on memory copies for adjacent blocks on the same processor. The transfer

module maintains send and receive buffers and utilizes the adjacency informa-

tion during the user-initiated ghost cell exchange.

Load-balancing The load-balancing module is responsible for distributing the blocks

among the processors during the adaptive run. Blocks are transfered among

processors in order to assign an equal amount of work to the each processor.

Adaptations The library manages the coarsenings and refinements of the blocks

based on adaptation flags. These flags are set by the user via library functions.

The adaptation module redefines the block connections after adaptations oc-

curred and enforces the adaptation constraint that adjacent blocks can differ

by no more than one refinement level.

User interface The user can easily access the library functions by Fortran90 sub-

routine calls. In addition, user-defined subroutines need to be provided that

specify the algorithms for the split & join operations as well as the ghost cell up-

dates. These routines then include the interpolation and averaging procedures

for the initialization of new blocks and the data exchange among neighboring

blocks at different resolution. The interface routines need to cover three cat-

egories: (1) the exchange of data among blocks at the same refinement level,

(2) the fine-to-coarse and the (3) coarse-to-fine interfaces.

In order to utilize the adaptive grid library in the finite-volume dynamical core the

basic data structure of the former 3D arrays like Φ(Nlon, Nlat, Nlev) has been changed
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to accommodate the block design. Here Nlon, Nlat and Nlev stand for the total number

of longitudes, latitudes (in a latitude stripe due to a 1D data decomposition) and

vertical levels on the sphere. The new data structure Φ(Nx, Ny, Nlev, NBlock) then

contains the block index as a fourth dimension where Nx, Ny indicate the number of

cells per block and NBlock is the total number of blocks on a processor. This input

parameter stays constant and needs to provide enough buffer space for newly created

blocks during the adaptive model run. The vertical dimension remains unchanged.

Typical values for Nx and Ny are reported in Section 3.1.2.

There is one more imperative revision to be noted. The original Lin-Rood design

contained a grid point distribution that placed cell centers with scalar variables

directly at the poles. Such a fixed position of variables at the poles contradicts

the flexible AMR paradigm and would prevent adaptations near the pole points.

Therefore, the grid point distribution has been shifted by half a grid length in the

meridional direction in order to avoid this difficulty.

Adaptations

During the course of a model run adaptations are triggered according to adapta-

tion flags. In the current implementation, the refinement or coarsening flag is set if

one or more grid points within a block fulfill the user-defined adaptation criterion.

Then the whole block is flagged so that, in case of refinements, the block is split into

four children during the next adaptation cycle. Coarsenings are slightly harder to

trigger than refinements. They require that all four children set the coarsening flag

simultaneously. Additionally, coarsenings are only allowed if they do not violate the

constraint that neighboring blocks can only differ by one refinement level. This is

checked by the AMR library functions. Typically, a time interval of n time steps is
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required before new adaptations are allowed. This is called an adaptation cycle that

needs to be determined by the user. For pure advection tests an adaptation interval

of n = 1 time step has been successfully selected (Chapter V) but such a short cycle

is not recommended for non-linear flow simulations. This is due not only to compu-

tational overhead considerations (e.g. calling the AMR library functions produces

overhead) but also to the observation that refinements and coarsenings might toggle

if the refinement criterion is only marginally met. A longer time interval allows the

flow to evolve smoothly before new adaptations are triggered. Here, a time interval

of 2 hours has been selected for the adaptive runs in Chapters V and VI. This time

interval ensured that the selected features of interest did not leave the regions of

interest during the adaptation cycle. Otherwise a shorter time interval needs to be

selected.

As a first glimpse, it is interesting to see how the adaptations are able to track

a selected feature. This is qualitatively displayed in figure 3.8 on the next page

where 3 refinement levels are used to follow a Gaussian hill around the globe. In this

passive advection test the Gaussian hill is transported by prescribed wind speeds.

No coarsenings have been applied in order to illustrate the trace of the feature with

its cascading refinement regions. The figure shows the adapted blocks during this

12-day simulation and clearly depicts the neighboring constraint that also applies to

adjacent blocks in the diagonal direction.

Neighbors

These neighboring relationships are more closely examined in figure 3.9, which

shows a schematic view of the block setup in the spherical system. In general, all

blocks in a non-adapted grid have eight neighbors as denoted by the North/South
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Figure 3.8: Cascading refinements: Advection of a tracer (Gaussian hill, colored con-
tours) around the globe tracked with 3 refinement levels (in the figure
without coarsening). The adapted blocks are shown. Base resolution is
2.5◦ × 2.5◦, each block contains 9x6 cells.
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Figure 3.9: Information exchange among nearest neighbors. Neighbors at the poles
are located across the poles.
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and East/West direction. These neighbors can easily be determined by their λ, ϕ

coordinate position. At the poles though, 3 of the 8 neighbors lie at cross-pole

positions as indicated schematically by the long arrows. The spherical adaptive grid

library takes this requirement into account and correctly locates the neighbors of the

pole blocks. Therefore, an even number of blocks in longitudinal direction must be

selected. If all neighbors of the coarse block in the gray-shaded box (figure 3.9) were

refined once then the total number of neighbors would increase to 12.

Load-balancing

The load-balancing strategy currently implemented in the spherical adaptive grid

library strives to maintain an approximately equal number of blocks on all processors.

Assuming that the workload per block is equal, this ensures a well-balanced work

load per processor. No attention is paid to the actual location of the blocks which

consequently leads to a scattered 2D domain decomposition on the parallel machine.

This is displayed in figure 3.10 on the facing page which shows two snapshots of an

adapted passive advection test with 4 processors. Here, a cosine bell (contours not

shown) is transported around the globe and crosses the pole at day 3 in subfigure

(a). Subfigure (b) depicts the final stage after 12 days. The adapted blocks are

colored according to the assigned processors. It can clearly be seen that the domains

of the processors are discontinuous which increases the amount of data that needs to

be communicated across the network. In continuous regions, such a communication

is replaced by memory copies. The slightly enhanced overhead of the scattered

approach might still have negligible effects as far as the overall parallel performance is

concerned. For example, such a load-balancing strategy has not been found to present

a problem in the magnetohydrodynamics code BATS-R-US. In this code the blocks
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Figure 3.10: Load-balancing strategy illustrated with the cosine bell advection test
(test case 1, α = 90◦) after (a) 72 hours and (b) 288 hours (1 evolution).
The contours of the cosine bells are omitted (see figure 5.2). Each color
represents a processor, the blocks are colored accordingly.
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have a high ratio of calculation to communication so that the actual mapping of the

blocks to processors does not play a key role with respect to the parallel performance

(Stout et al. [1998]). As indicated by Dennis [2003], this conclusion might not apply

to an atmospheric dynamical core and needs to be evaluated further in the future.

As an alternative, a load-balancing strategy could be employed that is based on the

space-filling curve approach. Such an approach has already been successfully applied

to parallel oceanic and atmospheric science applications as documented by Blayo

et al. [1999], Behrens and Zimmermann [2000] and Dennis [2003] (see also Griebel

and Zumbusch [1999]). The space-filling curve principle ensures that blocks from the

same geometric regions are mapped onto the same processors which minimizes the

communication across the network. This offers an interesting perspective for future

high-performance computing assessments.

3.2.2 Program flow

The adaptive finite-volume dynamical core is built upon the spherical adaptive

grid library whose function calls are predominantly visible in the main driver rou-

tines for the dynamics calculations. From a high level viewpoint, the program flow

can be described as in figure 3.11. Besides initial initialization procedures, the pro-

gram mainly consists of an outermost time loop in which the adaptive dynamics are

embedded. Here, the pure dynamics calculation can be viewed as a black-box solver

that iteratively computes the transport processes on a block-by-block basis until all

blocks are updated. Such a loop over the blocks is hidden in the “Calculate the

Dynamics” box that is succeeded by a ghost cell exchange. If an adaptation cycle

is reached after n time steps, the adaptation criterion is evaluated which determines

the resulting program flow. In case of adaptation requests the corresponding AMR
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Figure 3.11: High level view of the program flow with adaptive mesh functionality.

library functions are called that create or destroy the flagged blocks. This is followed

by a load-balancing step before returning to the main time loop. On the other hand,

if no adaptation flags are set the program continues directly with the next time step.

3.2.3 Performance

The computational performance of the adaptive blocks strongly relies on the

number of cells per block. In general, it can be observed that bigger block sizes lead

to a sharp increase in efficiency until a saturation level is reached (Stout et al. [1997]).

This saturation level is associated with the cache size of the individual computer

architecture and no improvements could be measured with further increases in block

sizes. On the contrary, Stout et al. [1997] reported a slight decrease in efficiency after

exceeding the optimal block size. The same characteristic has also been found in the

adaptive Lin-Rood simulations. Here, the 2D shallow water version at a constant
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2.5◦ × 2.5◦ resolution has been used in order to assess the performance with respect

to varying block sizes. For these runs, shallow water test case 2 (α = 0◦) has been

chosen. All runs employ the same ∆t = 400s time step and are integrated over a

14-day period or 3024 time steps.

Various combinations of the input parameters Bx, By, Nx, Ny (see Section 3.1.2 for

an explanation of the symbols) have been selected that arrive at the identical initial

2.5◦ × 2.5◦ setup. The smallest block size considered in this study is the standard

block size for the adaptive model runs. Here the 16x12 blocks are comprised of only

9x6=54 cells per block which offers maximum flexibility with respect to adaptation

regions. On the other hand, the biggest block size with 72x36=2592 cells per block

and 2x2 blocks in each direction does not allow finely tuned adaptive feature tracking

simulations. These are the trade-offs that need to be considered. The comparison

is displayed in figure 3.12. The figure shows the total CPU time, as measured on a

SUN Ultrix workstation, for the 14-day integration with different block sizes. It is

600

900

1200

1500

T
im

e 
(s

)

0 500 1000 1500 2000 2500

# Grid points per block

Figure 3.12: CPU timing data for different block sizes (test case 2, α = 90◦).

apparent that the ideal block size lies between 1500-2000 cells per block. Here, the

saturation point is reached with a 72x24=1728 cell setup that leads to an increase

in speed by a factor of approximately 2.5 in comparison to the standard 54 cells per

block. However, in case of adaptive grid refinements the larger block size will lessen
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the speed advantage since many more blocks need to be refined in order to resolve a

feature of interest at a fine resolution. In addition, the speed advantage of the large

blocks is diminished when switching from the 2D regime to the full 3D simulation.

Then a block contains the whole vertical column with e.g. 26 layers which increases

the new standard block size with 9x6x26=1404 cells considerably. This block size

is very close to the optimal block size found in Stout et al. [1997]. In practice, the

ideal block size for the finite-volume dynamical core is a compromise between speed,

memory requirements and flexibility. It needs to be determined empirically and

probably is close to 10x10 cells per block.

The memory requirement is another aspect that is closely related to the initial

block setup. Each block is surrounded by an additional 3-ghost-cell zone in the

horizontal directions. This noticeably increases the memory requirements in case

small blocks are used. For example, the ghost cell to computational cell ratio for

the 9x6 grid setup is 2.33 whereas the ratio is 1.56 if 10x10 cells are chosen. Other

applications, like BATS-R-US, typically work with ratios between 1.37 and 7 (Hansen

et al. [2002]). In practice, the enhanced memory requirements are less of a concern

in comparison to the speed of the computations.

Overhead

Adding the adaptive grid functionality to the finite-volume dynamical core signif-

icantly enhances the flexibility of the model simulations but also adds computational

overhead. A thorough assessment of the overhead can be found in Oehmke [2004].

Here, a rough estimate is given that is based on a comparison of an adaptive ad-

vection test and a constant resolution model run. The tests have been performed

with shallow water test case 1 (α = 0◦) which describes the transport of a cosine bell
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along the equator. An adapted run with a 5◦ × 5◦ base resolution and 2 refinement

levels is compared to a uniform run on a 1.25◦ × 1.25◦ grid. Identical time steps

with |CFL| = 0.95 are used and both runs resolve the feature of interest at the

same 1.25◦ resolution. The overhead is assessed by measuring the total CPU time

of the 12-day model simulation and counting the number of blocks (with 9x6 cells)

involved in the computation. Then the CPU time per block can be estimated for

both model runs which gives an indication of the additional workload in the adapted

case. In the concrete example, the uniform grid run with 32x24=768 blocks finished

the transport of the cosine bell after 13800 CPU seconds. On the other hand, the

number of blocks in the adapted run varied between 72-84 during the simulation and

needed 1920 CPU seconds. These two run times differ by a factor of ≈ 7.2. As a

result, the CPU time spent per block is 13800
768

= 17.97 CPU s/block in the uniform

case and approximately 1920
0.5(72+84)

= 24.61 CPUs / block in the adapted run.

Based on this preliminary assessment, the overhead in the adapted run is on

the order of 27% which compares well to the 20% overhead reported by Berger and

Colella [1989]. Other hints in the literature are given by Skamarock and Klemp

[1993]. They discussed that the break-even point where the cost of an adaptive

run will be approximately equivalent to a fixed-grid simulation occurs when nearly

50-60% of the coarse domain needs refinement at the finest refinement level.

In order to gain more insight into the performance of the adaptive run two aspects

need to be considered. First, it must be kept in mind that the pure advection test

does not represent the full complexity of the nonlinear equations. The workload

per block is low so that the communication and interpolation routines represent a

higher percentage of the total workload. When switching to the nonlinear set the

workload per block is increased by approximately a factor of 3 in the 2D shallow
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water setup. Furthermore in a full 3D simulation, this workload then gets multiplied

by the number of vertical levels. This could lead to a relative decrease in overhead

although additional communication steps need to be introduced in the two latter

cases as well.

Second, the advection test used here depicts an idealized scenario where one

adapted region tracks the cosine bell in a narrow ring around the equator. In a more

realistic simulation, the blocks at different refinement levels are distributed among

the model domain and many more refinement regions are present. Consequently, such

a flow field requires more communication and interpolations at the mesh interfaces

which increases the overhead.

Therefore the overhead assessment performed here should be considered a rough

estimate to which future studies can be compared.

3.3 Fine-coarse grid interfaces

3.3.1 Interpolation and averaging techniques

In an adaptive model run grids at different resolutions require the use of inter-

polation and averaging routines in order to fill the ghost cell regions. In addition,

interpolation and averaging procedures become necessary for split-join operations if

block adaptations are requested. These routines are user-defined modules for the

AMR library. They need to be carefully designed in order to guarantee not only the

accuracy of the algorithm but also its conservative nature.

Numerous interpolation techniques can be found in the literature. For example,

Williamson and Rasch [1989] (also Rasch and Williamson [1990]) investigated shape-

preserving interpolation techniques and Alapaty et al. [1998] assessed various spatial

interpolation schemes for nested grid models. In general, interpolation schemes are
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widely used in atmospheric semi-Lagrangian (SL) models that need to map the trans-

ported data onto a fixed spherical reference mesh. But a general difficulty needs to

be considered. Most of the interpolation techniques and especially the high-order

conservative interpolation techniques are well-designed and efficient for 1D problems

on the Cartesian plane. But in the multi-dimensional case in curvilinear coordinates

the multi-dimensional extensions of the 1D algorithms may not be straightforward or

they may be computationally very expensive. The former is also due to the polar sin-

gularities in the global domain. The latter was shown by Rancic [1992] who extended

the conservative PPM advection and remapping algorithm to 2 dimensions in Carte-

sian coordinates. The resulting mass-conserving semi-Lagrangian scheme performed

well but increased the compute time by a factor of 2.5. Therefore, more efficient

solutions to the multi-dimensional interpolation problem were proposed by Purser

and Leslie [1991], Leslie and Purser [1995] and Sun and Yeh [1997] who introduced

the new concept of “cascade interpolations” or “split interpolations” for SL models.

Then the true multi-dimensional interpolation problem is broken up into a series of

consecutive 1D interpolations that approximate the solution with high accuracy. For

instance, Rancic [1995] showed the viable combination of the cascade interpolation

principle with 1D PPM-like interpolations and Nair et al. [1999] applied the cascade

interpolations to SL transport problems in spherical coordinates. Furthermore, Nair

and Machenhauer [2002] presented a mass-conserving advection scheme on the basis

of the PPM approach. This publication serves as one of the key references in the

following section.

There are two design principles concerning the interpolation scheme for the adap-

tive finite-volume dynamical core. First, the interpolation method must conserve

mass, but is allowed to be non-conservative for the wind components (no conserva-
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tion of the momentum). Second, the order of the scheme to be selected should be a

method that is consistent with the design of the transport algorithm as also postu-

lated by Clark and Farley [1984]. These two principles lead to a natural 2D extension

of the underlying 1D finite-volume approaches, the van Leer principle with linear sub-

grid distribution and a PPM-like interpolation scheme with quasi-biparabolic subgrid

distribution. The latter PPM-type remapping algorithm is second-order accurate.

2D extensions of the van Leer approach

The first-order van Leer interpolation mechanism (van Leer [1977]) is based on the

construction of linear subgrid distributions in each cell. In the 1D case in x-direction

this requires the specification of a slope ∆ax in order to arrive at the polynomial

h(x)

h(x) = h̄ + ∆ax x (3.1)

where h̄ =
∫ 1/2

−1/2
h(x) dx is the cell-averaged (finite-volume) value and x ∈ [−1

2
, 1

2
]

a normalized local coordinate defined in equation 3.6. For the straightforward 2D

extension, a second slope ∆ay in y-direction is added to equation 3.1 which yields

h(x, y) = h̄ + ∆ax x + ∆ay y (3.2)

with y ∈ [−1
2

, 1
2
] and h̄ =

∫ 1/2

−1/2

∫ 1/2

−1/2
h(x, y) dx dy. The slopes at a point (i, j) are

then defined as in van Leer’s scheme I using centered finite differences

∆ax =
1

2

(
hi+1,j − hi−1,j

)
(3.3)

∆ay =
1

2

(
hi,j+1 − hi,j−1

)
. (3.4)

The (i, j) indices for ∆ax and ∆ay are dropped for convenience. These slopes can be

further manipulated if monotonicity constraints are required. Then the monotonized
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central-difference (MC) slope limiter (van Leer [1977])

∆ax = min
(|∆ax|, 2|hi+1,j − hi,j|, 2|hi,j − hi−1,j|

)
sgn(∆ax) (3.5)

if (hi+1,j − hi,j)(hi,j − hi−1,j) > 0

= 0 otherwise

picks out the smallest magnitude of three slopes: the centered difference and the two

one-sided differences. However, if the value of hi,j represents an extreme value, the

slope is set to zero. The same principle applies to the MC slope limiter in y direction

(not shown).

When transforming the Cartesian coordinates to the spherical coordinate system

(λ, ϕ) the local normalized (x,y) coordinates for each cell are defined by (see also

Nair and Machenhauer [2002])

x =
λ− λi

∆λi

− 1

2
(3.6)

y =
µ− µj

∆µj

− 1

2
(3.7)

with ∆λi = λi+1 − λi, ∆µj = µj+1 − µj and µj = sin ϕj. For each left and right

position λ = λi and λ = λi+1 follows x = −1
2

and x = 1
2
, respectively. The same idea

applies to µ.

It is important to note that the slope ∆ay in the meridional direction is calculated

with h values that are equidistant in the spherical ϕ coordinate. On the other hand,

the local normalized y coordinate is computed in the non-equidistant µ system. In

particular, the µ- coordinate lines become increasingly compressed toward the poles.

This causes a slight inconsistency, namely the polynomial h(x, y) ∼= h(λ, µ) does

not fully represent the subgrid distribution in the transformed (λ, µ) system. It

can be considered a mix of the (λ, µ) and (λ, ϕ) coordinates due to the equidistant
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slope ∆ay. There are three options that have been evaluated. First, the equidistant

slope calculation (eqn. 3.4) could be replaced by a consistent non-equidistant slope

calculation based on the µ-coordinate (as shown in Colella and Woodward [1984]).

Second, the inconsistency can be ignored when assuming that the equidistant slope is

still a good approximation even in polar latitudes when µ-values become compressed.

This option is motivated by the findings in Veldman and Verstappen [1998] who

argued in case of a convection-diffusion problem that the derivatives should still

be estimated in an equidistant fashion on a nonuniform grid. Third, the equidistant

slope calculation can be kept throughout the model domain but the local variable y is

switched from the µ-system to the ϕ-system in polar regions. Then the y calculation

poleward of 60◦ N/S is replaced by the equidistant expression

y =
ϕ− ϕj

∆ϕj

− 1

2
(3.8)

with ∆ϕj = ϕi+1 − ϕj. In practice, options (2) and (3) have been assessed and the

results are presented in figure 3.13 on page 100.

In order to use the van Leer approach for the interpolation of a conservative

scalar (for example during a split operation for Φ as indicated in blue and black

in figure 3.6 on page 76), two steps become necessary. First, a monotonic subgrid

distribution h(x, y) is computed that is based on the coarse grid data. Then the

subgrid distribution needs to be integrated over the fine grid regions which guarantees

the conservative mapping of the coarse cell. If assuming that the fine grid region of

interest lies within the boundaries x ∈ [xl, xu], y ∈ [yl, yu] inside a coarse grid cell,

the new h̄r value for the refined grid cell is determined by

h̄r =
1

∆x∆y

∫ yu

yl

∫ xu

xl

(
h̄ + ∆ax x + ∆ay y

)
dx dy (3.9)

= h̄ +
∆ax

2 ∆x

(
x2

u − x2
l

)
+

∆ay

2 ∆y

(
y2

u − y2
l

)
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with ∆x = (xu − xl) and ∆y = (yu − yl).

In case of a non-monotonic non-conservative interpolation request, the uncon-

strained subgrid distribution does not need to be integrated. Instead, h(x, y) can be

immediately evaluated at the new refined grid position (xr, yr).

Both approaches, the monotonic-conservative and the non-monotonic non-conser-

vative interpolations, have been tested in the finite-volume dynamical core and the

results are documented in table 3.4 on page 106. In general, the van Leer interpola-

tion approach is first-order accurate.

2D extensions of the PPM approach

The extension of the Colella and Woodward [1984] PPM interpolation scheme to

two dimensions is closely related to the van Leer principles outlined above. Therefore,

most of the symbols are reused. The starting point is the underlying quadratic sub-

grid distribution in x direction (see also Nair and Machenhauer [2002] and Carpenter

et al. [1990])

h(x) = h̄ + δax x + bx
( 1

12
− x2

)
(3.10)

where δax denotes the slope and bx symbolizes the curvature of the parabola. These

are defined by

δax = hR − hL (3.11)

bx = 6 h̄ − 3 (hL + hR) . (3.12)

Here the subscripts L and R indicate the left and right cell edge value of h. For

example, the left cell edge value in the ith cell is approximated by

hL,i =
1

2

(
h̄i−1 + h̄i

) − 1

6

(
∆ax

i −∆ax
i−1

)
(3.13)
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where ∆ax stands for the van Leer slope (eqn. 3.3) with or without monotonicity

constraint 3.5. The right edge value is given by hR,i = hL,i+1. The coefficients of the

parabola δax and bx can then be further modified in order to enforce monotonicity.

The details are given in Colella and Woodward [1984] and Lin and Rood [1996].

For the 2D extension of the algorithm, a biparabolic function needs to be found.

As shown by Rancic [1992], a true 2D extension of the PPM scheme requires the

calculation of nine coefficients which leads to a rather expensive method. Therefore,

a quasi-biquadratic approach with six coefficients is derived that closely resembles

the scheme proposed by Nair and Machenhauer [2002] with four coefficients (exclud-

ing the readily available cell average). Here, a directionally bias-free cross-term is

added to the Nair and Machenhauer [2002] algorithm that helps smooth the subgrid

distribution near sharp edges. A similar mixed derivative term was also introduced

by van Leer [1985] in an alternative definition of a biparabolic subgrid distribution

function. Here the 2D subgrid distribution is given by

h(x, y) = h̄ + δax x + bx
( 1

12
− x2

)
+ δay y + by

( 1

12
− y2

)
+

1

2

(
cxy + cyx

)
x y (3.14)

where δay and by are defined as in equations 3.11-3.12 with respect to the meridional

direction. The cross term consists of the two components cxy and cyx that are aver-

aged in order to avoid a directional bias. In particular, cxy and cyx at a point (i, j)

are determined by

cxy =
1

2
(∆ax

i,j+1 −∆ax
i,j−1) (3.15)

cyx =
1

2
(∆ay

i+1,j −∆ay
i−1,j) (3.16)

where ∆ax and ∆ay are the slope limited centered difference slopes (eqns. 3.3,

3.4 and 3.5 as in the van Leer case). In addition, it is imperative that the cross
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terms be further limited via a second application of the MC slope limiter before the

interpolation step is applied.

As mentioned in the linear case, such a subgrid distribution can either be used

for conservative or non-conservative interpolation strategies. Here the same princi-

ples apply. In case of a conservative variable, h(x, y) needs to be integrated in the

fine grid domain as principally shown in equation 3.9. In case of non-conservative

interpolations the biparabolic subgrid distribution can be evaluated immediately at

any position within the x ∈ [−1
2

, 1
2
], y ∈ [−1

2
, 1

2
] cell boundaries. The PPM algorithm

can be used with or without the monotonicity constraints for the slopes ∆ax and

∆ay whereas the limiting of the bx, by and cross parameters is essential with respect

to accuracy. Otherwise, severe under- or overshoots at the cell corners might be

generated. The PPM interpolation algorithm is a second-order interpolation scheme

in each direction, although the order of accuracy is formally slightly reduced in the

2D quasi-biparabolic approach. Nevertheless, the PPM method is referred to as

a second-order scheme in the following chapters in order to clearly distinguish the

different methods in subsequent comparisons.

Averaging

Besides interpolations, data also need to be averaged for fine to coarse grid trans-

fers and during join-operations in case of coarsenings. In particular, this is true

for scalar components that are defined at cell centers. The staggered wind data on

the other hand need 1D interpolations in order to update the coarse grid ghost re-

gions with fine grid information. For scalar variables, the averaging step involves the

four fine grid cells that are completely contained in the corresponding coarse grid

box (compare figure 3.6 on page 76). Then a coarse grid value hc can be directly
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determined by the weighted average

hc =
1

Ac

4∑
i=1

hr
i Ar

i (3.17)

where Ac, Ar stand for the area of the coarse and refined surface patches and hr
i

symbolizes the fine grid value in the ith grid box. This averaging strategy is mass-

conservative. In case of a reduced grid setup, averaging processes at the reduced

interfaces only involve two neighboring grid boxes (see also figure 3.18 on page 109).

Normalized local y coordinate

Both the van Leer and PPM interpolation algorithms are based on coordinate

positions in a normalized local (x,y)-coordinate system. As discussed in Section 3.3.1

for the van Leer approach such a coordinate system might lead to slight inconsisten-

cies in polar regions if spherical geometry is used. This has been assessed in figure

3.13 which shows a comparison of two spherical domains after refinements occurred.

Both domains are completely refined and reinitialized via monotonic conservative

PPM interpolations. In subfigure (a) the non-equidistant µ-coordinate is used for

the computation of the local y position (eqn. 3.7) whereas this calculation is replaced

by the equidistant y position poleward of 60◦ N/S (eqn. 3.8) in subfigure (b). The

plots depict the difference of the geopotential height field with the analytic refer-

ence solution for shallow water test case 2 with the rotation angle α = 45◦ (see also

Appendix A.1 for the description of the test case). It can clearly be seen that the non-

equidistant approach leads to large errors near the poles which are eliminated when

switching to the equidistant y-coordinate. This indicates that the non-equidistant

µ-system, together with an equidistant slope assessment, no longer represents a good

approximation in polar latitudes. Similar conclusions have also been drawn by Nair

and Machenhauer [2002] who consequently applied special algorithms in the polar
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Figure 3.13: Differences of the geopotential height with the analytic solution after
refining the whole domain with refinement level 1 (from a 2.5◦× 2.5◦ to
a 1.25◦ × 1.25◦ resolution). The data are initialized with second-order
conservative interpolations (PPM method). (a) Interpolations with the
non-equidistant µ-coordinate, (b) interpolations with the equidistant y-
coordinate poleward of 60◦N/S (test case 2, α = 45◦). Contour interval
is 1 m.
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Latitudinal domain of the interpolation coordinate y Height error norms

non-equidistant µ equidistant ϕ l1 l2 l∞

whole globe 6.988E-5 8.616E-5 5.703E-4

60◦S - 60◦N poleward of 60◦ N/S 7.344E-5 9.027E-5 5.704E-4

75◦S - 75◦N poleward of 75◦ N/S 7.618E-5 9.330E-5 5.704E-4

whole globe 8.958E-5 1.546E-4 3.463E-3

Table 3.3: Impact of the equidistant and non-equidistant y-coordinate on the accu-
racy of the monotonic, conservative PPM-type interpolation scheme. The
whole domain is refined and reinitialized (test case 2, α = 45◦).

regions.

The errors are further quantified in table 3.3 which lists the normalized height

error norms (see also Chapter IV for the definitions) for four refinement scenarios.

In each scenario, the y-coordinate is based on a different combination of the equidis-

tant and non-equidistant approaches and the errors assess the overall, horizontally

integrated, error of the interpolation procedure. The table shows that the smallest

errors are measured when the equidistant y coordinate occupies large portions of the

domain. In practice, the second option has been selected for all adaptive runs pre-

sented in the following chapters. Then the µ-based y-coordinate is used in the region

60◦S - 60◦N, which is replaced by the equidistant ϕ-based y coordinate poleward of

60◦ N/S.

Interpolation strategies

In the adaptive Lin-Rood dynamical core a variety of interpolation strategies

needs to be distinguished. This is due to the staggered positions of the prognostic

variables (see figure 3.6 on page 76 and further details in Section 3.3.2) which do not

allow a unified approach to the interpolation problem. In general, all scalar variables
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that are defined at the cell centers are interpolated with a monotonic conservative in-

terpolation scheme. The scheme of choice is the 2D PPM method with monotonicity

constraints as outlined in the previous section.

For the wind components though, the 2D PPM approach can not be applied

because of the relative positions of coarse and fine grid wind data. This is documented

in figure 3.14 that illustrates the interpolation problem for the zonal wind u (left

figure) and the meridional wind v (right figure). Here, the coarse data are indicated

in blue, the fine grid data are marked in black. The key interpolation strategy for this

u u

uu

uu

u u

uu

First interpolation Second interpolation
v v

v v

vv

v v

v

v

First interpolation

Second interpolation

Figure 3.14: Cascade interpolations of the wind components u (left) and v (right).
The zonal wind u is first interpolated in longitudinal direction (W-
E) and then in meridional direction (N-S). The meridional wind v is
interpolated in reverse order. The blue color indicates the coarse grid,
the fine grid is in black.

setup is based on the cascade-interpolation principle which makes use of consecutive

one-dimensional operations. For example the fine grid u data are first interpolated

in the zonal direction before the sweep in the meridional direction completes the

interpolation cycle. This interpolation order is reversed for v. As in the scalar
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case, the second-order PPM interpolation approach is chosen, but now as a 1D

unconstrained non-conservative method. This approach has been observed to be

more accurate than the monotonicity-constrained variant (see next paragraph).

In order to justify the selection of the more expensive PPM-type interpolation

method as the default scheme, a comparison of three different interpolation tech-

niques has been performed. This includes not only the van Leer and PPM-type

methods but also takes a simple bilinear interpolation scheme into account. Bilinear

interpolations are purely based on an assessment of the four nearest neighbors of a

particular grid point. Then area weights are used to find a weighted average of the

four neighbors at the new location. As in the van Leer case, such an approach is a

first-order method.

The three interpolation schemes are compared in figure 3.15 using the initial

zonal wind field of the shallow water test case 6 (see also Appendix A.1). Here the

whole model domain at base resolution 2.5◦×2.5◦ is refined once and new blocks are

initialized via the three, non-conservative interpolation approaches (in (c) and (d)

with and without monotonicity constraint). The figure depicts the difference of the

interpolated wind field with the analytic reference solution on the refined grid. As

expected, it can be seen that the interpolation error clearly diminishes when applying

the finite-volume-type methods (b-d), especially in case of the second-order PPM-

type interpolation scheme. In addition, it is apparent that the error significantly

increases in the PPM case when monotonicity constraints are applied (d). Then the

extrema in the wind field (compare also to the initial wind data in figure A.12 on

page 234) are clipped which is a characteristic feature of both the van Leer and PPM

monotonic algorithm. This leads to the typical error streaks displayed in subfigure

(d).
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Error streaks are also present in the conservative monotonic PPM interpolations

shown in figure 3.16. The plot shows the differences of the interpolated geopotential
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Figure 3.16: Differences of the geopotential height with the analytic solution af-
ter refining the whole domain as in figure 3.15. The data are initial-
ized with second-order conservative interpolations (PPM method with
monotonicity constraint). Contour interval is 1 m (test case 6).

height field with its analytic solution after refinements occurred. Despite the distinct

error bands, the use of the monotonicity constraint is imperative for the mass vari-

able and other conserved scalars. It prevents the model from developing over- and

undershoots and therefore suppresses the introduction of spurious noise.

The overall performance of the three interpolation mechanisms is summarized in

table 3.4. Here, the normalized height and wind error norms (see also Section 4.1 on

page 114) are used as quantitative measures of the interpolation error. The table

lists the errors for unconstrained and constrained non-conservative wind interpola-

tions (middle column) as well as for the conservative monotonicity-preserving inter-

polations of the scalar height field (right column). As above, the error norms are

reported for shallow water test case 6. The table confirms the significant decrease in

the interpolation error in case of unconstrained interpolations. This decrease in error
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Wind error norms Height error norms
Interpolation order

l1 l2 l∞ l1 l2 l∞

Monotonicity: constrained constrained

1 van Leer approach 1.160E-3 1.281E-3 2.791E-3 7.794E-5 1.123E-4 6.043E-4

2 PPM approach 6.655E-4 8.633E-4 2.249E-3 6.758E-5 1.063E-4 6.043E-4

Monotonicity: unconstrained

1 bilinear 2.997E-3 3.003E-3 2.802E-3

1 van Leer approach 1.011E-3 1.015E-3 9.683E-4

2 PPM approach 4.178E-4 4.135E-4 5.080E-4

Table 3.4: Height and wind error norms for different interpolation schemes after re-
fining the whole domain from a 2.5◦ × 2.5◦ to a 1.25◦ × 1.25◦ resolution.
Results are for test case 6 (see also figures 3.15 and 3.16).

is less obvious but still present in the case of monotonicity-preserving conservative or

non-conservative interpolations. The error is then mostly dominated by the clipping

of the extreme values in both monotonic van Leer and PPM approaches. Further as-

sessments of the interpolation error and its interaction with the overall solution error

in a shallow water run are presented in figure 4.8 on page 131 in Chapter IV. This fig-

ure illustrates the time evolution of the error measures in statically adapted (reduced

grid) and non-adapted model simulations with different interpolation schemes.

In practice, third-order interpolation techniques are sometimes used in adaptive

grid simulations (e.g. Almgren et al. [1998]) although lower order methods are also of-

ten discussed in the AMR literature (Berger and Colella [1989]). Low-order methods

are attractive due their simplicity and reduced computational overhead. Though the

choice of the ideal interpolation scheme also depends on the flow characteristics. For

example, the reduced grid shallow water tests in Section 4.3 (figure 4.7 on page 129)

show that a first-order bilinear method can be sufficient in case of a very smooth flow

pattern. But a higher order method is preferable in the presence of strong gradients
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in high wind speed regimes (figure 4.9 on page 132). This aspect is discussed later.

In the finite-volume dynamical core, the default quasi-biparabolic PPM interpolation

method almost matches the underlying numerical PPM transport scheme which is

also second-order accurate in two dimensions. This has been one of the design as-

pects and furthermore was recommended by Clark and Farley [1984] and Chesshire

and Henshaw [1990]. In addition, Chesshire and Henshaw [1990] pointed out that

the boundary value interpolations for elliptic equations on overlapping grids should

be at least as accurate as the model’s numerical scheme. This principle also applies

to hyperbolic systems. Ideally, an even higher order interpolation method should be

applied in the finite-volume model which, on the other hand, is impracticle due to

the computational costs.

High-order interpolations were also suggested by Skamarock [1988] who initialized

the new blocks with a third-order scheme. In this study it was found that bilinear

initializations excited spurious gravity waves which took several hours to decay. The

higher order interpolations significantly reduced the noise on the fine mesh. For

interfaces though, Skamarock [1988] used bilinear interpolations for the inflow and

outflow boundary conditions which worked satisfactorily in a short 3-day barotropic

cyclone simulation. Later, when switching to a non-hydrostatic regime, Skamarock

and Klemp [1993] proposed quadratic interpolations for interface updates.

In the adaptive Lin-Rood model, the aforementioned quasi-biparabolic interpo-

lation techniques are applied to the prognostic variable u,v,δp and to the conserved

scalar δp Θ. Θ is then retrieved by dividing the interpolated value by δp on the

new mesh. As Skamarock [1988] indicated, care must be taken not to violate the

hydrostatic approximation when interpolating variables independently. This is not

a concern here since the geopotential is not a prognostic variable. Instead, it is di-
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agnostically computed during each time step based on the updated δp and Θ values

(see eqn. 2.6 and Lin [1997]). This automatically guarantees the consistency.

3.3.2 Model interfaces

There are three basic types of fine-coarse grid interfaces in the finite-volume

dynamical core which require interpolation and averaging procedures during a ghost

cell update. Two of these three interfaces are solely associated with the reduced

grid arrangement (see also Chapter 4.2). The third interface depicts the regular

fine-coarse grid boundary and is shown in figure 3.17. Here, the blue color indicates

the positions of the prognostic variables on the coarse mesh whereas the variables in

black denote the fine grid locations. In the figure two refined regions surround the
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Figure 3.17: Fine-coarse grid interface.

coarse cell to the south and east which clearly shows the staggering of the variables

in the two domains. The positions of the variables are shifted by various fractions of

the coarse grid lengths in the two dimensions.

On the other hand the reduced grid interfaces only occur in the north-south

direction at the specific latitudes where reduction levels are defined. For example, in

case of 1 reduction level this position lies at 75◦ N/S in the current setup (Chapter

IV). A second reduction level can then be placed at 60◦ N/S. Figure 3.18 displays such
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an interface in the Northern Hemisphere which can be viewed as a static coarsening

step in the longitudinal direction. The variables in blue denote the reduced grid

u u

ΦΦ vv

Φ ΦΦ Φ

uuuu

v v v v

Figure 3.18: Reduced grid interface without adaptations.

arrangement, while the variables in black indicate the regular grid positions. The

u and Φ positions are shifted by a quarter of the coarse grid length in the zonal

direction. In contrast, the v positions coincide so that the the ghost cell data can be

directly injected during the ghost cell update.

In case refinements are applied in the reduced grid domain this interface changes

as illustrated in figure 3.19 As before, the blue color denotes the variables in the
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Figure 3.19: Reduced grid interface with adaptations.

now refined reduced grid domain. The regular grid to the south (in black) remains

unchanged. Here all variable locations are only shifted in meridional direction. In-

terpolation and averaging routines need to be fully applied to v and Φ whereas u can

be partly copied (also called injection) during the ghost cell exchange.

The API interface of the spherical adaptive grid library requires that the user

provides the interpolation and averaging routines for all possible scenarios. These
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program modules have been implemented in this research project which, in addition,

allow the choice of the three different interpolation schemes via an input parameter

(as discussed in Section 3.3.1).

3.3.3 Flux corrections

In an adaptive grid setup flux corrections at fine-coarse grid interfaces are imper-

ative in order to ensure mass conservation properties. Several flux correction strate-

gies have been discussed in the literature. For example, Berger and Colella [1989]

and Almgren et al. [1998] present flux correction mechanisms at the fine-coarse grid

boundary when different time steps are used in the two domains. Then fluxes need

to be accumulated until a synchronization point is reached. In contrast, the in-situ

fluxes can be directly assessed in case of a constant time step in both regions. This

simplifies the interface condition as shown in figure 3.20. In general, it is assumed

fyfy

fx

fx

fx

fy

KE KE

KEKE KE

KE KE

Coarse cell

Refined neighboring
cells

Figure 3.20: Flux and kinetic energy (KE) updates at fine-coarse grid interfaces, fx
and fy symbolize the fluxes in longitudinal and meridional direction.
Fine grid fluxes are averaged and override the coarse grid flux at the
interface.

that the fluxes in the fine grid domain are more accurate than the corresponding flux

on the coarse grid. Therefore, the goal is to average the fine grid fluxes appropriately
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in order to override the coarse grid information.

In the finite-volume dynamical core, three types of interface corrections are con-

sidered. These are the updates of the mass and heat fluxes across boundaries as

well as the synchronization of kinetic energy (KE) values at cell corner positions.

The mass and heat fluxes are defined at identical locations and are denoted by their

generic names fx and fy in figure 3.20. Here fx represents the flux in the zonal

direction whereas fy stands for the flux in the meridional direction.

The correct average of the fine grid fluxes in the spherical coordinate system must

take weighting functions into account that correspond to the areas of the surface

patches. In particular, each position of a flux needs to be considered a cell center of

a representative grid box around it. Then the boundary condition becomes

f c Ac =
n∑

i=1

f r
i Ar

i

⇔ f c =
1

Ac

[
f r

1 Ar
1 + f r

2 Ar
2

]
(3.18)

where the superscripts c and r stand for the coarse and refined grid, A represents

the surface area and the sum adds all fluxes f along the interface. Here n = 2

fluxes need to be considered in the 2D setup. This flux update algorithm ensures

mass conservation up to the last digit which is further documented in figure 4.11 on

page 134 (Section 4.2). On the other hand, such an averaging procedure is not

necessary for the scalar KE component. The coarse grid KE values can simply be

replaced with the matching KE components on the fine grid.





CHAPTER IV

Reduced grid and static adaptations

Adaptive blocks are flexible tools that can be used for static and dynamic grid

adaptations. Static adaptations are placed in user-defined regions of interest at the

beginning of a forecast and are held fixed during the model run. Typical applications

include static refinements in mountainous terrain or static refinements over selected

geographical areas e.g. for weather prediction applications. Such an approach could

replace today’s nested grid configurations that employ regional high-resolution mod-

els with coarse grid forcing along the boundaries. Adaptive blocks can also be used

to define a special type of grid, the so-called reduced grid. In a reduced grid, grid

points are coarsened in longitudinal direction as the poles are approached. This ef-

fectively relaxes the strict time step restrictions in a regular latitude-longitude grid

with |CFL| < 1 and, in addition, reduces the overall workload of the model by up to

20%. From a high level viewpoint, such a grid can be considered a statically adapted

grid with 1D coarsenings.

In this chapter, the adaptive finite-volume shallow water model is used in two

basic configurations, the reduced grid setup and the statically adapted setup with

an underlying full grid. The discussion of the results starts with an introduction

of suitable error measures and global invariants in Section 4.1. These measures are

113
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used throughout Chapter IV-V and provide important information on the accuracy

and performance of the adaptive simulations. Section 4.2 is concentrated on the

reduced grid design. In particular, two reduced grid configurations with one and two

reduction levels are compared. Furthermore, Section 4.3 surveys more general static

adaptation setups and raises new questions concerning adapted model simulations

with external forcing functions.

4.1 Error measures and global diagnostics

Global error norms and global invariants, like the mass, energy or enstrophy, pro-

vide quantitative and objective measures for the performance of a model run. They

are used extensively in the following chapters that describe the adaptive simulations

with the finite-volume dynamical core. Here, an overview of the global measures is

given, together with their continuous and discrete definitions (see also Williamson

et al. [1992]).

4.1.1 Normalized error norms

The normalized l1, l2 and l∞ error norms assess the horizontally integrated relative

error of the model results. The error assessment requires the computation of the 2D

global integral I of a variable h(λ, ϕ) in spherical space

I(h) =
1

4 π

∫ 2π

0

∫ π/2

−π/2

h(λ, ϕ) cos ϕdϕ dλ . (4.1)

The discrete approximation to this integral in an adaptive model setup is then given

by

I(h) =
1

Asphere

#all cells∑

k=1

hk Ak (4.2)

where the sum adds up the weighted h values at all grid points covering the sphere.

The weights, or more precisely the spherical surface patches, Ak of a rectangular cell
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centered at k → (i, j) are defined by

Ak =

∫ λi+1/2

λi−i/2

∫ ϕj+1/2

ϕj−1/2

h a2 cos ϕdϕ dλ (4.3)

≈ hi,j a2 ∆λi

(
sin(ϕj+1/2)− sin(ϕj−1/2)

)
(4.4)

with a = Earth’s radius and ∆λi = (λi+1/2 − λi−1/2). The half indices describe

the coordinate positions of the cell edges and each k represents a unique pair (i,j).

In addition, Asphere = 4 π a2 is the surface area of the whole sphere. In the block-

structured dynamical core, the sum over all cells (eqn. 4.2) is computed as three

nested sums that cover all blocks

I(h) =
1

Asphere

#blocks∑
n=1

Ny∑
j=1

Nx∑
i=1

hi,j,n Ai,j,n (4.5)

with Nx, Ny = number of longitudinal and meridional cells per block and n = block

index. In a parallel computing setup, each processor then loops over its assigned

blocks and computes a partial sum, which is collectively communicated over the

network in order to determine the global value.

Using the discrete representation of I, the normalized (a) mean absolute error

norm l1, (b) root mean square error norm l2 and (c) maximum absolute error norm

l∞ for a scalar quantity h are defined by

l1(h) =
I
[|h(λ, ϕ)− hT (λ, ϕ)|]

I
[|hT (λ, ϕ)|] (4.6)

l2(h) =

(
I
[(

h(λ, ϕ)− hT (λ, ϕ)
)2]) 1

2

(
I
[
hT (λ, ϕ)2

]) 1
2

(4.7)

l∞(h) =
maxall λ,ϕ |h(λ, ϕ)− hT (λ, ϕ)|

maxall λ,ϕ |hT (λ, ϕ)| (4.8)

where hT represents the true solution.
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The corresponding error norms for a vector quantity ~v = (u, v) are given by

l1(~v) =
I
[(

(u(λ, ϕ)− uT (λ, ϕ))2 + (v(λ, ϕ)− vT (λ, ϕ)
)2) 1

2

]

I
[(

uT (λ, ϕ)2 + vT (λ, ϕ)2
) 1

2

] (4.9)

l2(~v) =

(
I
[
(u(λ, ϕ)− uT (λ, ϕ))2 + (v(λ, ϕ)− vT (λ, ϕ))2

]) 1
2

(
I
[
uT (λ, ϕ)2 + vT (λ, ϕ)2

]) 1
2

(4.10)

l∞(~v) =
maxall λ,ϕ

[(
(u(λ, ϕ)− uT (λ, ϕ))2 + (v(λ, ϕ)− vT (λ, ϕ))2

) 1
2

]

maxall λ,ϕ

[(
uT (λ, ϕ)2 + vT (λ, ϕ)2

) 1
2

] (4.11)

with the true wind speeds uT and vT . Here, a difficulty arises due to the grid stag-

gering of the wind components in the finite-volume dynamical core. The error norms

require that the u and v data are defined at the same grid point position. Therefore,

the D-grid wind is linearly interpolated to the A-grid (cell center) position before

the error norms are computed. This introduces an interpolation error, but tests with

shallow water test 2 showed that this error is at least one order of magnitude smaller

than the model errors.

In addition, the definitions of the normalized maximum and minimum of a scalar h

are

hmax =
maxall λ,ϕ h(λ, ϕ)−maxall λ,ϕ hT (λ, ϕ)

∆h
(4.12)

hmin =
minall λ,ϕ h(λ, ϕ)−minall λ,ϕ hT (λ, ϕ)

∆h
(4.13)

where ∆h is the difference between the maximum and minimum values of the true

solution at the beginning of the forecast. These error measures are used for 2D

advection experiments in the shallow water setup. For example hmax assesses the

decrease in the peak amplitude of the transported feature.
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4.1.2 Global invariants

Additional model assessments are based on normalized global invariants. The

normalized integral Ii(ξ(t)) (notation as in Williamson et al. [1992]) is defined by

Ii(ξ(t)) =
I[ξ(λ, ϕ, t)]− I[ξ(λ, ϕ, 0)]

I[ξ(λ, ϕ, 0)]
(4.14)

where the discrete integral is given as in equation 4.2. Here, the time-dependent

variable ξ stands for e.g. the mass (i = 1) which is defined by the geopotential

height ξ = h in the shallow water system or the surface pressure ξ = ps in the 3D

case. Alternatively, the total energy (i = 2) in the shallow water system can be

assessed via

ξ =
1

2
h~v · ~v +

1

2
g

(
(h + hs)

2 − h2
s

)
(4.15)

and the potential enstrophy (i = 3) is given by

ξ =
1

2

(
ζ + f

)2
/ h (4.16)

where g is the gravitational acceleration, hs denotes the height of the surface orogra-

phy, ζ represents for the relative vorticity and f symbolizes the Coriolis parameter.

These global invariants are normalized with the integral at time step t = 0. As

in Section 4.1.1 the wind data need to be interpolated to the cell center before the

total energy can be evaluated. This interpolation error will be visible as an initial

error in figure 4.10 on page 133.

4.1.3 Reference solutions

For the error measures, the model results need to be compared to a reference or

“true” solution hT , uT and vT . In case of the shallow water runs this solution is either

an analytic solution (shallow water tests 1-4) or a high-resolution reference solution

(test 5 and 6) computed with an NCAR spectral model at resolution T213. This
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resolution corresponds to approximately 50km in grid point space near the equator.

The NCAR reference solution (see details in Jakob et al. [1993] and Jakob-Chien et al.

[1995]) is provided in the form of spectral expansion coefficients using the portable

NetCDF data format. The solution can then be evaluated in grid point space at

arbitrary locations.

The analytic solutions for the test cases 1-4 can be directly calculated in any grid

configuration, although test case 3 and 4 require the computation of integrals. These

are approximated with a numerical method, in particular the trapezoidal rule. In

addition, the reference solution for test case 1, the advection of a cosine bell, relies

on an accurate estimate of the location of the cosine bell at any time. Since the

advection can be specified with a rotation angle α this position (λ, ϕ) of the center

is not obvious. It can either be assessed via coordinate transformations or with an

iterative trajectory calculation. Here, the second option is chosen. The trajectory or

path s of a parcel in the Cartesian system (see also Holton [1992])

D s

D t
= V (x, y, t) (4.17)

is then replaced with

D ϕ

D t
=

v

a
(4.18)

D λ

D t
=

u

a cos ϕ
(4.19)

in the spherical representation. This system is solved iteratively

ϕn+1 = ϕn +
v(λn, ϕn)

a
∆t (4.20)

λn+1 = λn +
u(λn, ϕn)

a cos ϕn
∆t (4.21)

with small time steps ∆t starting at the initial location (λ0, ϕ0) = (λc, ϕc). The

velocities u and v are specified analytically (see Williamson et al. [1992])..
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4.2 Reduced grid

“Reduced” or “skipped” grid setups have long been used in atmospheric general

circulation modeling. The first reduced grid configurations for finite difference mod-

els were proposed by Gates and Riegel [1962], Kurihara [1965] and Kurihara and

Holloway [1967]. The latter designed the so-called Kurihara grid with only four grid

points next to the poles which offered a more homogeneous grid distribution from a

physical standpoint. But when serious deficiencies of the Kurihara grid were discov-

ered, which e.g. included an excessive pressure build-up in polar regions, more grid

points in longitudinal direction needed to be added again to significantly improve

the accuracy (see Rao and Umscheid [1969] and Dey [1969]). It was soon realized by

Shuman [1970] and Williamson and Browning [1973] that reduced grid setups need to

be carefully constructed for grid point models with finite difference approximations.

The difficulties arise due to the polar singularities in curvilinear coordinates that

result in an extreme curvature of the inner circle of data. As a consequence, large

truncation errors are present when longitudinal differences are taken over large longi-

tudinal grid intervals. As shown in Williamson and Browning [1973] this is in partic-

ular true for terms containing the spherical vector components u and v whereas the

approximation of terms with only scalar quantities, like the pressure or geopotential

gradient, are not necessarily affected. It was concluded that very coarse longitudinal

resolutions near the poles are not able to properly handle even the large-scale, small

wavenumber features. Shuman [1970] in fact recommended that grid points should

be added in high latitudes rather than dropped. As an alternative, derivatives could

be calculated in Cartesian coordinates on cones locally tangent to each grid point.

Similar findings were also reported by Lanser et al. [2000] and Layton [2002] for
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finite-volume approaches and cubic spline collocation methods, respectively.

In order to improve the accuracy of the zonal gradients in the immediate vicinity

of the poles special treatments can be introduced as suggested by Purser [1988b].

Purser [1988b] pointed out that zonal derivatives can still be calculated with suffi-

cient precision when high frequency information is interpolated through an assump-

tion of smoothness from nearest neighbors in the polar region. The difficulties of the

reduced grid setup can further be avoided when switching to a spectral model that

does not need to calculate difference operators in grid point space. Instead, deriva-

tives are evaluated in a spherical representation after applying Fourier and Legen-

dre transforms. These so-called reduced Gaussian grids have been successfully used

in spectral models for many years. Examples include Hortal and Simmons [1991],

Courtier and Naughton [1994] and Williamson and Rosinski [2000] who developed

reduced grids for weather and climate applications that are partly in operational use

today. No significant loss of accuracy has been observed in comparison to full grid

simulations.

4.2.1 Design of the reduced grid in the finite-volume dynamical core

Decreasing the number of grid points near the poles is attractive due to compu-

tational performance considerations. This is in particular true if the CFL condition

in the polar regions limits the time step for the global domain.

In the finite-volume dynamical core, two new reduced grid designs have been

tested that are based on the block-structured data layout. They are shown in fig-

ure 4.1 on the facing page which illustrates the reduced grid setups with one and

two reduction levels projected onto the sphere. Here, the initial grid parameter set

with 16x12 blocks and 9x6 cells per block is chosen as in table 3.2 on page 76 which
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Figure 4.1: Distribution of blocks and grid points over the sphere (orthographic pro-
jection centered at 0E,45N). Reduced grid with 1 reduction (left) and 2
reductions (right) in the polar regions. Base resolution is 2.5◦ × 2.5◦.

consequently places the reduction levels at 75◦ N/S and 60◦ N/S, respectively. At

each transition point, the physical grid spacing in longitudinal direction then changes

abruptly by a factor of 2 as depicted in figure 4.2. The figure also displays the under-
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Figure 4.2: Physical grid distance (km) in longitudinal direction for the full grid and
reduced grid setups.

lying design principle that the physical distances at any latitude should not greatly

exceed the maximum grid spacing at the equator. This condition is well-met by both

designs, although a small overshoot at 75◦ N/S is present in case of 2 reductions.

The reduced grid setups can be convieniently chosen via input parameters at run

time. The resulting number of blocks for the two designs is documented in table 4.1.
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4.2.2 Advection tests

The reduced grid designs are tested with shallow water test case 1 (see also

Appendix A.1) that describes the passive advection of a cosine bell once around the

sphere. This test does not deal with the complete nonlinear shallow water equations

but evaluates the advection algorithm in isolation. Here, the rotation angle α = 90◦

is chosen so that the feature is transported over the poles.

Three model runs with the base resolution 2.5◦×2.5◦ have been performed. These

include the full grid (fg) control run as well as the reduced grid (rg) simulations with

1 and 2 reduction levels. The numerical transport scheme used in the whole domain

is the monotonicity-preserving PPM method. No filtering techniques need to be

applied due to the absence of gravity wave motions in the advection experiment.

The error measures for the geopotential height field after one revolution of the

cosine bell (day 12) are shown in table 4.1. In addition, the table contains informa-

Base Refin. Reduced Height error norms Final # Time CPU
resol. level grid l1 l2 l∞ h (m)

# Blocks
steps time (s)

α = 90◦

2.5◦ 0 0 0.0965 0.0952 0.1285 853.5 192 7200 1202

2.5◦ 0 1 0.0927 0.0911 0.1264 855.5 176 3744 415

2.5◦ 0 2 0.0881 0.0889 0.1333 848.8 152 2016 205

Table 4.1: Error statistics for the cosine bell advection test over the poles (test case
1, α = 90◦) with two reduced grid configurations.

tion on timing data and the total number of time steps that are necessary for the

completion of one revolution. The timing results represent the total CPU time for

the simulations on a SUN Ultrix workstation. The time steps are severely limited

by the CFL condition in the longitudinal direction at the circle next to the poles.
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Here, CFL=0.95 is chosen for all model runs which results in time steps ∆t ≈ 149 s

(fg), ∆ ≈ 297.5 s (rg1) and ∆ ≈ 597 s (rg2), respectively. Due to the increase in the

length of the time step, a sharp decrease in the total number of integration steps is

observed for the two reduced grid simulations. It is interesting to note that the re-

duction in integration steps leads to improved l1 and l2 error measures despite the use

of the reduced grid. Though, this is not true for the l∞ norm and the final amplitude

that slightly degrades in case of 2 reduction levels. Here, the initial peak amplitude

is 979.0 m. The error measures in table 4.1 compare favorably to similar advection

experiments documented in the literature. In particular, Rasch [1994] performed the

cosine bell advection test with a reduced grid design and comparable base resolu-

tion (2.8◦). The error measures for Rasch’s RG2.8 configuration with a monotonic

upstream-biased transport scheme exceed the errors in table 4.1 by a factor of 1.5-2.

In comparison to the control run, both reduced grid simulations perform well

which is further depicted in figure 4.3 on the next page. The figure shows 5 snap-

shots of the solution at day 1 through 5 mapped onto a North polar stereographic

projection. Here, the cosine bell is transported over the North Pole (from the bot-

tom to the top) in the reduced grid setups with one and two reduction levels. It

can clearly be seen that the cosine bell crosses the pole without spatial distortions

in both cases, although a very minor loss in peak amplitude is visible in the rg2 run.

The full grid control run is almost indistinguishable from the rg1 case (not shown).

This confirms the conclusion by Williamson and Browning [1973] that the reduced

grid can be successfully employed for the transport of scalar quantities.
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Figure 4.3: Polar stereographic projection of the cosine bell (test case 1, α = 90◦)
transported over the North Pole (from the bottom to the top of the
figure, the outer cricle is located at 15N). Snapshots are taken after 1,
2, 3, 4 and 5 days, respectively. Base resolution is 2.5◦ × 2.5◦. Reduced
grid runs with (a) 1 reduction, (b) 2 reductions. The block distribution
is indicated by dotted lines. Contour intervals of the geopotential height
field are 100 m.
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4.2.3 Non-linear shallow water tests

In order to assess the performance of the reduced grid setups in the nonlinear

shallow water system, three test scenarios are examined. These include the McDon-

alds and Bates [1989] test case as well as shallow water test 2 and 6 (see Appendix

A).

First, the results of the control run and reduced grid simulations are evaluated

qualitatively using the McDonalds and Bates [1989] test. This sometimes called

dancing high-low wave test case comprises a flow straight over the poles, which is a

particularly suitable test for the reduced grid assessments. The wind speeds at the

poles are on the order of 10-15 m/s.

The results of the simulations in the Northern Hemisphere at day 10 are illus-

trated in figure 4.4 which displays the flow pattern of the fg control run (upper

row), the rg1 simulation (middle row) and the rg2 setup (bottom row). Here, the

geopotential height field and the wind components u and v (from left to right) are

shown. The reduced grid simulations in this moderate wind speed regime are almost

indistinguishable from the control run. There are no distortions in any of the large-

scale flow patterns which are still well-resolved even in the rg2 case with only 36 grid

points next to the poles.

Such a conclusion can only partly be drawn in the subsequent examples. The

second test scenario is based on shallow water test 2 with chosen rotation angle

α = 45◦. This steady state flow field (see also initial data in figures A.3 and A.4) is

expected to remain unchanged during the course of the integration. It describes a

strong flow over the poles with wind speeds on the order of 28 m/s that accentuate

possible errors in polar regions resulting from the reduced grid coarsenings. Both

reduced grid setups have been tested in a 14-day simulation as documented by the
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Figure 4.4: North polar stereographic projections of the geopotential height h, the
zonal wind u and meridional wind v (from left to right) at day 10 (Mc-
Donalds and Bates [1989] test case). Contour intervals are 50 m, 3 ms−1

and 1.5 ms−1, respectively. The base resolution is 2.5◦. Top row: simu-
lation with the full grid. Middle row: grid with 1 reduction at the poles.
Bottom row: grid with 2 reductions in the polar regions.
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zonal wind field at day 14 in figure 4.5. Although the flow patterns are very similar, a
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Figure 4.5: Zonal wind u at day 14 (test case 2, α = 45◦), (a) reduced grid simulation
with 1 reduction, (b) with 2 reductions. Contour interval is 2.5 ms−1.

close examination of the rg2 case reveals a slightly slanted distortion of the zonal wind

field. This is confirmed in figure 4.6 which displays the differences of the zonal wind

fields with the reference solution for both reduced grid setups. In case of 1 reduction

level, a moderate error pattern in the zonal wind field can be observed, but errors

increase considerably when adding a second reduction level. Here it is interesting to

see that the errors of the reduced grid are concentrated but not confined to the polar
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Figure 4.6: Zonal wind differences with reference solution at day 14 (test case 2, α =
45◦), (a) reduced grid simulation with 1 reduction, (b) with 2 reductions.
Contour intervals are (a) 0.1 ms−1 and (b) 0.2 ms−1.
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regions. Instead, the errors propagate and interact with other model errors over time

so that the whole domain is affected.

This qualitative assessment is further quantified in figure 4.7 which illustrates

the corresponding l2 height and wind error norms of the fg, rg1 and rg2 model runs.

In addition, the plots assess the impact of the first- and second-order interpolation

methods on the overall accuracy of the rg1 simulation. The temporal evolution
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Figure 4.7: Normalized l2 height errors (left) and l2 wind errors (right) for the full
grid (fg) and the reduced grids with 1 reduction (rg1) and 2 reductions
(rg2). The order indicates the interpolation order at the reduced grid
interfaces (test case 2, α = 45◦).

of the normalized l2 error norms confirms the significant increase in the solution

error in case of the rg2 setup, whereas error levels remain low for one reduction

step. For comparison, Tolstykh [2002] also reports comparable error measures with

l2(h) = 4.3×10−4 after 120 hours. In general, the error curves depict a linear increase

in the solution error which is overlaid by inertio-gravity wave oscillations. The latter

are damped out over time. In practice, the sharp rise in the error level for rg2 is no

longer considered acceptable and therefore, the rg2 design can not be recommended

for future nonlinear adaptive grid applications. As an aside, it is interesting to note

that the order of the interpolation scheme at the reduced grid boundaries hardly
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affects the error norms in the rg1 case. This is true for the idealized very smooth

flow field selected here. But as shown in the next paragraph, such a conclusion

does not generally hold when more complex flow patterns with strong gradients are

simulated.

The third assessment of the reduced grid design is based on shallow water test 6

which comprises a Rossby-Haurwitz wave with wavenumber 4. The test translates

the symmetric wave pattern without change of shape from west to east. Here, special

attention is paid to the order of the interpolation scheme in a reduced grid setup that

needs to be applied at the polar interfaces. This aspect is assessed in figure 4.8 on

the next page that presents the geopotential height field at day 14 on a reduced

grid with 1 reduction level. Two interpolation strategies are employed. In subfigure

(a), the wind data are interpolated via bilinear interpolations whereas the first-order

conservative van Leer approach is applied to the geopotential height field h. In

subfigure (b), the second-order PPM interpolation method is used for all variables.

The impact of the interpolation error in this high-wind speed regime is clearly visible.

The low-order methods (subfigure (a)) introduce a slightly asymmetric flow pattern

over time (see also discussion in Section 3.1.3 on page 76) whereas the more accurate

second-order method can maintain the symmetry.

This effect is quantified in figure 4.9 on page 132 that reviews the performance

of the reduced grid setups in comparison to the NCAR reference solution. Here it is

interesting to see that the l2 and l∞ height errors in the rg1 design almost overlay the

full grid control run until the errors split after day 11. The overall solution error is

therefore hardly affected by one reduction step which is a considered a viable option

for nonlinear runs. In contrast, the rg2 model simulation again shows unacceptable

large errors and can not be recommended for future use. The superior performance
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Figure 4.8: Geopotential height at day 14 (test case 6), reduced grid simulations
with 1 reduction. (a) 1st order wind interpolation (bilinear) and 1st
order height interpolation (conservative van Leer scheme), (b) 2nd order
wind and conservative height interpolations (PPM method). Contour
intervals are 100 m.
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Figure 4.9: Normalized l2 (left) and l∞ (right) height errors for the full grid (fg)
and the reduced grids with 1 reduction (rg1) and 2 reductions (rg2).
The order indicates the interpolation order at the reduced grid interfaces
(test case 6).

of the second-order interpolation scheme is clearly demonstrated at the end of the

14-day forecast when the l2 and l∞ norm still closely resemble the full grid control

run. The l2 height error in both the fg model run with l2(h) = 0.0033 and the rg1

simulation with l2(h) = 0.0036 at day 14 compare favorably to values published in

the literature. These are listed for comparable resolutions in table 4.2. All model

Author Model Resolution l2(h) at day 14

Jakob-Chien et al. [1995] spectral T42 0.0054

Taylor et al. [1997] spectral elements ≈ 2.5◦ 0.0079

Spotz et al. [1998] spectral T42 0.0044

Spotz et al. [1998] double Fourier method T42 0.011

Cheong [2000] double Fourier method T42 0.0042

Tolstykh [2002] finite differences 2.5◦ 0.0052

Layton and Spotz [2003] double Fourier method T42 ≈ 0.02

Table 4.2: Error statistics for the Rossby Haurwitz test (test case 6) based on liter-
ature search.

runs are compared to the NCAR high-resolution reference solution. Here, it must

be kept in mind that this reference solution is also not free of numerical errors as
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assessed in Taylor et al. [1997] and Jakob-Chien et al. [1995]. The uncertainty of the

normalized l2 norm is estimated to be 0.0008.

Besides error norms, it is also interesting to examine the impact of the grid

reductions on global invariants. This is depicted in figure 4.10 which shows the time

evolution of the normalized total energy and potential enstrophy for the fg, rg1 and

rg2 model runs. Both quantities are not formally conserved in the finite-volume
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Figure 4.10: Normalized global integrals of total energy (left) and potential enstro-
phy (right) for the full grid and the reduced grids with 1 reduction and 2
reductions using second-order interpolations at the interfaces (test case
6).

model. But the decrease in total energy (TE) and potential enstrophy in the fg and

rg1 case is moderate in comparison to the rg2 simulation. The initial decrease in the

normalized total energy at t=0 is an artifact of the staggered D-grid arrangement.

It requires the interpolation of the wind data for the kinetic energy (KE) calculation

which decreases the KE value on the order of 10−4. This is the starting point of the

TE curves.

In addition, tests have been performed that assess the conservation of mass in the

reduced grid setup with 1 reduction level. This comparison is shown in figure 4.11 on

the next page which compares the impact of the flux corrections at the reduced grid
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boundaries (see Section 3.3.3 on page 110) as well as filtering effects. As discussed

in Section 2.2.2, filtering leads to a violation of conservation laws if no a-posterioi

restoration mechanisms are applied. For example the filtering of the mass variable Φ

violates the conservation of mass principle. It is important to observe that only the
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Figure 4.11: Normalized global integrals of the mass for reduced grid simulations
with 1 reduction (test case 6). The different model setups include sim-
ulations with or without a flux corrected transport at the reduced grid
interfaces and polar filtering of the geopotential polewards of 60◦ N/S,
see figure for combinations.

flux-corrected, unfiltered1 simulation conserves the mass up to machine precision.

The filter effect on the other hand leads to an increase in mass, whereas the omission

of the flux correction at the interfaces tends to decrease the mass. Both effects

overlay each other.

Another aspect must be noted concerning the reduced grid setup in the finite-

volume shallow water model. In test case 6 presented above, the time step ∆t = 360s

can not be reduced in the two reduced grid simulations as seen before in the advection

experiment. This is due to the fact that the time step in case 6 is not restricted by the

1Unfiltered with respect to the geopotential Φ, the wind components need to be filtered to
maintain stability.
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advection speed in polar regions, but by the gravity wave activity in midlatitudes.

Coarsening the polar regions has therefore no impact on the stability criterion and

identical time step must be used for all three simulations. This has far-reaching

implications with respect to the performance of the model runs. The clear speedup

of a reduced grid run in the advection experiment can no longer be achieved. On

the contrary, choosing the rg1 reduced grid setup adds extra work at the reduced

grid interfaces despite the 9% reduction in the number of blocks. When using 16x12

blocks with 9x6 cells per block, the full grid control run needs 1522 CPU seconds

on a SUN Ultrix workstation for the 14-day simulation, whereas the rg1 run finishes

after 1915 CPU seconds. As a result, the overhead estimate again yields (compare

Section 3.2.3) 1522 s
192 blocks

/
1915 s

176 blocks
≈ 27%, which clearly outweighs the advantages of

the reduced number of blocks in the rg1 case. Therefore, it is not recommended to use

a reduced grid if the global time step is not limited by the CFL restrictions in polar

regions. However, it may be possible that future optimizations of the AMR library

and the user-provided interpolation routines will reduce the overhead significantly.

In the present example, where no dynamic or static adaptations are requested, the

most efficient simulation is indeed a uniform model run with big block sizes (see also

performance discussion in Section 3.2.3). E.g. the setup with 2x2 blocks and 72x36

cells per block requires only 568 CPU seconds for the 14-day model run. As observed

earlier, the large block sizes in the 2D framework lead to a speedup by a factor of

approximately 2.5.
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4.3 Static adaptations

Adaptive blocks can not only be used for reduced grid configurations but also

for user-defined, pre-determined regions of interest that need to be resolved at fine

resolutions. Typical examples include high resolution regions in mountainous terrain

or grid adaptations for locally refined weather forecasts.

Static adaptations are chosen at the beginning of a model run and remain fixed

during the simulation. They can be viewed as a two-way interactive nesting approach

that provides consistent inflow and outflow conditions along the interfaces. The

following section examines the impact of these high-resolution regions on the global

domain. Three test scenarios are assessed in the shallow water framework.

First, steady state shallow water test case 2 with α = 45◦ is selected. Here, a high

resolution refinement area at refinement level 2 is placed in the Northern Hemisphere

as illustrated in figure 4.12. The figure shows the geopotential height field with
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Figure 4.12: Geopotential height at day 14 (test case 2, α = 45◦) with static refine-
ments (refinement level 2) centered at 135E,30N. The distribution of
the blocks is drawn in red. Base resolution is 2.5◦, contour interval is
100 m.

overlaid blocks (in red) at model day 14. The base resolution in this example is

a 2.5◦ × 2.5◦ grid so that the finest resolution represents a 0.625◦ grid spacing. It
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can be seen that the flow passes through the refined area without noise and almost

no distortions, despite the fact that the refinements are purposely placed in a region

with strong geopotential gradients. As discussed later this has measurable impact on

the simulation results in comparison to low gradient regimes. A closer examination

of the wind components u and v at day 14 in figure 4.13 reveals that only very minor

errors are induced at the coarse-fine grid interfaces. The errors are mostly visible in
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Figure 4.13: (a) Zonal and (b) meridional wind at day 14 (test case 2, α = 45◦) with
static refinements (refinement level 2). The distribution of the blocks is
drawn in red. Base resolution is 2.5◦, contour intervals are 2.5 ms−1.

the v field at the outflow boundary east of the refined area.

In order to quantify the performance of such a refined model run, the corre-

sponding height error norms are displayed in figure 4.14 on the next page. The plot

shows the time evolution of the normalized l2 norm in three model runs, the full

grid control run at the base resolution and two statically adapted runs, where the

center of the refined patch is placed at two different locations. The first location

135◦E, 30◦N coincides with the previous example, whereas the second position at

180◦E, 45◦N symmetrically refines the low pressure center in the Northern Hemi-

sphere (not shown). This region is characterized by lower geopotential gradients

which lead to improved l2 error norm statistics. The error in the first anti-symmetric
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Figure 4.14: Normalized l2 height errors (test case 2, α = 45◦) for a non-adapted run
(2.5◦ resolution) and 2 statically adapted runs with 2 refinement levels.

case is slightly enhanced but still well within the expected error margins for this test

case. This is shown by a comparison with Tolstykh’s results.

There are two possible sources for the increased errors in the statically adapted

runs. First, it must be noted that the initial data in the adapted patches are interpo-

lated via quadratic interpolations at the beginning of the forecast. This introduces

an interpolation error in comparison to an analytically reinitialized field that obeys

the underlying geostrophic balance more accurately. Especially at refinement level 2,

the initial conditions are then interpolated based on the already interpolated data at

refinement level 1. Second, the interpolations of the ghost cells at fine-coarse grid in-

terfaces take place multiple times per time step during the course of the integration.

Since the accuracy of the fluxes across interfaces relies on ghost cell information, an

interpolation error in the ghost cell update becomes transparent in the flux calcula-

tion.

In order to asses the relative importance of the two error sources, tests with

analytically reinitialized initial conditions have been performed. The results of this

run (not shown) are almost indistinguishable from the run with interpolated initial



139

data. For this idealized smooth scenario, it can therefore be concluded that the

errors in the initial data are not responsible for the resulting higher error norms.

The error is clearly dominated by the inaccuracies of the ghost cells and fluxes at the

interfaces. In general, these errors do not accumulate along the edges of the blocks

but rather interact with the truncation error of the numerical scheme. It has also

been observed that errors are higher in regions where the monotonicity constraint is

applied, especially in the neighborhood of maxima and minima of the geopotential.

Furthermore, it is also interesting to note that the l2 error trends are again overlaid

by typical inertio-gravity wave oscillations (compare also to figure 4.7). These are

due to the geostrophic adjustment process that describes the mutual adaptation of

mass and momentum toward a steady geostrophic state. Here the period is on the

order of 16 hours which is very close to the period of pure inertial oscillations in

midlatitudes. For example, at 45◦ N/S inertial oscillation are characterized by a

period of 2π
|f | = 12h

| sin 45◦| = 16.97h (Holton [1992]). Inertio-gravity waves are generated

by small deviations from the geostrophic balance in the discrete system. The final

state is achieved by the decaying inertial oscillations that dissipate the energy. The

wave motion is clearly emphasized in this idealized test setup. In the real atmosphere

though, the motions are predominantly generated and maintained by the pressure

gradient force. Therefore the conditions for purely inertial oscillations only rarely

exist.

High wind speed regimes

The second assessment of the static adaptations is based on shallow water test 6,

the Rossby-Haurwitz wave with extremely strong gradients in both the geopotential

and wind fields. This test is very hard for adaptive grid simulations due not only to
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the gradients but also to the preferred 45◦ transport angle in midlatitudes. This is

the worst case scenario for the selected numerical scheme with an underlying operator

splitting approach (as discussed later in Section 5.2.1 on page 157). Any minor error

will be accentuated. Static refinements at refinement level 1 are placed at eight

pre-determined regions of interest. These are indicated in red in figure 4.15 that

shows the geopotential height field at day 7. Although the flow is well-simulated in
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Figure 4.15: Geopotential height at day 7 with statically refined blocks. (refinement
level 1) and second-order interpolations at the interfaces (test case 6).
The block distribution is indicated in red. The base resolution is 2.5◦,
in refined regions 1.25◦. Contour intervals are 100 m/s.

comparison to the reference solution (figure A.13 on page 235), it can clearly be seen

that a slightly asymmetric flow pattern evolves in the two hemispheres. This effect

can be related to the refined patches (compare also to asymmetric flux discussion

in Section 3.1.3). As time progresses, the flow pattern diverges further from the

reference solution which is indicated by the error norms in figure 4.16. This plot also

includes the final error levels observed in the reduced grid simulations. The errors

are acceptable for a 7-10 day time period which represents the typical duration of a

weather prediction forecast. For long term climate simulations though, the interface
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and statically adapted run with 1 refinement level (test case 6). The
additional data points show the error norms of reduced grid simulations
and are taken from figure 4.9.

treatment must be very carefully examined. True overlap regions as in Brown et al.

[2003] can possibly be introduced to enhance the accuracy.

Forced nonlinear system with translating low

The third assessment of the statically adapted shallow water model increases the

complexity of the test scenario even further. It is based on shallow water test 4

that describes a forced nonlinear system with an embedded translating low pressure

center. For this test the shallow water equations need to be modified. In particular,

time and grid resolution dependent forcing functions are added to the right hand side

of the equations (details in Williamson et al. [1992]). This forcing then leads to a

translation of the system from west to east without change of shape. From a higher

level viewpoint, such a forcing can also be considered a forcing mechanism provided

by physics routines in a complete GCM. The test therefore assesses an important

aspect concerning future adaptive climate or weather prediction models.

Static adaptations are used to refine the pre-determined cyclone path. A similar
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approach has also been used by Fournier et al. [2004] who used the a-priori knowl-

edge for a statically adapted spectral element model with rather smoothly varying

resolution changes. The initial setup in the finite-volume model is displayed in fig-

ure 4.17 which shows the geopotential height field with overlaid adapted blocks (in

red) at refinement level 1. In contrast to the other simulations discussed so far, a
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Figure 4.17: Initial geopotential height and static adaptations with 1 refinement level
(test case 4) plotted on an orthographic projection centered at (0E,45N).
The blocks are drawn in red. Base resolution is 2◦, in refined areas 1◦.
Contour interval is 50 m.

different initial block parameter set is chosen. Here, 10x5 blocks with 18x18 cells per

block are selected that define a 2◦× 2◦ base resolution. In addition, a coarser 4◦× 4◦

base resolution with 9x9 cells per block has also been assessed. All resolutions are

listed in table 4.3 on page 146.

It is important to note that the addition of the grid size dependent forcing func-

tions can cause numerical instabilities in an adapted run, especially at the interface

boundaries. This has been discussed by Berger and LeVeque [1998] who observed

that source terms can generate excessive noise at the interfaces which ultimately

contaminate the whole solution. Therefore, the source terms need to be handled

with care. For example, Berger and LeVeque [1998] applied a fractional step method
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or the so-called splitting approach. In this approach, the solution is first computed

without source terms which are then reintroduced during a second sweep. Such an

approach has also been applied here.

Nevertheless, some noise still develops at the interfaces. This poses new research

questions for future adaptive GCMs that also need to compute local forcings with grid

size dependent data. The difficulties can primarily be detected at grid boundaries as

shown later. Here, the following strategy is employed. In order to minimize the noise

at the interfaces and in the refined regions the data are reinitialized analytically. In

particular, this smoothes the initial height field, whereas the wind data can also be

determined via interpolations without detrimental effects.

During each time step, the forcing then needs to be calculated twice. First, the

forcing is evaluated for half a time step in order to compute the time-centered wind

speeds at the staggered C-grid positions. Second, the forcing is recalculated for the

full time step to represent the time-averaged cell-averaged data for the prognostic

D-grid variables. This 2-step algorithmic Lin-Rood approach causes slight inconsis-

tencies with respect to the latter forcing functions. The analytically and numerically

evaluated forcing expressions are based on grid point data at discrete time steps

that only approximate the true volume-mean time-mean representation. Here the

best estimate of the time-mean forcing on the D-grid involves calculating the spatial

derivatives of the forcing functions at the time-centered step tn+ 1
2 . On the other hand

the forcing of the C grid winds uses spatial derivatives at tn. This mixed technique

has led to the most accurate and stable simulations. However, the still existing in-

consistencies of the forcing in the finite-volume sense clearly lead to increased error

measures in comparison to literature values (e.g. Taylor et al. [1997]). Alternatively,

the forcing could also be computed in a purely analytic way, e.g. with the help of
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Mathematica as suggested by Heikes and Randall [1995]. This approach enhances

the accuracy of the spatial representation but does not offer a better time-averaged

estimate. Therefore, this option is not considered here. The present formulation

already gives sufficient insight into the performance of the adaptive simulation with

forcing constraints.

The comparison of a fine grid 1◦ control run with a statically adapted 2◦ run

at refinement level 1 is shown in figure 4.18 on the next page. The subfigures (a,c)

depict the geopotential height field at day 5 in an orthographic projection centered at

the position of the low. Additionally, subfigures (b,d) display the differences with the

analytic solution. Both runs develop model errors that are partly attributable to the

phase error between the numerical and analytical solutions. In particular, the low

pressure system is not moved fast enough in the control run as also seen by Heikes

and Randall [1995]. In addition, the introduction of the static adaptation leads to a

different error pattern that is spread out over a large domain. A closer examination

reveals that most of the errors are generated at the static grid boundaries. These

interface errors then interact with the solution error of the transported feature.

The model errors are quantified in figure 4.19 on page 146 which compares a

collection of adapted and non-adapted model runs (see also summary in table 4.3).

Here, the time evolution of the l2 and l∞ height errors for the 5-day simulations

are displayed. As suggested by Williamson et al. [1992], the mean zonal background

flow is subtracted from the fields which emphasizes the errors associated with the low

pressure system. It is interesting to observe that the l∞ errors decrease continuously

with increasing resolution. The adapted runs closely resemble the uniform runs with

respect to this error measure. Here, the l∞ norm represents the maximum error of

the transported feature which can be found close to the center of the low pressure
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Figure 4.18: Geopotential height (a,c) and height errors (b,d) at day 5 (test case 4)
plotted on an orthographic projection centered at 45N and the longitude
of the trough 77.7E. The top row (a,b) shows the non-adapted run with
a uniform 1◦ resolution, the bottom row (c,d) shows a statically adapted
run (base resolution 2◦) with 1 refinement level. The block distribution
is indicated by the dotted lines. Contour intervals are 50 m (a,c) and 1
m (b,d).
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Figure 4.19: Normalized l2 (left) and l∞ (right) height error norms for the adapted
and non-adapted model runs at different resolutions (test case 4).

trough. This can not be concluded for the l2 error norms. The l2 error assesses the

error in the whole model domain and clearly identifies the additional noise at the

interfaces. This prevents the characteristic converging trend in the adaptive grid

simulation. All error statistics, including the corresponding wind errors, at day 5

are summarized in table 4.3. Despite the noise at the interfaces, the transport of the

Base Refin. Equivalent Time Normalized error norms after 5 days

resolution level resolution step (s) l2(h) l2(v) l∞(h) l∞(v)

4◦ 0 4◦ 600 0.2609 0.2397 0.2838 0.3869

4◦ 1 2◦ 300 0.2988 0.2114 0.1146 0.1806

2◦ 0 2◦ 300 0.0763 0.0771 0.0941 0.1159

2◦ 1 1◦ 150 0.0789 0.0605 0.0322 0.0388

1◦ 0 1◦ 150 0.0186 0.0203 0.0202 0.0268

Table 4.3: Error measures and statistics for test case 4 after five model days.

low pressure system improves significantly in the statically adapted runs without the

need of a fine resolution in the global domain.



CHAPTER V

Adaptation criteria and 2D dynamic adaptations

Adaptive blocks have long been used for dynamic grid adaptations that can track

features of interest during a model run. Examples include the pioneering work of

Berger and Oliger [1984] which was applied to atmospheric science questions by

Skamarock et al. [1989] and other investigators (see Section 1.3). Adaptive blocks

offer the advantages of regular data structures that allow the use of a single solution

technique in all adapted patches. Then the flow can be independently solved on a

block-by-block basis, which is in particular true for the self-similar block approach

used here.

In this chapter, the dynamically adaptive finite-volume model is assessed in the

2D shallow water framework. The discussion starts with an introduction to suitable

adaptation criteria which are reviewed in Section 5.1. Here a variety of adaptation

indicators are suggested that are based on flow characteristics. The results of the

dynamically adapted shallow water runs are then examined in Section 5.2. These

simulations are presented in an increasing order of complexity. First, the adaptive

passive advection test is shown with and without an additional reduced grid setup

(Sections 5.2.1 and 5.2.2). Second, the adaptive nonlinear shallow water system

is assessed using an idealized flow over a single mountain (Section 5.2.3). This test

147
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combines statically and dynamically adaptive grid approaches and serves as a testbed

for different refinement criteria.

5.1 Adaptation criteria

Setting the right criteria for grid refinements and coarsenings is very important

due to the significant cost associated with adaptations. The ideal criteria are those

that require minimum computational efforts to evaluate and still indicate the refine-

ment and coarsening regions reliably. Two basic adaptation principles need to be

distinguished, namely, the “physical” flow based adaptation indicators and the local

truncation error estimators. The latter are built upon a purely numerical idea since

they limit the global solution or local discretization error of the numerical scheme.

This technique was for example used by Berger and Oliger [1984] and further assessed

by Skamarock [1989] and Skamarock and Klemp [1993]. Here Richardson-type trun-

cation error estimators were applied that are based on the difference of the numerical

solution on fine and coarse overlapping meshes. Regions with high truncation errors

get then refined by comparison to user-defined tolerances. In general, numerical

error estimation techniques can be further classified as “a-priori” or “a-posteriori”

methods. The a-priori schemes predict the numerical errors prior to the actual time

step, whereas the a-posteriori estimates are based on results obtained during the

prior run. Such an a-posteriori approach is most commonly selected if adaptations

are to be guided by the numerical errors (see also Verfürt [1993] for an overview of

error estimators).

In practice though, flow-based adaptation criteria are predominantly used in

adaptive CFD applications. They typically rely on measures of a solution gradient

or curvature that are compared to user-defined and problem-dependent thresholds.
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In addition, assessments of the vorticity, potential vorticity, divergence or instability

indicators like the Richardson number are feasible options for atmospheric AMR ap-

plications. Today, gradient-based adaptation criteria are most commonly applied to

atmospheric transport problems, e.g. by Behrens [1996] who developed an adaptive

passive semi-Lagrangian advection algorithm. Here the adaptations are based on a

simple two-dimensional assessment of the local gradient of a tracer component. Such

an indicator works well for pure passive advection scenarios as also shown by Hub-

bard and Nikiforakis [2003]. The grid is refined in regions with sharp gradients and

coarsenings are applied in areas where the gradient lies under a specified threshold.

In general, a gradient-based indicator is scale-dependent.

Similar gradient-based criteria are also popular in CFD applications where shock

waves and discontinuities dominate the flow (Hansen et al. [2002]). But atmospheric

flows, and here in particular hydrostatically approximated climate and weather pre-

diction models, are mainly characterized by smoothly varying large-scale motions.

In the absence of real discontinuities, the features of interest are less well-defined.

This is especially true for long-term climate studies that typically assess time-mean

spatially averaged climatic states. Nevertheless, scale contradictions with sharp gra-

dients do frequently occur in geophysical flows as the result of stretching and shear-

ing deformation by the velocity field. Therefore, the features of interest could be

associated with the atmospheric wave patterns and their resulting vorticity distri-

butions and temperature fronts. Such flow-based adaptation criteria are in partic-

ular suitable for short-term weather predictions runs. In general, adaptations are

problem-dependent and specifically tailored indicators need to be examined for dif-

ferent flow scenarios. An ’optimal’ criterion then captures the evolving features early

in the developing stages and tracks their evolution and decay reliably. Such an ideal
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adaptation indicator might possibly combine numerical truncation error information

and the physical flow characteristics. Both refinement strategies were compared by

Kessler [1999] when developing a two-dimensional, adaptive finite element advection

scheme for tracer transports. It was found that the gradient indicator tended to

track sharp, single concentration peaks more closely, whereas the numerical residual

estimator recognized multiple smooth concentration peaks and their transition re-

gions effectively. Overall, both error indicators captured the emergence of a plume

in an idealized test problem satisfactorily, but the gradient indicator maintained a

more accurate tracer mass distribution.

5.1.1 Flow-based criteria

What are the flow features of interest in a weather prediction or climate run?

This is the basic question that determines the subsequent adaptive refinement and

coarsening strategy based on purely flow-based characteristics. In general, the cri-

terion must be well-suited to the research problem and numerous decisions need

to be made. For example, the aspects to be considered include the choice of the

vertical level at which a refinement criterion is evaluated as well as the selection

of one or more primary model variables. Alternatively, post-processing quantities,

like the mean sea level pressure or potential vorticity gradients on isentropes (as in

Hubbard and Nikiforakis [2003]), could be assessed that then require extra compu-

tations during the adaptation cycle. As indicated in Section 3.2.1 the length of an

ideal adaptation cycle is also problem-dependent. It relies on the time scales of the

observed phenomenon, e.g. a quickly changing phenomenon, like ’the emergence of

cumulus clouds’, requires very short assessment periods on the order of minutes. On

the other hand, the evolution of a low pressure center can be sufficiently captured
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on a time scale of hours. In any case, it must be guaranteed that the tracked feature

can not be transported out of the refined area during the selected time interval. This

creates a fine balance between accuracy and computational overhead.

There are many answers to the above-mentioned research question that have been

proposed in the literature. Here a snapshot of the discussion is presented that is

primarily focused on feature tracking approaches. These are mainly developed in the

context of uniform resolution model runs and serve as a guideline for adaptive grid

applications. For example, a variety of feature tracking techniques were reviewed

for long-term AMIP-II assessments (Atmospheric Model Intercomparison Project,

see Boyle et al. [1998]). The study included the tracking of the 850hPa relative

vorticity pattern as well as the tracing of potential vorticity features on upper level

Θ-surfaces. Here the tracking algorithms by Murray and Simmonds [1991], Jones and

Simmonds [1993], Hodges [1994] and Hodges [1995] were used. They were also applied

to alternative levels and variables, such as the 250hPa and 500hPa geopotential and

the 850hPa temperature. It was concluded that the tracking of the relative vorticity

field allows a precise diagnosis of the initial stages of cyclogenesis in the extratropics.

Furthermore, the vorticity assessment also enables studies in tropical regions that

are not characterized by low and high pressure regimes with closed contours.

In an alternative study by Sinclair [1994] the geostrophic relative vorticity at

1000hPa was used as an objective measure of cyclonic disturbances. It was found

that the relative vorticity criterion detected the cyclone centers more reliably than the

more traditional use of local pressure minima. As also pointed out by Sinclair [1997]

the use of pressure minima favors the detection of more intense slow-moving systems

and misses many mobile centers where a local minimum can not instantly be found.

Most often the local pressure minimum does not appear until after considerable
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cyclogenesis has already occurred. Therefore, the pressure-based criterion might not

capture the very early stages of a developing system.

These pressure-based criteria for cyclone tracking applications were further eval-

uated by Jones and Simmonds [1993] who suggested a combined assessment of the

mean sea level pressure value, its gradient and curvature. Additionally, König et al.

[1993] identified cyclones via a combination of three synoptic criteria: the local geopo-

tential height minimum at 1000hPa, a pronounced intensity of the system and a

lifetime longer than one day. A comparison of this scheme to the Murray and Sim-

monds [1991] approach (also Jones and Simmonds [1993]) is provided in Leonard

et al. [1999]. A simpler algorithm was used by Lambert [1988] who just focused on

local minima of the geopotential height at 1000hPa that were surrounded by four

grid points at higher height levels. Such an approach is clearly grid size dependent.

In general, it must be kept in mind that all evaluated quantities, like the mean

sea level pressure or variables on pressure or potential temperature surfaces, are

not readily available in a model with orography following model levels. Rather

they are diagnostically derived quantities that require additional calculations and

vertical interpolations. The overhead and trade-off also need to be considered if

more elaborate vortex tracking algorithms are to be used as suggested by Jeong and

Hussain [1995].

5.1.2 Adaptation criteria for the finite-volume dynamical core

How can the life cycles of the “features of interest” reliably be captured with an

adapted grid? This is the key question for the adaptive finite-volume simulations

presented in the subsequent sections. The adaptations are assessed not only in the

2D shallow water system but also in the 3D hydrostatic framework. The selected test
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cases cover a variety of flow scenarios that require individual adaptation strategies.

Among them are assessments of the vorticity, the geopotential gradient or simple

threshold values in mountainous areas or for advection tests. Here the shallow water

equations serve as an idealized test bed for the 3D adaptive design.

Table 5.1 lists the adaptation strategies applied to the different test cases. The

Dim. Test scenario AMR setup Adaptation criteria

Advection (test 1) dynamic Φ threshold

Advection using a reduced grid dynamic + static Φ threshold

2D dynamic + static vorticity threshold + mountain

Flow over a mountain (test 5) dynamic + static Φ gradient threshold + mount.

dynamic vorticity threshold

Baroclinic wave with orography static adapted storm track
3D

Baroclinic wave without orography dynamic vorticity threshold (surface)

Table 5.1: Strategies for dynamically and statically adapted model runs.

tests are represented in an increasing order of complexity. The dynamically adaptive

approach for the pure advection tests is based on a simple assessment of the geopoten-

tial. Such a concept works well for the passive transport problem in a nondivergent

flow field. Alternatively, a gradient-based indicator can also be recommended (not

shown). As pointed out earlier, the gradient of a tracer field was successfully used

by e.g. Hubbard and Nikiforakis [2003] and other investigators for passive advection

tests.

Solution gradients are also the refinement criterion of choice for many nonlin-

ear CFD applications. In this study, the performance of the geopotential gradient

indicator is tested using an idealized flow over a single mountain (test case 5). Alter-

natively, a vorticity-based criterion is tested that allows the direct comparison of the

two approaches. Both simulations combine the dynamic adaptations with static re-
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finements of the mountain. In addition, tests are also performed without the adapted

orography.

In three dimensions two adaptation strategies are examined for the hydrostatic

dynamical core. First, the storm track of a developing idealized baroclinic wave

(Jablonowski and Williamson [2004]) is statically adapted. Second, the baroclinic

wave test without orography (Polvani et al. [2004]) is evaluated with purely dynamic

adaptations based on vorticity thresholds. Here the model level closest to the surface

is selected for the assessment. Tests with combined criteria, like the combination of

surface pressure extrema and vorticity thresholds, have also been performed and led

to similar results (not shown). As discussed earlier, vorticity-based refinements are

appealing since they detect the developing wave trains early. In addition they have

been successfully used in idealized adaptive hurricane track predictions as shown by

Fulton [1997].

As a first glimpse, three choices of possible adaptation criteria are presented in

figure 5.1. The figure displays an analysis of the initial state of shallow water test

(a) Relative vorticity (10-5 s-1)

2

2

2

2

2

2

2

2

(b) Gradient of Φ (10-3ms-2), abs. value (c) Laplacian of Φ (10-9s-2)

Figure 5.1: Possible choices for refinement criteria illustrated with the initial state
of test case 4 (orthographic projections centered at 0E,45N). (a) Rela-
tive vorticity, (b) absolute value of the gepotential gradient and (c) the
Laplacian of the geopotential. Contour intervals are 10−5s−1, 10−3ms−2

and 10−9s−2, respectively.
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case 4. This test is comprised of a forced nonlinear system with translating low

(see also figure A.7). Here the relative vorticity as well as the gradient and the

curvature (Laplace) of the geopotential height field are illustrated. It can clearly be

seen that all three indicators pick out the center of the low pressure system that

is surrounded by a rotating wind field. In practice though, tests have suggested

that the Laplacian of the geopotential height field is not a suitable indicator for

curvature-based refinement regions. Instead, the vorticity pattern is recommended

as a measure of the curvilinearity of the geopotential or pressure field. This is due to

the observation that the second-order derivative of the geopotential height field tends

to develop small scale noise over time that misleads the refinement strategy. On the

other hand, the vorticity and the gradient indicator performed reliably in all studies.

Overall, the main difficulty arises when setting the user-defined threshold values.

These are highly problem-dependent, but crucially important when considering that

features of interest need to be detected early on the coarse mesh. The sensitivity

of the empirical threshold values again determines a fine balance between accuracy

and efficiency. The threshold values for the adaptive finite-volume dynamical core

are documented in the corresponding sections.

There are lots of choices for possible adaptation criteria. For example, single

indicators can be combined to form a more elaborate system. Additionally, weighted

refinement criteria are feasible that are based on varying threshold values at different

refinement levels. In practice though, the latter strategy will be impossible to meet

exactly in the adaptive block setup. This is due to the requirement that neighboring

blocks can only differ by one refinement level, which triggers cascading refinement

requests. Therefore, such an option has not been implemented in the dynamical

core. If the adaptation criterion is fulfilled, the blocks are flagged by the user and
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adapted by calling the AMR library functions. Currently, refinements are triggered

consecutively up to the highest user-defined refinement level as soon as at least one

grid point within a block exceeds the threshold value. Coarsenings occur if all grid

points of four neighboring blocks (children) no longer meet the refinement criterion.

Furthermore, the neighboring block constraint needs to allow a coarsening step.

Here it is important to keep in mind that there are two factors that limit the

refinement levels. Besides the user-defined thresholds and maximum number of re-

finement levels, the hydrostatic approximation also restricts the adaptations from a

physical viewpoint to horizontal scales larger than 10km (see Section 3.1.2).

Refinement indicators are implemented as plug-and-play components. Therefore,

they can be easily exchanged and adjusted for future assessments.
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5.2 Dynamic adaptations: Shallow water tests

The dynamically adaptive finite-volume model is tested in the 2D shallow water

configuration. Two basic test scenarios are assessed using the standard test suite

for the shallow water equations. First, the tests are concentrated on the assessment

of the adaptive advection algorithm. Second, the full nonlinear system is examined

with a flow field over a single mountain.

5.2.1 Advection tests with the full grid

The advection algorithm is one of the fundamental building blocks of atmospheric

flow simulations. It is therefore imperative to evaluate its performance not only in

the adaptive shallow water setup but also in a non-adapted case. Therefore, the

adapted model results are both compared with the analytical reference solution and

the solution from uniform-grid model runs.

There are a variety of standard test cases for advection schemes. For example

Zalesak [1979] introduced the two dimensional solid body rotation problem with a

slotted cylinder. Furthermore, Doswell [1984] developed an idealized cyclogenesis

test that defines a strong deformational flow field. This test was later reformulated

for spherical coordinates by Nair et al. [1999] and Nair and Machenhauer [2002] and

consequently tested with an adaptive advection model by Hubbard and Nikiforakis

[2003].

Here the adaptive finite-volume advection scheme is tested with an alternative

standard approach that has been most commonly used in the atmospheric science

literature. It is the cosine bell advection test (shallow water test case 1, see Appendix

A) that was already applied to the reduced grid in Section 4.2.2. The advection of

the cosine bell is tested with different rotation angles α. In particular, α = 0◦,
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α = 45◦ and α = 90◦ are selected that describe the transport of the cosine bell along

the equator, at a 45◦ angle in the tropics and midlatitudes as well as the transport

straight over the poles.

The refinement criterion for the adaptive transport of the cosine bell is a simple

threshold criterion that assesses the value of the geopotential at each grid point. In

case the geopotential exceeds the empirical limit Φ ≥ 520m2s−2 the block is flagged

for refinement. This value corresponds to h ≈ 53m, which is approximately 5% of

the initial peak with h ≈ 1000m. If on the other hand the grid points no longer meet

the adaptation criterion the coarsening flag in the corresponding block is set. The

refinement criterion is examined during each time step that is held variable in order

to match the |CFL| = 0.95 limit. All adaptations occur consecutively until either

the maximum refinement level or the coarse 5◦×5◦ initial resolution is reached. This

resolution is the base resolution for all adaptive shallow water runs. The grid can

not be coarsened further than the initial setup. The passive advection is driven by

pre-determined analytical wind speeds. These are reinitialized analytically whenever

adaptations occur. This applies also to the initial state of the geopotential at the

various refinement levels. During the model run though, the geopotential in newly

adapted blocks is initialized via second-order conservative PPM-like interpolations.

The chosen advection algorithm is also based on the PPM scheme and no filtering of

any variable is applied. For the adaptive model simulations the maximum refinement

level is user-defined and varies between 0 and 4. These model setups correspond to

the grid spacings 5◦, 2.5◦, 1.25◦, 0.625◦ and 0.3125◦ at the finest level, respectively.

The resolutions and initial block parameter sets are further explained in table 3.1 on

page 74.

The basic adaptation principle is illustrated in figure 5.2 with α = 90◦ that shows
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four snapshots of the adaptive simulation at refinement level 3. The figure depicts the

cosine bell at day 0, 1, 3 and 4 with overlaid adapted blocks (in red) that track the

“feature of interest”. As it can clearly be seen, the cosine bell passes over the North

Pole without distortions or noise. The pole point itself with its converging grid lines is

spread out in the chosen equidistant cylindrical map projection. This emphasizes the

numerous grid boxes in polar regions that need to be refined for transport processes

at high latitudes. They severely restrict the maximum allowable time step that obeys

the |CFL| = 0.95 condition in polar regions. For example, in this simulation with

three refinement levels and a maximum zonal wind speed of u ≈ 38.6ms−1 at the

poles the adaptive time step varies between ∆t ≈ 597.3 s in equatorial regions and

∆t ≈ 9.3 s at very high latitudes. In this passive advection test, the grid boxes

adjacent to the poles do not need to be kept at the same refinement level since there

is neither a need to filter gravity wave motions nor to calculate vorticity and wind

data at the pole points (see also Section 2.2.1 and 2.2.2).

The cosine bell is advected once around the sphere and reaches its initial position

after 12 days. Then the solution can be compared to the initial conditions that serve

as the true reference field. A closer examination of the final states at refinement level

1 and different rotation angles α is illustrated in figure 5.3 on the next page that also

presents the overlaid true solution with dotted lines. The figure shows that the co-

sine bell undergoes a stretching in the flow direction which is a typically observed for

monotonicity-constrained finite-volume advection algorithms (see also Lin and Rood

[1996], Nair and Machenhauer [2002] and Hubbard and Nikiforakis [2003]). The ef-

fect is clearly visible at this relatively coarse resolution and diminishes significantly

with decreasing grid sizes (figure 5.4). As pointed out by Nair and Machenhauer

[2002] the degradation of the shape caused by the monotonocity constraint trans-
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Figure 5.3: Geopotential height of the cosine bell (test case 1) after 1 revolution (12
days) with one refinement level (2.5◦) and different rotation angles α.
(a) α = 0◦: advection along the equator, (b) α = 45◦: advection at a
45 degree angle, (c) α = 90◦: advection over the poles. The analytic
solution is overlaid (indicated by the dotted lines). Contour intervals are
100 m, the zero contour is omitted.

lates into slightly less accurate error norms in comparison to e.g. positive definite

methods. A similar result was also found in Section 3.3.1 with respect to constrained

and unconstrained interpolation strategies (table 3.4). Nevertheless, the advantages

of the monotonicity preserving advection algorithm outweigh the slight decrease in

accuracy (see also comparisons in van Leer [1977]).

Figure 5.4 confirms that the shape of the cosine bell after one rotation is well-

preserved at high resolutions. The figure depicts a sequence of model runs with

increasing number of refinement levels at rotation angle 45◦. This transport direction

represents the “worst case” scenario for the advection algorithm with underlying

operator splitting approach. The results at the highest refinement levels 3 and 4

are almost indistinguishable from each other. It is also interesting to note that the

cosine bell in (c)-(e) no longer shows the small phase error, which is visible in the

subfigures (a) and (b). The solutions then resemble the true solution very closely

which is demonstrated in subfigure (f). This subfigure displays the difference of the
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Figure 5.4: (a-e) Geopotential height of the cosine bell (test case 1) and (f) height
errors after 1 revolution (day 12) with rotation angle α = 45◦. (a) No
refinements (5◦ resolution), (b) 1 refinement level (2.5◦), (c) 2 refinement
levels (1.25◦), (d) 3 refinement levels (0.625◦), (e) 4 refinement levels
(0.3125◦) and (f) difference of the solution on the finest mesh (case (e))
with the analytic solution. Contour intervals are 100 m (a-e) and 1 m
(f). The zero contour is omitted (a-e).
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cosine bell at refinement level 4 with the reference state. The differences mainly

develop along the edges in the 45◦ flow direction. In particular, the leading edge

shows slightly enhanced geopotential height values, whereas the tail drops below

the reference state. These errors are small in comparison to the peak amplitude of

the cosine bell. In general, the same type of error patterns can also be found in

non-adapted model runs.

Further, it is interesting to assess the adaptive model performance with a cross

polar flow field at α = 90◦. Dynamic adaptations in polar regions are demanding

since they involve many more adapted blocks close to the poles (see also figure 5.2).

Nevertheless, the adapted advection scheme performs very well at all refinement

levels as displayed in figure 5.5. Each subfigure shows three snapshots of the cosine
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Figure 5.5: Polar stereographic projections of the cosine bell (test case 1, α = 90◦)
transported over the North Pole (from the bottom to the top of the
figure, the outer circle is located at 45N). Snapshots are taken after 48,
72 and 96 hours, respectively, with refinement levels (a) 1, (b) 2 and (c)
3. Contour intervals of the geopotential height fields are 100 m, zero
contour is omitted.

bell at day 2, 3 and 4 in a north polar stereographic projection. There are no visible

distortions of the height field at any resolution as the cosine bell approaches, passes

over and leaves the North Pole. The increased resolution clearly helps preserve the
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shape and peak amplitude.

Here it is important to point out that the multidimensional transport of the

cosine bell is not strictly monotonic. Tiny under- and overshoots are possible in

the current formulation that have been especially observed at a 45◦ transport angle.

This is documented in table 5.2 that lists the minimum geopotential height values

after one rotation for uniform and adapted runs at refinement level 2. The latter

are tested with and without flux corrections at the interface boundaries (see also

Section 3.3.3). Even in the non-adapted runs (second column), vanishingly small

Test case 1 Non-adapted runs with Adapted 5◦ × 5◦ runs and 2 refinements
with angle α uniform 1.25◦ resolution flux corrections no flux corrections

α = 0◦ 0. 0. 0.

α = 45◦ −0.5605 ∗ 10−44 −0.1761 −0.6557 ∗ 10−3

α = 90◦ −0.8178 ∗ 10−54 −0.5999 ∗ 10−5 −0.1383 ∗ 10−10

Table 5.2: Minimum amplitude of the cosine bell in m (test case 1) after one rev-
olution for adapted and non-adapted runs at the equivalent resolution
1.25◦ × 1.25◦. Adapted runs are tested with and without flux corrections
at coarse-fine grid interfaces.

negative height values develop in case of non-zero rotation angles. Then the cosine

bell is truly transported in both dimensions. Such an effect has also been observed by

Lin and Rood [1996] for the equivalent 2D advection tests in Cartesian coordinates.

The violation of the monotonicity constraint in two dimensions is a consequence of

applying a sequence of solely 1D limiters during the transport calculations. Such an

approach does not guarantee that the resulting multidimensional advection scheme

keeps the monotonic attribute. In practice, the negative values are small, but may

be significant when transporting positive definite quantities, like atmospheric tracer

components or water vapor. Then these undershoots may cause difficulties in other
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code modules. If negative values need to be avoided, three strategies can be employed.

First, the subgrid distributions could be further manipulated in order to guarantee a

positive definite constraint. Second, an a-posteriori filling algorithm can be applied

that borrows the missing tracer mass from neighboring grid cells. Such an algorithm

is in fact implemented in today’s NASA/NCAR dynamical core. Third, a strictly

monotonic Zalesak-type multidimensional transport algorithm could be used (Zalesak

[1979]).

Here these three options are not considered in the adaptive finite-volume model.

Instead, special attention needs to be paid to an even more dominant effect in the

adaptive simulations. This is indicated in column 3 of table 5.2 which shows the min-

imum height values in the adapted runs with flux corrections at interface boundaries.

These flux corrections are necessary to ensure the mass conservation principle in the

adapted model. It can clearly be seen that the flux corrections lead to an additional

violation of the monotonicity principle. The undershoots, although still small, are

orders of magnitude bigger then the negative values in the non-flux corrected runs.

The latter also show enhanced undershoots in comparison to the uniform grid simu-

lations. They are caused by the conservative PPM-type interpolations that are used

for the adaptive split-join operations as well as for the ghost cell updates at inter-

faces. When looking at the spatial pattern, the undershoots can be pre-dominantly

found around the feature’s non-smooth circular base, which has a discontinuous first

derivative. This minor undershoot effect of the interpolation scheme can be avoided

when applying additional monotonicity constraints to the 2D PPM-type subgrid dis-

tribution. Especially corner values of the subgrid distribution need to be checked.

However, it is an open question whether a truly monotonic multi-dimensional con-

servative transport scheme with flux corrections can be developed for adaptive grid
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simulations.

The overall performance of the adapted advection tests with different rotation

angles and increasing refinement levels is summarized in table 5.3. The table shows

not only the l1, l2, l∞ and hmax errors after one revolution (see also Section 4.1)

but also contains information on the final peak amplitude, the number of blocks and

Base Refin. Height error norms Final # Blocks # Time CPU
resol. level l1 l2 l∞

hmax h (m) min max steps time (s)

α = 0◦

1.25◦ 0 0.0073 0.0078 0.0107 -0.0106 984.2 768 312 230

5◦ 0 0.1157 0.1001 0.0949 -0.0869 838.0 48 84 4

5◦ 1 0.0341 0.0301 0.0317 -0.0305 949.1 54 60 156 12

5◦ 2 0.0097 0.0103 0.0150 -0.0106 984.2 72 84 312 32

5◦ 3 0.0016 0.0021 0.0044 -0.0036 995.0 174 204 612 159

5◦ 4 0.0003 0.0005 0.0014 -0.0012 998.4 348 384 1224 642

α = 45◦

1.25◦ 0 0.0264 0.0259 0.0557 -0.0555 939.5 768 19872 13873

5◦ 0 0.5077 0.4194 0.4835 -0.4762 480.8 48 1440 64

5◦ 1 0.0927 0.0911 0.1525 -0.1514 830.7 54 60 1440 97

5◦ 2 0.0278 0.0251 0.0507 -0.0505 944.4 72 106 3333 418

5◦ 3 0.0088 0.0080 0.0159 -0.0159 982.8 171 210 3871 994

5◦ 4 0.0031 0.0030 0.0053 -0.0039 995.8 348 462 4120 2407

α = 90◦

1.25◦ 0 0.0250 0.0256 0.0421 -0.0420 953.0 768 27936 19551

5◦ 0 0.4683 0.3860 0.3923 -0.3902 559.7 48 2016 97

5◦ 1 0.0924 0.0898 0.1253 -0.1250 856.6 60 72 4085 305

5◦ 2 0.0244 0.0240 0.0405 -0.0405 954.5 72 200 11152 1885

5◦ 3 0.0048 0.0052 0.0125 -0.0125 986.2 192 480 33288 15465

5◦ 4 0.0010 0.0011 0.0038 -0.0038 995.9 348 1440 107199 159708

Table 5.3: Error measures and statistics for the solid body rotation of the cosine bell
(test case 1) after one revolution (12 model days) for different refinement
levels and rotation angles α. The CFL number is 0.95. The CPU time is
the user time on a single processor of a SUN workstation.
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time steps as well as the total CPU time measured on a SUN Ultrix workstation. In

addition, the error statistics of selected uniform model runs are listed for comparison.

It can clearly be observed that the cosine bell is successfully tracked in the adapted

model simulations. This is not only true for the l1 and l2 error norms that assess

the overall shape, but also for the peak amplitudes evaluated by the l∞ errors. The

peak amplitudes improve considerably with increasing refinement levels. In addition,

the table shows that the CPU time in the adapted runs is significantly reduced

in comparison to the uniform resolution runs. For example, when comparing the

uniform 1.25◦ runs with the corresponding adapted runs at refinement level 2 the

speed-up factors are approximately 7, 33 and 10 for the rotation angle α = 0◦,

α = 45◦ and α = 90◦, respectively. The speed-up is determined by two main factors.

First, the number of blocks and therefore the overall work load is decreased in the

adapted simulations. Second, the total number of time steps necessary for the 12-

day integration is drastically reduced. The latter is due to the fact that the adaptive

time step can be greatly increased if the fine grid does not cover the polar regions.

In particular, this effect can be seen in the α = 45◦ case where the time step in the

uniform run solely depends on the CFL restriction at the poles. This consequently

leads to a rather short time step and large number of iterations. In the corresponding

adapted run, the grid around the poles is mostly kept at the coarse resolution so

that the time step is mainly determined by the traveling cosine bell. The latter is

especially true for the α = 0◦ test case, where the time step exclusively relies on the

true advective wind speeds and grid distances at the equator. Therefore, an identical

number of time steps is required for both the uniform and adapted runs at the 1.25◦

resolution and the computational savings are only due to the reduced work load.

The error norms for the adapted simulations in table 5.3 compare well to values



168

presented in the literature. For example, the errors of the α = 90◦ run with 1

refinement level (2.5◦) closely resemble the corresponding error measures for the

monotonic FFSL-3 scheme in Lin and Rood [1996] and the CISL-M method in Nair

and Machenhauer [2002] at comparable resolutions. This is important to note since

the above-mentioned algorithms are semi-Lagrangian type schemes that only require

very few time steps for one revolution of the cosine bell. Both schemes finish after 256

integration steps, whereas the adaptive finite-volume model needs 4085 time steps

due to the CFL restriction. Therefore, it must be emphasized that the error norms

match despite the large difference in the number of time steps. The sheer number of

integrations has significant implications on the model results. This has been already

documented in table 5.3, which shows that the error norms of the adapted runs at

refinement level 2 for non-zero rotation angles are in fact slightly lower than the

errors of the uniform grid runs. The effect can be linked to the reduced number of

integration steps. An even clearer example is given in table 5.4 that assesses the

performance of the α = 0◦ advection test with different maximum CFL numbers.

As the CFL numbers decrease, the resulting number of time steps for one revolution

increases, which leads to considerably less accurate results. This conclusion might

Base Refin. CFL Height error norms Final Base time # Time CPU
resol. level number l1 l2 l∞ h (m) step (s) steps time (s)

α = 0◦

5◦ 2 0.95 0.0097 0.0103 0.0150 984.2 3420 312 32

5◦ 2 0.5 0.0170 0.0184 0.0279 967.0 1800 576 58

5◦ 2 0.1 0.0295 0.0275 0.0354 959.6 360 2880 275

Table 5.4: Error measures and statistics for the solid body rotation of the cosine bell
(test case 1, α = 0◦) after one revolution with refinement level 2 (1.25◦).
Results are shown for different CFL numbers. The CPU time is the user
time on a single processor of a SUN workstation.
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be surprising at first since a small CFL number is expected to decrease the temporal

errors of the time stepping scheme. Here, it shows that the overall error is in fact

dominated by the spatial errors. A similar time stepping effect was also observed

by Stevens and Bretherton [1996], but was not generally found (except once) in the

adaptive advection tests by Hubbard and Nikiforakis [2003].

To sum up, time traces of the normalized l2 and l∞ error norms with α = 45◦ and

α = 90◦ are illustrated in figure 5.6. The figure displays the evolution of the errors at
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Figure 5.6: Normalized l2 (left) and l∞ (right) height errors for different refinement
levels and rotation angles α (test case 1).

three different refinement levels that show the expected decline of the solution error.

The norms are slightly sensitive to the rotation angle, especially in comparison to

the α = 0◦ values listed in table 5.3.

The trace of the l∞ norm is rather noisy at low resolutions and additionally,

shows distinct spikes when the cosine bell is transported over the poles. This was

also observed by Rasch [1994], Taylor et al. [1997] and Nair and Machenhauer [2002].

These spikes are not a consequence of the dynamically adaptive grid implementation,

but occur in the full grid model runs as well as in the reduced grid simulations

shown later. As pointed out by Jakob et al. [1993] the source of the noise is the
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discrete sampling of the numerical and reference solution. Here the reference solution

is computed analytically during the course of the integration using the trajectory

approach as outlined in Section 4.1.3. This leads to an occasional small increase in

the peak amplitude of the reference field depending on the distance of the center to

the closest grid point. This effect diminishes with increasing resolution.

5.2.2 Advection tests with the reduced grid

The cross polar advection test with α = 90◦ is also applied to the reduced grid

setups discussed in Section 4.2.1. This approach combines the statically coarsened re-

duced grids with the additional flexibility of dynamic grid adaptations. The interface

treatment of the adaptive reduced grids is quite elaborate since all three fine-coarse

grid interfaces (discussed in Section 3.3.2) play a crucial role at different stages dur-

ing the integration. This requires a variety of different interpolation modules for the

ghost cell exchange.

As argued in Section 4.2.1, the base resolution for the reduced grid simulations

needs to be finer than the typical 5◦ grid. This allows the introduction of up to

two reduction levels north or south of 60◦ N/S. Therefore, the following examples

are computed on a 2.5◦ × 2.5◦ base grid with one or two reduction levels. A single

refinement level is then used to track the path of the cosine bell. All other initial

parameter settings are identical to the advection tests presented in Section 5.2.1. In

particular, the maximum CFL number is also set to |CFL| = 0.95 and the refinement

criterion assesses the geopotential threshold value Φ ≥ 520m2s−2.

Figure 5.7 on the facing page shows snapshots of the adapted reduced grid sim-

ulations with one and two reduction levels. The cosine bell is displayed at day 1

through 5 as it passes over the North Pole. Here the layout of the reduced blocks
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Figure 5.7: Polar stereographic projections of the cosine bell (test case 1, α = 90◦)
transported over the North Pole (from the bottom to the top of the
figure, the outer circle is located at 15N). Snapshots are taken after 24,
48, 72, 96 and 120 hours, respectively. Base resolution is 2.5◦ with 1
refinement level. (a) Reduced grid with 1 reduction, (b) reduced grid
with 2 reductions. Contour intervals of the geopotential height fields are
100 m, zero contour is omitted.
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is indicated by the dotted grid lines. For clarity, no attempt is made to overlay

the adaptations. Both model runs are almost indistinguishable from each other and

furthermore, compare very well to the full grid adaptive advection tests depicted

in figure 5.5 on page 163. As seen before, the cosine bell crosses the pole point

without visible distortions or noise. In addition, a comparison with figure 4.3 on

page 124 reveals that the refinement area not only improves the shape but also the

peak amplitude of the advected feature.

This is quantified in table 5.5 which lists the error norms for the adapted reduced

grid runs and the full grid 1.25◦ control simulation after one revolution. All error

norms are very similar in the adapted model setups. Here it is interesting to note,

that the adapted reduced grid simulations show slightly improved l1 and l2 error

measures despite the coarser longitudinal resolution at high latitudes. This effect is

Base Refin. Reduced Height error norms Final # Blocks # Time CPU
resol. level grid l1 l2 l∞ h (m) min max steps time (s)

α = 90◦

1.25◦ 0 0 0.0250 0.0256 0.0421 953.0 768 27936 19551

2.5◦ 1 0 0.0269 0.0262 0.0419 953.1 204 276 13218 3529

2.5◦ 1 1 0.0254 0.0249 0.0409 954.1 188 236 8696 2175

2.5◦ 1 2 0.0239 0.0237 0.0427 952.3 164 194 5484 1228

Table 5.5: Error measures and statistics for the solid body rotation of the cosine bell
(test case 1, α = 90◦) after one revolution for different reduced grids and
refinement levels. Base resolution is 2.5◦. The CPU time is the user time
on a single processor of a SUN workstation.

mainly attributable to the decrease in the total number of integration steps. The

enhanced zonal grid spacing now allows a longer time step, which helps preserve the

peak amplitude in case of one reduction level. In case of two reduction levels this

time stepping effect is overshadowed by the slight smoothing effect of the second
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grid reduction. As a result, a very minor degradation of the peak amplitude can be

observed.

Figure 5.8 shows the time trace of the l2 and l∞ error norms over the 12-day

forecast period. The error growth is very similar in the depicted adapted and reduced
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Figure 5.8: Normalized l2 (left) and l∞ (right) height errors for the full grid and
different reduced grid configurations with 1 refinement level. The base
resolution is 2.5◦ (test case 1, α = 90◦).

grid cases. The characteristic spikes in the l∞ norm can again be found in case of

one reduction level (see also figure 5.6). They are absent though in the simulation

with two reduction steps.

5.2.3 Flow over a mountain

The second assessment of the dynamically adaptive grid approach is concentrated

on the full nonlinear shallow water equations. Two test scenarios are closely examined

using an idealized flow field over a single mountain (test case 5, see also Appendix

A.1.5). First, the dynamic adaptations are combined with statically adapted areas

that cover the mountain region. Second, a purely dynamic adaptive grid approach

is tested that also dynamically refines the orography.

The model simulations start with zonally symmetric geostrophic initial conditions
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that do not balance the orography field. As a result, a complex flow pattern evolves

over time that is characterized by a lee-side wave train. Due to the complexity of

the flow, this test case represents an idealized test bed for 3D hydrostatic regimes.

Here, the test is primarily used to assess different refinement criteria and strategies.

Statically adapted orography

A combination of static and dynamic refinement strategies is evaluated over a

15-day forecast period. The initial setup of the grid is displayed in figure 5.9 which

shows the initial geopotential height field with overlaid orography contours and cor-

responding statically adapted blocks. Here the static adaptations refine the single
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Figure 5.9: Initial geopotential height (m) and orography with the overlaid statically
refined blocks at refinement level 3. The mountain is 2000 m high.

mountain in the Northern Hemisphere. This grid arrangement has also been shown

earlier in an orthographic map projection in figure 3.3 on page 70. The underlying

base resolution is the standard 5◦ × 5◦ grid that is comprised of 8x6 initial blocks

with 9x6 cells per block.

After the initial adaptations are applied, the geopotential height and orogra-
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phy fields are reinitialized analytically, whereas the wind components in the newly

adapted blocks are computed via second-order non-conservative interpolations. This

provides a slightly more consistent flow representation at the block interfaces and

suppresses spurious noise at the beginning of the forecast. However, since the ini-

tial wind field is very smooth such an approach is almost indistinguishable from

analytically reinitialized wind patterns in this scenario.

The test is concentrated on the assessment of two dynamic adaptation criteria.

First, a vorticity-based criterion is selected that is based on the evaluation of the

relative vorticity ζ at each grid point. Grid points are then flagged for refinement

if the absolute value of the relative vorticity exceeds the empirical threshold |ζ| ≥

2× 10−5s−1. Alternatively, a threshold value of |ζ| ≥ 2.5× 10−5s−1 is also reviewed.

Second, a gradient-based refinement criterion is examined that assesses the absolute

value of the geopotential gradient. Here, a threshold value of |∇Φ| ≥ 2× 10−3ms−2

is chosen. Both thresholds lie above the relative vorticity and Φ gradient values of

the initial setup which are illustrated in figure 5.10. These profiles clearly depict

0.0

0.3

0.6

0.9

1.2

1.5

R
el

at
iv

e 
vo

rt
ic

ity
 |ζ

| (
10

-5
s-1

)

-90 -60 -30 0 30 60 90

Latitude

0.0

0.3

0.6

0.9

1.2

1.5

A
bs

. g
ra

di
en

t o
f 

Φ
 (

10
-3

m
s-2

)

-90 -60 -30 0 30 60 90

Latitude

Figure 5.10: Initial absolute values of the relative vorticity (left) and the geopotential
gradient (right) at the model level closest to the surface (test case 5).

the idealized nature of the test since its initial vorticity and gradient values are very

small and furthermore zonally symmetric. The test therefore provides an excellent
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example of a smoothly developing system based on a homogeneous basic state.

The test scenarios are listed in more detail in table 5.6. The table gives not

only information on the selected constant time steps and corresponding integration

steps for the 15-day forecast, but also shows some block statistics. In particular, the

Refinement Number of blocks at day Time # Model
criterion

Threshold
0 5 10 15 step (s) steps

|ζ| ≥ 2.5 ∗ 10−5s−1 228 312 444 582 120 10800

|ζ| ≥ 2.0 ∗ 10−5s−1 228 366 573 831 1331
3 9720

|∇Φ| ≥ 2.0 ∗ 10−3ms−2 228 291 513 816 150 8640

Table 5.6: Characteristics of the dynamically adapted runs with vorticity and geopo-
tential gradient criteria (test case 5).

number of blocks at different stages of the simulation is presented. As expected the

user-defined threshold values play an important role with respect to the sensitivity

of the block adaptations. This can be seen in the direct comparison of the two runs

with vorticity thresholds. A minor increase in the vorticity limit from 2.0 ∗ 10−5s−1

to 2.5∗10−5s−1 leads to a 30% reduction in the number of total blocks after 15 days.

For a thorough comparison of the adapted model runs, the vorticity and gradient-

based refinement criteria with threshold values 2.0 ∗ 10−5s−1 and 2.0 ∗ 10−3ms−2 are

selected. These generate a comparable number of adapted blocks so that the dif-

ferences in the positions of the adaptations can clearly be assessed. The following

adaptation strategy is employed. Both grids are statically adapted at the beginning

of the model runs. Here the maximum refinement level is set to 3, which corresponds

to a 0.625◦ resolution on the finest grid. The static adaptations (with criterion

Φs > 0m2s−2) are confined to the mountainous area and stay fixed during the model

simulations. The dynamic adaptations are assessed every two hours, which is a suit-
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able adaptation cycle for the selected slowly evolving features of interest. In principal,

an even longer time interval can also be used, for example a nine hour adaptation

cycle as in Skamarock [1988]. These intervals allow the flow to evolve smoothly be-

fore new adaptations are applied (see also discussion in Section 3.2.1). Furthermore,

two additional adaptation constraints are selected that restrict the number of the

refinement levels at high latitudes. In particular, the blocks adjacent to the poles

are only allowed to refine once and the subsequent neighboring blocks are limited to

two refinement levels. The latter is necessary in order to prevent a passive second

refinement request for the pole blocks due to cascading refinements at the lower lati-

tudes. In practice when starting with a 5◦ initial grid, these constraints result in the

setup shown in table 5.7. The restriction on the total number of refinement levels in

Maximum refinement level Geographical region

1 75◦ − 90◦ N/S

2 67.5◦ − 75◦ N/S

3 67.5◦ S - 67.5◦ N

Table 5.7: Maximum refinement levels in different geographical regions for the dy-
namically adapted runs with vorticity and geopotential gradient criteria.

polar regions is recommended for efficiency reasons since the global time step should

not be further limited by extremely small longitudinal grid distances at the poles.

In the current setup the global time steps are already short since the |CFL| < 1

condition for gravity waves in midlatitudes needs to be obeyed for grid distances at

the finest refinement level. In addition, the restriction limits computational noise at

high latitudes.

First, the performance of the adapted simulation with the vorticity refinement

criterion is evaluated. Figure 5.11 on page 179 shows two snapshots of the geopoten-
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tial height field (including orography) at day 10 and day 15 with overlaid adapted

blocks (subfigures c,d). Additionally, subfigures (a,b) depict the relative vorticity

field that guides the refinement and coarsening requests. It can clearly be seen that

the vorticity criterion picks out the lee-side wave train effectively and refines the

regions with strong curvature in the geopotential height field. These regions are as-

sociated with high vorticity values. The criterion detects both troughs and ridges in

the flow field since its absolute value is used for the assessments. The overall num-

ber of adapted blocks increases steadily during the course of the simulation despite

the coarsenings in some regions. This is due to the selection of the rather sensitive

threshold value that favors early refinements in the developing system. It can also

be observed that there is some minor noise in the vorticity field at 60◦ N (day 10)

and 75◦ N/S (day 15). These latitudes mark the positions of the digital Shapiro

and FFT filtering mechanisms that are applied poleward of 60◦ N/S and 75◦ N/S,

respectively (see also Section 2.2.2). Such small scale noise can possibly mislead the

adaptation requests, which is suggested by the adapted patch in the smooth region at

170E, 60N . This effect must therefore closely be observed in the AMR simulations.

For example, the noise pattern could be reduced by additional or alternative filtering

strategies at high latitudes.

For comparison, the same simulation with the gradient-based refinement indicator

is presented in figure 5.12 on page 180. Here subfigures (a,b) show the absolute value

of the geopotential gradient, which determines the refined regions in the geopotential

height field with incorporated orography (subfigures c,d). The resulting flow fields

closely resemble the vorticity-guided solutions although minor differences can be

detected at day 15. In general though, both simulations match the NCAR high

resolution reference solution (figure A.9) very well. The gradient indicator clearly
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marks the frontal zones that particularly develop in the Southern Hemisphere. It

reliably detects the strong gradient regimes that are again associated with the lee-

side wave train in the evolving flow field. The gradient criterion consequently tends

to select confined geographical areas that are clearly aligned. In comparison, the

refinements based on the vorticity criterion seem to cover slightly broader areas. The

number of refined blocks in the gradient-guided adaptive simulation also increases

continuously due to the choice of the sensitive threshold value. In addition, there is

some minor evidence of noise at high latitudes.

A second comparison of the vorticity- and gradient-based adapted simulations is

provided in figure 5.13. Here the meridional velocity fields of the two adapted runs at

day 15 are shown. Both fields closely resemble the NCAR reference solution, which

is depicted in figure A.11 on page 232. Though this qualitative comparison suggests

that the gradient-based adaptive simulation shows slightly more deviations from the

reference field than the vorticity-based run. Here it must be kept in mind that

the adapted runs are not expected to completely match the uniform high resolution

reference state. Instead, they resolve only selected features or regions of interest at

comparable high resolutions. The adaptive simulations therefore represent a true mix

of the four resolutions that vary by a total factor of 8. Nevertheless, the adapted runs

should be a good representation of the solution since the evolving flow field is still

characterized by rather large-scale wave patterns that can be adequately captured

at resolutions around 1.25◦ − 2◦.

In addition to the qualitative assessments, a quantitative comparison of the

vorticity-guided simulation with a variety of uniform grid control runs is presented

in figure 5.14. The figure illustrates the evolution of the l2 and l∞ height errors

over the 15-day forecast period. Here the uniform resolution runs serve as an indi-
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cator for the expected error margins in the adapted case. They cover the horizontal

mesh resolution 5◦ - 0.625◦ that also occur in the adapted run. All model runs are
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Figure 5.14: Normalized l2 (left) and l∞ (right) height errors for different uniform
grids (at varying resolutions) and the adapted run with vorticity crite-
rion (test case 5).

compared to the NCAR high resolution reference state. This solution has an un-

certainty of 0.00072 as estimated by Taylor et al. [1997]. As an aside, the l2 errors

for the finite-volume model compare well to values presented in the literature e.g.

by Jakob-Chien et al. [1995], Taylor et al. [1997]) and Spotz et al. [1998]. In figure

5.14 the errors for the uniform grid simulations show the expected convergence with

increasing resolution and can be considered the upper and lower error margin for

the adapted simulation. It can clearly be seen that the adapted run falls within

this range. Both l2 and l∞ errors closely resemble the 2.5◦ uniform model run with

respect to these global solution errors.

In practice though, this conclusion is slightly misleading since the primary goal

of the adapted run presented here is not to improve the global solution error, but the

local representation of features of interest. The global solution error might then de-

crease as a consequence of the improved local representation of the selected features,
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but it can not be guaranteed in a strict sense. This must clearly be distinguished.

More precisely, if the global solution error is the target of an adaptive grid simulation

as e.g. in Berger and Colella [1989] then the adaptation criterion needs to be modi-

fied. It requires the replacement of the current flow-based indicator with a numerical

criterion like the truncation error estimator as in Skamarock and Klemp [1993]. Then

the refinements can be placed in regions with the highest truncation errors that are

often associated with second and third-order derivatives of the horizontal velocities.

Skamarock and Klemp [1993] pointed out that

Truncation errors can only be associated with flow physics in so far as

interesting flow phenomena are likely to contain regions in which there

are large higher order derivatives; thus, interesting flow phenomena may

possibly, but not necessarily, indicate locations of large truncation er-

ror. Large truncation errors are not necessarily linked to regions of large

gradients.

If a flow-based refinement criterion is selected, then the questions to be asked are

• whether the AMR results closely resemble the full grid high-resolution simula-

tion with respect to the features of interest.

• whether the overall errors, including the newly introduced interpolation errors,

are acceptable.

In addition to the error norms, global invariants also provide more general infor-

mation on the model runs (see Section 4.1.2). Figure 5.15 depicts a comparison of

the total energy and potential enstrophy. Here, the uniform resolution simulations

are compared to the two adapted approaches with the vorticity and gradient-based
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Figure 5.15: Normalized global total energy (left) and potential enstrophy (right) for
different uniform grids (at varying resolutions) and the adapted runs
with vorticity and geopotential gradient criteria (test case 5).

adaptation indicators. In general, it can be observed that the total energy tends to

increase over time, whereas the potential enstrophy decreases moderately. As seen

before, the uniform resolution simulations span a range in which the adapted runs

are likely to fall. This is true in the potential enstrophy case where both adapted

runs lie almost entirely in the given envelope. Further, it is approximately true for

the adapted total energy curves that closely follow the trend of the high resolution

uniform runs. In both cases though the adapted simulations are rather noisy.

In conclusion, both adaptation indicators perform well with respect to detecting

the features of interest. They both reliably refine flow patterns that are associated

with the lee-side wave train. In general, the relative vorticity criterion is recom-

mended as the criterion of choice. It has the potential to detect the vortices in the

flow early and tracks them reliably during their life time.

Dynamically adapted orography

In the preceding discussion all model runs started with a statically adapted moun-

tain region with analytically reinitialized orography and geopotential data. This en-

sured that the representation of the topographic forcing was optimal with respect to
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the finest resolution in the adapted simulation.

In order to assess whether an adapted run can also be successfully integrated

with a dynamically adapted orography field, tests are performed that only take the

aforementioned vorticity adaptation criterion with threshold |ζ| ≥ 2 × 10−5s−1 into

account. The initial data are then entirely represented at the coarse 5◦×5◦ resolution.

As a consequence, the initial height of the mountain peak is reduced by approximately

19% on the coarse resolution mesh as the mountain top is not well-captured by the

sparse grid (1955.81 m versus 1646.45 m).

In the event of dynamic adaptations in mountainous terrain, the mountain height

is analytically reinitialized in order to match the refined grid. As a result, the moun-

tain height increases if adaptations near the peak are requested by the refinement

criterion. Figure 5.16 shows the resulting fully adaptive flow patterns. Here, snap-

shots of the geopotential height field (including orography) at day 1, 5, 10 and 15

with overlaid orography contours and block adaptations are presented. The flow

field is successfully refined and undisturbed despite the adaptively varying mountain

top and refined shape. It is interesting to observe, that the resulting flow patterns

closely resemble the model simulations with the statically adapted mountain region

(figure 5.11 on page 179). Since major parts of the mountainous terrain are refined

early during the course of the integration (after 13 hours), the initial coarse repre-

sentation does not strongly influence the final flow fields. In addition, no evidence

of noise near the adapted mountainous terrain is noticeable.
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CHAPTER VI

Test of the adaptive 3D dynamical core

Dynamically adaptive general circulation models on the sphere are not standard

in the atmospheric science community. So far, an adaptive dynamical core for global

atmospheric general circulation models with regular data-structures has never been

built before. This chapter provides insight into the newly developed adaptive finite-

volume model in the 3D configuration. As in the 2D shallow water framework, the

adaptations are based on the block structured data layout. They are confined to the

horizontal directions so that the whole vertical column is always contained in a block.

From a higher level viewpoint, the 3D model can be considered a staggered shallow

water system with a floating Lagrangian vertical coordinate. All 2D adaptation

principles apply.

This chapter discusses the first experiences with the adaptive 3D dynamical core.

It is divided into three sections. First, a new deterministic test case for 3D dynamical

cores is introduced in Section 6.1. This Jablonowski-Williamson test case describes

the evolution of an idealized baroclinic wave that develops from a perturbed balanced

initial state over a short 10-day forecast period. It is an ideal test example for the

3D adaptive grid simulations since the evolving wave train is confined to a small

geographical area. The adaptive dynamical core is tested both in a statically and

189
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dynamically adaptive setup. In Section 6.2 statically adapted model simulations with

up to three refinement levels along the storm track are assessed using the baroclinic

wave test. Here new questions arise with respect to adapted orography fields in

the 3D framework. In Section 6.3 the dynamically adapted simulations with one

refinement level are presented. These results are based on an alternative idealized

baroclinic wave test case without orography (Polvani et al. [2004]).

6.1 New idealized test cases for dynamical cores:
The Jablonowski-Williamson test

Tests of general circulation models and, in particular, dynamical core tests are

an important step towards future model improvements. They reveal the influence of

an individual model design on climate and weather simulations and indicate whether

the circulation is described representatively by the numerical approach.

Testing a 3D dynamical core is not straightforward even in a non-adapted case.

This research topic has received increased attention in recent years. In the absence of

non-trivial analytical solutions the model assessments most commonly rely on intu-

ition, experience or model intercomparisons. Furthermore, full GCMs with physics

modules are typically compared to observations. These are not available for pure

dynamical core assessments that isolate the dynamics package from the physical

parameterizations.

Very few standard test cases for 3D dynamical cores have been developed so far.

Among them are the long-term assessments of idealized climatic states suggested by

Held and Suarez [1994] and Boer and Denis [1997]. They require a 1000-day model

integration with analytically specified forcing functions that replace the physics com-

ponents. Typically time-mean zonal-mean flow fields are evaluated for both test
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scenarios that assess the model’s climate and its variability. But as a consequence,

the averaging of the flow patterns essentially eliminates all small-scale flow features

in the analysis although they are the main contributors to the mean state. Im-

provements in the statistical mean state are therefore directly related to improved

local representations of the flow pattern. Nevertheless, such a long-term simulation

is rather impractical for the adaptive grid simulations considered here. The real

strengths of the adaptive grid approach would then be masked by the averaging pro-

cedure. Therefore, short-term tests are recommended for the AMR simulations that

are mainly targeted at resolving and tracking features of interest at high resolutions.

Standard techniques for short-term dynamical core assessments can only rarely be

found in the literature. This is in contrast to the long history of test cases available

for shallow water models. Only recently, Polvani and Saravanan [2000] suggested a

short-term assessment technique that simulates the breakdown of the polar vortex

in a 3D dynamical core. The definition of this test case was inspired by earlier 1D

and 2D studies of the vortex erosion problem. These were conducted by Juckes and

McIntyre [1987] and Bates and Li [1997], respectively, who applied the 1D principles

to the 2D shallow water framework. In addition, Giraldo and Rosmond [2004] used a

3D version of the classical Rossby-Haurwitz test (Phillips [1959]) for dynamical core

assessments. This 3D extension of the 2D shallow water Rossby-Haurwitz test was

derived by Monaco and Williams [1975].

The lack of standard short-term dynamical core tests was one of the main mo-

tivations for the development of a new test technique that is in particular suitable

for the assessment of an adaptive grid simulation. The test assesses the evolution of

an idealized baroclinic wave in the Northern Hemisphere over a short 10-day period.

The design principles as well as the derivation and discussion of the initial data set
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are presented in the following sections 6.1.1 and 6.1.2 as well as in Appendix A.3.1. A

more detailed description of suitable diagnostics and a comparison of high resolution

reference states are given in Jablonowski and Williamson [2004]. This is joint work

with David L. Williamson (NCAR) who helped decide on the optimal test strategy

and developed diagnostics tools. At the same time, a similar baroclinic wave test was

independently developed by Polvani et al. [2004] (later also referenced as the Polvani

test). The two tests complement each other and have created renewed interest in

building a standard test suite for 3D dynamical cores in the future. Both tests, the

Jablonowski-Williamson test and the Polvani test have the potential to become part

of such a test suite. The Jablonowski-Williamson test has already been used for

dynamical core assessment by Giraldo and Rosmond [2004].

6.1.1 Design of the test case

The new baroclinic wave test case has been developed for dynamical cores with

pressure-based vertical coordinates. The underlying concept of this initial value test

was inspired by ideas in Hoskins and Simmons [1975] and Simmons and Hoskins

[1975]. In contrast to these authors though, the new idealized test is entirely de-

scribed by analytic initial conditions. These allow an easy use regardless of the grid

point arrangement of the selected computational grid.

The deterministic test is comprised of two parts. First, the dynamical core is

initialized with steady state, balanced initial conditions that are an analytic solution

to the hydrostatic primitive equations. Second, this flow is perturbed which triggers

the development of a baroclinic wave train after several days. The initial flow con-

sists of a zonally symmetric basic state with two jets in midlatitudes and a realistic

temperature distribution, which are displayed in figure 6.1. Here, the atmospheric
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Figure 6.1: Initial zonal wind (left) and temperature field (right). Contour intervals
are 3 ms−1 and 3 K, respectively.

conditions closely resemble the climatic state of a winter hemisphere. The centers

of the midlatitudinal jets at 45◦ N/S are placed at the pressure level p = 252 hPa,

which purposely lies just below the tropopause level at p = 200 hPa. Furthermore,

the globally averaged temperature of this distribution is approximately 255 K, which

matches that of the observed value in the atmosphere. The horizontally averaged

temperature at the surface is selected to be < T > = 288 K which corresponds ex-

actly to the temperature in the so-called U.S. standard atmosphere. The vertical

temperature profiles are shown in more detail in figure 6.2. The figure also illus-

trates the geopotential of the surface orography field that is necessary to balance the

initial state with non-zero wind speeds at the surface. As an aside, this is one of

the differences to the Polvani et al. [2004] test case. It can clearly be seen that the

initial temperature profiles at the equator, in midlatitudes and at the poles show the

characteristic behaviors found in the atmosphere with e.g. a low level inversion at

high latitudes. In addition, the stratospheric and mesospheric temperature profiles

are approximated at upper levels.

The careful test design guarantees static, inertial and symmetric stability proper-
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ties, but is unstable with respect to baroclinic or barotropic instability mechanisms.

These two forms of instabilities result from the vertical and horizontal wind shear

characteristics. The inertial and symmetric stability criteria are analyzed in figure

6.3. The figure shows the absolute and potential vorticity fields. The flow is stable
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Figure 6.3: Absolute vorticity (left) and potential vorticity (right) of the initialized
fields. Contour intervals are 2.5∗10−5s−1 and 0.25 PV units (1 PV unit =
10−6 K kg−1 m2 s−1).

with respect to inertial motions since the absolute vorticity field of the basic flow is

positive in the Northern Hemisphere and negative in the Southern Hemisphere (see
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Holton [1992]). The same argument holds for the potential vorticity that indicates

the symmetric stability of the flow. The potential vorticity PV is assessed in form

of the Ertel potential vorticity. It is defined by

PVΘ = (ζΘ + f)
(
− g

∂Θ

∂p

)
(6.1)

on constant potential temperature (Θ) surfaces. All symbols are standard (see also

Appendix C). Though in figure 6.3 the potential vorticity is displayed on constant η

model surfaces. This requires the application of a vertical coordinate transformation

from the Θ into the η system (calculation not shown). As an aside, the η-surfaces

coincide with constant pressure surfaces at t = 0 since there are no surface pressure

variations in the initial state. Similar distributions of the Ertel potential vorticity

have also been found by Simmons and Hoskins [1976].

The initial data set is also stable with respect to static stability. This is displayed

in figure 6.4 which shows the potential temperature distribution Θ and the Brunt

Väisällä (or buoyancy) frequency N . Both indicator are interchangeable. The flow
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is stable with respect to the static stability if the vertical potential temperature
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gradient dΘ/dz is positive or equivalently, if the frequency N is positive everywhere

(as shown).

The initial conditions can be used for two model setups. First, the model can be

initialized with the steady-state conditions and run without an overlaid perturbation.

Then model integrations over e.g. thirty days reveal how well a dynamical core can

keep its initial state (which is the analytical solution
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Figure 6.5: u perturbation
(m/s).

for this scenario). This is a stringent test of the stabil-

ity of the numerical scheme. Second, a well-resolved

small amplitude Gaussian hill perturbation can be su-

perimposed on the initial state. This triggers baro-

clinic wave activities after several days which are char-

acterized by explosive cyclogenesis at model day 8. In the current setup, the Gaussian

perturbation as shown in figure 6.5 with a maximum amplitude of 1m/s is superim-

posed on the zonal wind field in midlatitudes at (20E,40N).

6.1.2 Formal test definition and test strategy

The initial state is defined via analytic expressions. All parameters and physical

constants are also listed in Appendix C and are not necessarily repeated in the

following description. For a hydrostatic dynamical core with a pressure based vertical

coordinate η the auxiliary variable ηv is defined by

ηv = (η − η0)
π

2
(6.2)

with η0 = 0.252. In case of a vertical σ coordinate the η level in equation 6.2 can

be simply replaced with the σ value. This is true for all following equations. Both

representations are equivalent since there are no initial pressure variations at the

surface. Expression 6.2 can also easily be modified for models with a pure pressure



197

coordinate p. The surface pressure ps is constant and given by

ps(λ, ϕ) = 100000 Pa (6.3)

The flow field is comprised of two symmetric zonal jets in midlatitudes. The zonal

wind u and meridional wind v in m/s are defined as

u(λ, ϕ, η) = u0 cos
3
2 ηv sin2 (2 ϕ) (6.4)

v(λ, ϕ, η) = 0 . (6.5)

Here the maximum amplitude u0 is set to 35 m/s which is close to the wind speed

of the zonal-mean time-mean jet stream in the atmosphere. Furthermore, the hori-

zontally averaged temperature 〈T (η)〉 in degree K is split into two representations

for the lower (eqn. 6.6) and upper (eqn. 6.7) atmosphere. This introduces the

characteristic stratospheric and mesospheric temperature profiles. Both background

profiles are given by

〈T (η)〉 = T0 η
RdΓ

g (for ηs ≥ η ≥ ηt) (6.6)

〈T (η)〉 = T0 η
RdΓ

g + ∆T (ηt − η)5 (for ηt > η) (6.7)

with the tropopause level ηt = 0.2 and the horizontal-mean temperature at the

surface T0 = 288K. The temperature lapse rate Γ is set to 0.005 K/m which is

similar to the observed diabatic lapse rate. Additionally, the empirical temperature

difference ∆T = 48 ∗ 104K is chosen. The resulting temperature distribution is

comprised of the horizontal-mean temperature and a horizontal variation at each

level. It is given by

T (λ, ϕ, η) = 〈T (η)〉+
3

4

η π u0

Rd

sin ηv cos
1
2 ηv ∗

[(
− 2 sin6 ϕ (cos2 ϕ +

1

3
) +

10

63

)
2 u0 cos

3
2 ηv +

( 8

5
cos3 ϕ (sin2 ϕ +

2

3
)− π

4

)
a Ω

]
. (6.8)
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The surface geopotential Φs in m2/s2 completes the description of the steady state

initial conditions. The orography field balances the zonal wind field at the surface

and is determined by

Φs(λ, ϕ) = u0 cos
3
2

(
(ηs − η0)

π

2

)
∗

[(
− 2 sin6 ϕ (cos2 ϕ +

1

3
) +

10

63

)
u0 cos

3
2

(
(ηs − η0)

π

2

)
+

( 8

5
cos3 ϕ (sin2 ϕ +

2

3
)− π

4

)
a Ω

]
. (6.9)

When initializing the finite-volume dynamical core with this data set the simula-

tions have been observed to stay stable for typical time periods on the order of

weeks. During this time period the basic flow remains almost unchanged despite the

initial generation of gravity wave motions. They adjust the geostrophic balance in

the discrete system since the analytic balanced state is not entirely balanced in a

discrete representation. This is the typical geostrophic adjustment process that is

characterized by decaying gravity waves.

For an irregular computational grid such as an icosahedral grid, simulations with

the German weather model GME have shown that the truncation error of the nu-

merical scheme has a wave number 5 structure. This is due to the built-in wave

number 5 of the grid. It introduces small-scale wave number 5 perturbations dur-

ing the steady state integration that are unstable and considerably grow over time.

Such a model maintains the initial state for shorter time periods on the order of only

days. The balance improves with increasing resolution. This is an artifact of the

computational grid and not necessarily a model problem for a real atmospheric flow

that represents the whole wave number spectrum. The effect is clearly enhanced

by the idealized zonally symmetric setup. The same conclusion applies to models

that utilize a cubed sphere computational grid with a built-in wave number 4, es-
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pecially when using low-order numerical schemes. High-order methods postpone the

breakdown of the steady-state pattern.

If possible, the unperturbed model simulations should be run without horizontal

diffusion or Rayleigh friction near the model top (if implemented). Otherwise, the

diffusion mechanism damps the initial data over time.

Besides the assessment of the steady state solution, the test is primarily designed

to simulate a baroclinic wave. It can be triggered if the initial conditions are overlaid

with an unbalanced perturbation. Here a perturbation with a Gaussian profile is

selected and centered at

(λc, ϕc) =
(π

9
,
2 π

9

)
(6.10)

which points to the location (20E,40N). The perturbation u′

u′(λ, ϕ) = exp
(
−

( r

R

)2 )
(6.11)

with R = a
10

is superimposed on the zonal wind field at each vertical level by adding

u′ to u at each grid point. The great circle distance r is defined by

r = a arccos
(

sin ϕc sin ϕ + cos ϕc cos ϕ cos(λ− λc)
)

(6.12)

where a is the Earth’s radius. Typically the simulation should cover a 10-12 day

time period, but simulations over longer time intervals (e.g. 30 days) have also been

successfully performed. The baroclinic wave in the Northern Hemisphere starts grow-

ing noticeably around day 4 and evolves rapidly thereafter. The wave train breaks

around day 9 and generates a full circulation in both hemispheres around day 20.

Until day 20 the Southern Hemisphere does not show baroclinic wave activities. This

makes the test ideal for adaptive grid simulations since the features of interest are

well-defined and confined to the Northern Hemisphere. The adaptive grid is capable
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of tracking the localized wave train at high horizontal resolutions. The baroclinic

wave, although idealized, represents very realistic flow features. For example, strong

temperature fronts develop that are associated with the low and high pressure sys-

tems. In addition, the wave number of maximum growth rate lies between 5-9 which

agrees well with observations and assessments in the literature (e.g. Simmons and

Hoskins [1977]).

The baroclinic wave test sequence with unperturbed and perturbed initial condi-

tions has been applied to NCAR’s dynamical cores that are part of the CAM2 climate

model framework. In particular, these are the NASA/NCAR finite-volume dynam-

ical core and NCAR’s semi-Lagrangian and Eulerian spectral dynamics packages.

In addition, model results based on cubed meshes (Aimé Fournier, Steve Thomas,

NCAR, personal communication) and icosahedral grids are available. The icosahe-

dral dynamical core is part of the operational German weather forecast model GME.

The code was kindly provided for the baroclinic wave studies by Detlev Majew-

ski (German Weather Service, DWD). This model intercomparison and convergence

studies reveal interesting flow characteristics that have already led to model improve-

ments with respect to NCAR’s semi-Lagrangian dynamical core. Typical diagnostics

applied to the test results include error norm statistics, grid point data compar-

isons, phase shift assessments and wave number analyses that has been done in close

collaboration with David L. Williamson (NCAR). Furthermore, potential vorticity

analyses have been performed.

The baroclinic wave test case does not have an analytic solution, but high reso-

lution reference solutions can be derived. This has been done during the baroclinic

wave studies with NCAR’s dynamical cores and GME. The comparison of all high

resolution reference fields reveals that the dynamical cores converge despite their
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individual design and that a reference state can be recommended with a specific

uncertainty estimate (see details in Jablonowski and Williamson [2004]). With re-

spect to the adaptive grid simulations, the results can therefore be compared not

only to the equivalent uniform resolution runs, but also to a high resolution refer-

ence simulation. Plots of uniform resolution runs generated with the NCAR/NASA

finite-volume dynamical core are shown in the Appendix A.3.1.

6.2 Dynamical core tests with static adaptations

In this section, the 3D adaptive finite-volume dynamical core is assessed with a

statically adaptive setup that utilizes prior knowledge of the developing flow field.

The model is evaluated with the Jablonowski-Williamson baroclinic wave test case.

The flow field is characterized by a baroclinic wave train in the Northern Hemisphere

that is triggered by a small perturbation superimposed upon the smooth initial zonal

wind field.

The adapted blocks are used to refine the pre-determined storm track in the

midlatitudes (Northern Hemisphere) with increasing horizontal resolutions. The re-

finements are confined to the horizontal directions so that the whole vertical column

is refined in the event of refinement requests. Refinements are selected at the be-

ginning of the forecast, which is followed by an analytical reinitialization step. The

convergence tests with uniform resolutions have shown that the representation of the

baroclinic wave improves considerably with increasing horizontal resolution until the

pattern converges at resolutions around 0.5◦ − 1◦ (see figures A.16 and A.17). It

has also been observed that the flow is rather insensitive to the number of vertical

levels which justifies a purely horizontal refinement strategy. The same convergence

behavior is expected for the locally adapted finite-volume dynamical core.
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Four scenarios are assessed that all start with the basic 8x6 block setup and 9x6

cells per block. This parameter set represents an initial 5◦ × 5◦ grid. In addition,

26 vertical levels are selected (see Appendix B). The four simulations comprise a

coarse uniform 5◦ run as well as adapted grid simulations with 1, 2 and 3 refinement

levels. The refinements at each level then cover the whole latitudinal band structure.

Snapshots of the simulations at day 8 and day 10 are shown in figures 6.6 and 6.7

Here the analysis of the baroclinic wave train is concentrated on the surface

pressure field. The figures show the surface pressure patterns for all four grid setups

(a-d) at day 8 and 10. In addition, the adapted blocks are overlaid that clearly

illustrate the band structure of the refinement approach. The Southern Hemisphere

is passive in all simulations and therefore kept at the coarsest resolution at any time.

The corresponding time steps for the four model runs are determined by the gravity

wave activity at the finest refinement level in the midlatitudes. In particular the

chosen global time steps are 720 s, 360 s, 180 s and 90 s, respectively. In addition,

a mild filtering mechanism is applied to the wind components in tropical regions

in case of subfigures (d), which show the model simulation at the highest adapted

resolution. The filtering suppresses small-scale noise in the tropics and has negligible

effects on the evolution of the baroclinic wave in midlatitudes. Filtering other than

the regular FFT filtering in blocks adjacent to the poles and the digital Shapiro

filtering poleward of 60◦ N/S is not applied in the coarser model runs (a) through

(c). The latter two filtering strategies are identical to the mechanisms in the 2D

shallow water framework.

It can clearly be seen at both model day 8 and 10 that the representation of

the baroclinic wave improves significantly with an increasing number of refinement

levels. The baroclinic wave intensifies as expected in the fine grid adaptive runs and



203

(a
) 

 n
o 

st
at

ic
 r

ef
in

em
en

ts
, f

in
es

t r
es

ol
ut

io
n 

5o x5
o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

97
2

98
4

99
6

10
08

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

(b
) 

 1
 s

ta
tic

 r
ef

in
em

en
t, 

fi
ne

st
 r

es
ol

ut
io

n 
2.

5o x2
.5

o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

97
2

98
4

99
6

10
08

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

(c
) 

 2
 s

ta
tic

 r
ef

in
em

en
ts

, f
in

es
t r

es
ol

ut
io

n 
1.

25
o x1

.2
5o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

97
2

98
4

99
6

10
08

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

(d
) 

 3
 s

ta
tic

 r
ef

in
em

en
ts

, f
in

es
t r

es
ol

ut
io

n 
0.

62
5o x0

.6
25

o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

97
2

98
4

99
6

10
08

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

F
ig

u
re

6.
6:

S
u
rf

ac
e

p
re

ss
u
re

at
d
ay

8
fo

r
d
y
n
am

ic
al

co
re

ru
n
s

w
it

h
(a

)
n
o,

(b
)

1,
(c

)
2

an
d

(d
)

3
st

at
ic

re
fi
n
em

en
ts

.
T

h
e

ad
ap

te
d

b
lo

ck
s

ar
e

ov
er

la
id

,
th

e
fi
n
es

t
re

so
lu

ti
on

is
in

d
ic

at
ed

in
th

e
ti

tl
es

.
C

on
to

u
r

in
te

rv
al

s
ar

e
6h

P
a.



204

(a
) 

 n
o 

st
at

ic
 r

ef
in

em
en

ts
, f

in
es

t r
es

ol
ut

io
n 

5o x5
o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

94
0

96
0

98
0

10
00

10
20

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

(b
) 

 1
 s

ta
tic

 r
ef

in
em

en
t, 

fi
ne

st
 r

es
ol

ut
io

n 
2.

5o x2
.5

o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

94
0

96
0

98
0

10
00

10
20

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

(c
) 

 2
 s

ta
tic

 r
ef

in
em

en
ts

, f
in

es
t r

es
ol

ut
io

n 
1.

25
o x1

.2
5o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

94
0

96
0

98
0

10
00

10
20

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

(d
) 

 3
 s

ta
tic

 r
ef

in
em

en
ts

, f
in

es
t r

es
ol

ut
io

n 
0.

62
5o x0

.6
25

o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

L
on

gi
tu

de

94
0

96
0

98
0

10
00

10
20

Su
rf

ac
e 

pr
es

su
re

 [
hP

a]

F
ig

u
re

6.
7:

S
u
rf

ac
e

p
re

ss
u
re

at
d
ay

10
fo

r
d
y
n
am

ic
al

co
re

ru
n
s

w
it

h
(a

)
n
o,

(b
)

1,
(c

)
2

an
d

(d
)

3
st

at
ic

re
fi
n
em

en
ts

.
T

h
e

ad
ap

te
d

b
lo

ck
s

ar
e

ov
er

la
id

,
th

e
fi
n
es

t
re

so
lu

ti
on

is
in

d
ic

at
ed

in
th

e
ti

tl
es

.
C

on
to

u
r

in
te

rv
al

s
ar

e
10

h
P
a.



205

is rather damped on the coarse uniform 5◦ grid. Here the two model days represent

different growth stages of the system. Model day 8 in figure 6.6 shows the wave in

an explosive cyclogenesis state, whereas model day 10 in figure 6.7 depicts the wave

after wave breaking events set in. After day 10 all forecasts, even on non-adapted

grids, slowly start diverging from each other when predictability issues come into

play.

The model results at all refinement levels compare very well to the corresponding

uniform grid reference solutions. Especially the reference surface pressure fields at

day 8 (figure A.16 on page 243) are almost indistinguishable from the adapted sim-

ulations (figure 6.6). Minor differences can be seen in the maximum amplitudes of

the low and high pressure systems. But it must be kept in mind that the reference

solutions are computed with a slightly finer grid in meridional direction that could

also cause minor deviations. The same conclusions apply to the surface pressure

fields at model day 10. The two highest resolutions in figure 6.7 closely resemble the

reference fields in figure A.17 on page 244. Slight deviations are again detectable in

the maximum amplitudes of the baroclinic wave train, especially around the position

(210E,45N). No noise or distortions of the flow fields are visible in the adapted runs.

The flow varies smoothly at fine-coarse grid interfaces.

An additional comparison of the surface pressure fields for both the adapted and

uniform model runs is displayed in figure 6.8. The figure illustrates the time evolu-

tion of the minimum and maximum surface pressure in the global domain. Such an

analysis clearly shows the convergence with increasing resolutions, but on the other

hand does not indicate the spatial positions of the global extrema. Consequently,

phase shifts of the baroclinic wave are possible which can be assessed in grid point

space (see also Jablonowski and Williamson [2004]). For brevity, they are not dis-
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Figure 6.8: Global minimum and maximum surface pressure evolution (hPa) for runs
with uniform grids and static adaptations with three different refinement
levels.

cussed here. The time evolution of the extreme surface pressure values confirms

that the adapted runs closely match the uniform grid reference solutions. This is

in particular true for all simulations until day 8. After day 8, the minimum surface

pressure in the adapted run at the highest resolution slightly diverges which could be

related to the wave breaking processes in both simulations. It must be kept in mind

that an exact match can not necessarily be expected since the truncation errors in

the remaining coarse grid domain and the interpolation errors at the interfaces will

ultimately interact with the flow field.

The static adaptation are successfully used for the 3D adaptive model assess-

ment with band-structured refinement regions. However, attempts to relax the band

structure in order to avoid the overhead in regions without significant baroclinic

wave activity raised new questions concerning the underlying topography field. This

problem is depicted in figure 6.9. Two refinement strategies are employed. The

figures show a very early stage of the surface pressure field after eight model hours

with one refinement level. In the left figure one adapted block (in red) only refines
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Figure 6.9: Surface pressure field after 8 hours with refinements of (a) a single block
and (b) the whole latitudinal band (as in figure 6.7b).

the immediate vicinity of the initial perturbation, whereas in the right figure the

whole latitudinal band is refined as discussed earlier. Both underlying orography

fields are reinitialized analytically after adaptations occurred. It is important to

note that there are no variations in the orography in the east-west direction, but

that the orography varies smoothly in north-south direction (see figure 6.2). This

north-south variation causes difficulty at the block interface in the adapted simula-

tion with a jump in resolution in longitudinal direction. The flow accumulates mass

at the eastern outflow boundary which leads to an instability after short time inter-

vals. This effect can not be observed if the jump in the resolution only affects the

north-south boundaries where there is no change in orography along the interface.

However, it is interesting to observe that dynamically adapted orography fields

did not cause a problem in the 2D shallow water model as shown earlier in fig-

ure 5.16 on page 187. This observation is possibly related to the treatment of the

geopotential gradient in both the 2D and 3D configurations, which represents the

main difference of the two setups. It is an open research problem how to handle the

orography field in the adapted regions in a 3D model simulation. So far, this aspect
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has not been well-documented in the literature. Only Bacon et al. [2000] reported

on adaptive orography data and lower boundary conditions for adaptive limited-area

simulations. Future research activities will address this topic further.

6.3 Dynamical core tests with dynamic adaptations

In addition to static adaptations in the 3D framework, it is of particular interest

to assess the dynamically adaptive approach without prior knowledge of the flow

field. This is the classical application of adaptive mesh refinements. The dynam-

ically adapted model is tested using an alternative idealized baroclinic wave test.

This test was developed by Polvani et al. [2004]. The underlying test strategy of

the Polvani test is very similar to the Jablonowski-Williamson test case. The sim-

ulation starts with smooth balanced initial conditions that are perturbed to trigger

a baroclinic wave over a 10-day forecast period. The initial data are displayed in

Appendix A.3.2 on page 245. One of the main differences is that the wind speed

at the surface is identically zero in the Polvani test case. Therefore the orography

field is zero since there is no active flow field to be balanced. In addition, all initial

data only show patterns in the Northern Hemisphere where the baroclinic wave is ob-

served. This leads to a less realistic global initial data set, which on the other hand is

irrelevant with respect to the developing wave train. Furthermore, the specification

of the initial data is only partly analytic and partly based on numerical integrals.

As argued before, the evolution of a baroclinic wave train with strong gradients

is an ideal test example for adaptive grid simulations. Here the baroclinic wave is

triggered by perturbing the initial temperature field at each level. It must be noted

that the base resolution for this test is increased in order to allow a more accurate

representation of the initial data at the coarsest level. It is recommended for this test



209

case since the initial conditions contain rather strong gradients. As a consequence,

the adaptive grid simulation does not suffer from a severe underrepresentation of the

initial data. The base resolution is 2.5◦ × 2.5◦ with 16x12 blocks and 9x6 cells per

block.

The adaptations are guided by a user-defined refinement criterion. Based on

the experiences in Chapter V a vorticity-based refinement indicator at the model

level closest to the surface (at approximately 992hPa) is selected. In particular,

the refinement criterion for the runs depicted in figure 6.10 is set to |ζ| ≥ 0.75 ∗

10−5s−1 As an aside, the initial relative vorticity at the surface is zero. The rather

sensitive threshold for the absolute value of the relative vorticity is chosen in order

to capture the evolution of the wave early in its developing stages. Here the first

adaptations occur at day 3. An alternative increased threshold such as |ζ| ≥ 2 ∗

10−5s−1 triggers the first refinements at model day 4. Day 4 is the point in time when

the baroclinic wave enters its rapid development phase. Therefore, the increased

refinement threshold does not capture the initial organization of the wave disturbance

by a refined area. In practice though, a compromise must be found in order to balance

the accuracy and efficiency of an adapted run.

For the dynamically adaptive 3D tests, the maximum number of refinement levels

is set to 1. The integrations cover a 10-day time period and snapshots of the adaptive

simulation at day 3, 4, 8 and 10 are shown in figure 6.10. The refinement region

clearly captures and tracks the developing wave. As in the statically adapted case the

additional resolution leads to a more accurate representation of the wave train. This

can be seen in comparison to figure A.19 on page 247 that displays the comparable

uniform grid solutions at day 8 and 10. The surface pressure distributions are very

similar at the refined resolution 1.25◦. The adapted run successfully predicts the
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intensification of the wave train with increased resolution. Minor differences can

again be found with respect the amplitudes of the extreme values. In this test case

the wave breaking event sets in after day 8 which can contribute to slowly diverging

flow patterns thereafter.

Here no static pre-determined refinement regions are defined. In the event that

the developing wave needs to be detected even earlier than day 3, a combination

of several refinement criteria is feasible. For example, a combination of a surface

pressure indicator and a vorticity-based assessment could replace the pure vorticity

criterion. Initial tests with a surface pressure indicator that locates the positions of

the maximum and minimum pressure centers have been successfully performed.





CHAPTER VII

Summary and future research directions

Climate and weather systems are true multi-scale phenomena that are charac-

terized by widely varying spatial and temporal scales. Solving such a problem more

efficiently and accurately requires variable resolution that tracks small-scale features

embedded in a large-scale flow. This approach provides new insight into small-scale

large-scale flow interactions that are unresolved by uniform grid applications. A

dynamically adaptive model for global climate and weather research with regular

data-structures has never been built before. So far, only irregular triangulated data

have been discussed for adaptive atmospheric modeling systems (Bacon et al. [2002],

Gopalakrishnan et al. [2002]) on the sphere. This dissertation is a step towards de-

veloping new adaptive methods for future weather and climate studies. It documents

the design principles and successful implementation of a statically and dynamically

adaptive dynamical core for general circulation models on the sphere.

The adaptive grid techniques have been applied to a revised version of NCAR/

NASA’s next generation dynamical core for climate and weather research. The adap-

tive model design is based on two fundamental building blocks, a block structured

data layout and a spherical adaptive grid library. This AMR communication library

for parallel processors has been newly developed at the Computer Science Depart-
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ment at the University of Michigan.

The adaptive dynamical core has been run in two model configurations: the

full 3D hydrostatic dynamical core on the sphere and the corresponding 2D shallow

water configuration that is extracted out of the 3D version. This shallow water setup

serves as an ideal testbed for the horizontal discretizations and the 2D adaptive mesh

strategies.

The static and dynamic adaptations have been tested using the standard shal-

low water suite and a newly-developed idealized 3d baroclinic wave test case. Static

adaptations are used to vary the resolution in pre-defined regions of interest. This

includes static refinements near mountain ranges or static coarsenings in longitudinal

direction for the implementation of a so-called reduced grid in polar regions. Dy-

namic adaptations are based on flow characteristics and guided by refinement criteria

that detect user-defined features of interest during a simulation. In particular, flow-

based refinement criteria, like vorticity or gradient indicators, have been suggested.

Refinements and coarsenings occur according to pre-defined threshold values.

Summary

Static and dynamic adaptations have been assessed both in the 2D and 3D model

framework. The statically adaptive runs in the 2D shallow water setup show that the

reduced grid with two reduction levels can be successfully used for passive advection

problems. The model results are almost indistinguishable from the full grid control

run. In case of nonlinear model simulations, the reduced grid performs well in case of

one reduction level close to the poles, whereas the addition of the second reduction

can not be recommended. The second reduction level increases the solution error in

the spherical grid system to unacceptable levels. Overall, the reduced grid with one

reduction is in particular a viable choice if the global time step is constrained by the
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advective wind speeds in polar regions. Then it allows an increase in the time step

which saves computational costs despite the overhead associated with adaptations.

In addition, 2D shallow water tests with static refinements in user-determined

regions of interest have revealed that refinement regions can be successfully placed

at arbitrary positions within the model domain. The flow passes through the inter-

face boundaries without noise or significant distortions for at least a 7-14 day time

period. Such a time period represents the typical duration of a weather prediction

forecast. After this time span grid interface effects might play a role in flow fields

with strong gradients and high wind speeds. Statically adapted runs with external

forcing though, present a challenge for the adaptive grid approach. Although the

transport of a low pressure system has been well-simulated in the adapted runs, the

noise along the boundaries prevents the overall solution error from decreasing ac-

cordingly. In future studies, the interface treatment in a forced system needs to be

revisited.

Static adaptations have also been tested in the 3D dynamical core setup. For

these studies, a new idealized baroclinic wave test case for short-term dynamical

core assessments has been developed. The design principles and test strategies are

documented in the dissertation. The test has the potential to become part of a future

standard test suite for dynamical cores. The 3D evaluations of the static adaptations

along the storm track have shown that the evolution of the baroclinic wave can be

successfully predicted without noise or distortions at fine-coarse grid boundaries.

The refinements capture the correct intensification of the wave train with increased

resolution without the need of a fine resolution in the global domain.

Besides static adaptations, dynamically adaptive simulations have been success-

fully performed in both the 2D and 3D framework with up to four refinement levels.
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The dynamically adaptive grid is able to track selected features of interest according

to user-defined adaptation criteria. A variety of flow based adaptation indicators has

been investigated that reliably detect features such as a lee-side wave train behind a

mountain or a cosine bell in a pure advection experiment. Special attention has been

paid to a relative vorticity based refinement criterion that is compared to a gradient

based indicator. Both perform well in the 2D shallow water setup. For future stud-

ies, a vorticity criterion is recommended that captures the waves in an evolving flow

field early. The vorticity criterion at the lowermost model level has also been used

for 3D assessments of the dynamically adaptive approach. Tests with an alternative

baroclinic wave test case show that the flow is well-captured with increased accuracy

in the refined region. Overall, the selection of the optimal adaptation criterion and

threshold is highly problem dependent and balances the efficiency and accuracy of

the run. In general, significant computational savings can be made in comparison

to fine-grid fixed resolution runs as shown by the timing results for the dynamically

adapted advection tests.

The development of the dynamically adaptive dynamical core also raised ques-

tions concerning numerical and computational stability issues. Among them has

been the so-called pole problem in a regular latitude-longitude grid that leads to

the convergence of the grid lines in polar regions. The resulting extremely small

grid boxes then require efficient filtering strategies. Several filtering and divergence

damping techniques for the adaptive grid framework have been assessed that success-

fully smooth the gravity wave motions without distorting the relevant atmospheric

wave patterns. Filtering has been found to be imperative for stable simulations.

Furthermore, numerical questions have been addressed with respect to suitable in-

terpolation techniques for adaptive simulations. Interpolations are necessary for split
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and join operations as well as for ghost cells updates along the interfaces. A variety

of conservative and non-conservative techniques with increased accuracy have been

investigated. A second-order scheme based on a quasi-biparabolic PPM approach

is recommended for accuracy reasons. The applied interpolation scheme has been

slightly modified in comparison to published techniques.

Accomplishments and highlights of the research project

Significance: Adaptive methods offer an attractive framework for future climate

and weather models. For the first time, it has been shown that the adaptive

grid approach can be successfully applied to a dynamical core of a GCM with

regular data structures in spherical geometry. In the future, AMR has the po-

tential to become a key technique for improved atmospheric flow simulations

that resolve features of interest, like regions with strong gradients or curvature,

more adequately. The keys to the success of adaptive grid methods in the atmo-

spheric sciences lie in their parallel performance on high- speed supercomputers

and high accuracy with respect to the underlying numerical scheme.

Relevance and future potential: NCAR’s future climate model is likely to be

based on the NASA finite-volume dynamical core and NCAR’s physics package.

This finite-volume dynamical core has been one of the building blocks of the

adaptive grid research project. It therefore represents an essential step towards

an adaptive full GCM with dynamics and physics package. Future research will

address the incorporation of physics components into the model. Furthermore,

a new idealized test case for dynamical cores has been developed that is targeted

at short-term deterministic 3D model assessments. This test case might become

a standard tool for model developers.
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Collaboration: The research project has established a collaboration between the

University of Michigan, the NASA Goddard Space Flight Center (GSFC) and

the National Center for Atmospheric Research. In particular, the science team

supporting the research consisted of Joyce E. Penner and Michael Herzog1,

Robert Oehmke and Quentin F. Stout2, Bram van Leer and Ken Powell3, Shian-

Jiann Lin and Kevin Yeh4, and David L. Williamson5.

Interdisciplinary research: This project involves interdisciplinary ideas and re-

quires knowledge of atmospheric science, computer science and numerical tech-

niques. It ideally combines global climate modeling aspects, the newest parallel

and high performance computing techniques and advanced numerical methods

pioneered for CFD applications in other disciplines. The adaptive model is

based on the physical-motivated finite-volume approach and is designed for

distributed-memory parallel computer architectures.

Future research direction

Dynamic grid adaptations for climate and weather applications are a current re-

search topic for the atmospheric science community. New studies are under way at

NCAR, the University of Cambridge, UK and the Center for Atmospheric Physics

(Science Applications International Corporation, Virginia, USA). The promising re-

sults of this dissertation and the efforts of the community will help answer the open

1Atmospheric Science, University of Michigan, Ann Arbor

2Computer Science, University of Michigan, Ann Arbor

3Aerospace Engineering, University of Michigan, Ann Arbor

4NASA/GSFC, Data Assimilation Office, Greenbelt, Maryland

5NCAR, Climate and Global Dynamics Division, Boulder, Colorado
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question whether AMR can be successfully used in full GCMs with dynamics and

physics components. Incorporating physics into an adaptive model represents a chal-

lenging research problem. So far, only Bacon et al. [2000] and Gopalakrishnan et al.

[2002] have included a complete physics package in their adaptive modeling system

OMEGA. As observed by Skamarock and Klemp [1993], the truncation error esti-

mates in adaptive grid simulations with parameterized mixing do not exhibit the

expected rate of decrease when refining the mesh. Even error increases were ap-

parent that can not be found in dynamical core simulations without parameterized

physics. As a consequence. a fundamental concern in adaptive mesh applications is

the validity and consistency of grid-scale dependent physical parameterizations that

are used over a wide range of refinement levels. Two aspects need to be considered.

On the one hand, grid-dependent model parameters like the horizontal diffusion co-

efficient are no longer optimal or even valid when changing the mesh resolution. On

the other hand, it is unclear at what grid scale the parameterizations like convection

or turbulence packages become unnecessary or even detrimental.

In addition, the influence of the lower boundary conditions in adaptive mesh

applications is of equal importance. Atmospheric models rely on worldwide data

sets for the surface elevation, land/water coverage, soil types, land use, deep soil

temperatures, deep soil moisture and sea surface temperatures at varying grid reso-

lutions. These are used to derive important secondary parameters such as the surface

roughness and albedo. Therefore, in adaptive mesh applications the treatment of the

refined lower boundary conditions needs to be carefully addressed in order to improve

the overall accuracy. A starting point for future research efforts could be the assess-

ment of adaptive orography based on experiences with nested grid models (Zhang

et al. [1986] and Fox and Maskell [1995]) and the adaptive modeling system OMEGA
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(Bacon et al. [2000]). The latter provides routines and data bases for dynamically

adaptive lower boundary conditions.

From a computational standpoint, future developments could include a new load-

balancing strategy for the AMR communication library that is based on the space-

filling curve approach. Furthermore, library support for adaptive time steps is de-

sirable that allows different time steps for each refinement level. This reduces the

overhead of the adaptive simulation. In addition, refinements in the vertical direc-

tion might become imperative for very high horizontal resolutions, especially if the

underlying equations are switched from a hydrostatic to a non-hydrostatic regime.

In conclusion, in the future dynamically and statically adaptive mesh refinements

are feasible for short-term weather predictions. A statically refined model could

possibly replace today’s nested grid approaches for improved local weather forecasts.

It furthermore guarantees consistent boundary conditions that do not violate the

conservation principles across interfaces. Dynamically adaptive techniques could

add extra flexibility to a weather prediction system that allows, for example, the

tracking of low pressure centers in the global domain. Static adaptations in pre-

determined regions of interest, especially near mountain ranges, are also a viable

option for long-term climate predictions with a regional focus.

On the other hand whether dynamic adaptations can be successfully applied to

climate simulations remains an open research question that needs to identify the

features of interest for long-term climate assessments.
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APPENDIX A

Overview of the 2D shallow water and 3D

dynamical core test set

A.1 The standard test suite for the 2D shallow water equa-
tions

The standard test suite for the shallow water equations in spherical coordinates

has been proposed by Williamson et al. [1992]. It comprises a collection of 7 test

cases with increasing complexity which have been designed by various authors. Here,

six of the seven test scenarios have been used in order to assess the performance of

the adaptive finite-volume dynamical core. In addition, a shallow water test case

suggested by McDonalds and Bates [1989] has been applied. All test cases start with

analytic initial data sets that are briefly described in the following section. A general

overview of the shallow water test results is provided by Jakob et al. [1993].

A.1.1 Test case 1: Advection of a cosine bell

Test case 1 assesses the advection scheme in isolation and does not deal with

the complete nonlinear shallow water equations. In this two-dimensional solid body

rotation test case a cosine bell is passively advected around the sphere at various
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rotation angles α to the equator. The nondivergent velocity is defined by

u = u0 (cos α cos ϕ + sin α cos λ sin ϕ) (A.1)

v = −u0 sin α sin λ (A.2)

where u0 ≈ 38.61ms−1 (details in Williamson et al. [1992]). The initial distribution

of the geopotential height field h is given by

h(λ, ϕ) =





(
h0

2

)(
1 + cos(πr/R)

)
if r < R

0 if r ≥ R

(A.3)

with the peak amplitude h0 = 1000m. r is the great circle distance between a position

(λ, ϕ) and the center of the cosine bell, initially set to (λc, ϕc) = (3π/2, 0). The

orography hs is set to zero. The numerical scheme is expected to translate the cosine

bell without any change in shape. The true solution can be analytically computed

when updating the position of the cell center (see also the trajectory calculation in

Section 4.1.3).

The initial cosine bell and the zonal wind field for α = 0◦ are displayed in figures

A.1 and A.2. The meridional wind v is zero for α = 0◦ .
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Figure A.1: Initial geopotential height (and reference solution after 12 days) of the
cosine bell. Contour interval is 100 m, the zero contour is omitted.
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Figure A.2: Zonal wind u for α = 0◦. Contour interval is 2.5 ms−1.

Figure A.3 on the next page displays the advective wind components for the

rotation angles α = 45◦ and α = 90◦. Then the wind field advects the feature

slantwise (α = 45◦) or across the poles (α = 90◦) around the sphere.

A.1.2 Test case 2: Steady state geostrophic flow

Test case 2 is a steady state solution to the nonlinear shallow water equations. It

is comprised of a solid body rotation with a balanced geostrophic height field. As in

test 1, several rotation angles α can be specified which then require the recalculation

of the Coriolis parameter f . The wind field is identical to the wind definitions in

test case 1 (eqn. A.1 and A.2). The analytic geopotential Φ = g h is defined by

gh = g h0 −
(
a Ω u0 +

u2
0

2

)
∗ (− cos λ cos ϕ sin α + sin ϕ cos α)2 (A.4)

with g h0 = 2.94 × 104m2/s2 and u0 as in test case 1. The reference solution or

true solution at any time is the initial data set. The initial geopotential height fields

for the rotation angles α = 45◦ and α = 90◦ are shown in figures A.4 and A.5 on

page 227. The corresponding initial wind fields are displayed in figure A.3 (test cases

1 & 2).
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Figure A.4: Initial geopotential height and reference solution of test case 2 with
α = 45◦. Contour interval is 100 m.
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Figure A.5: Initial geopotential height and reference solution of test case 2 with
α = 90◦. Contour interval is 100 m.
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A.1.3 Test case 3: Steady state geostrophic flow with compact support

Test case 3 is similar to test case 2 as it defines a steady state flow field that

should remain constant during the course of the integration. Here, the wind field is

nonzero only in a limited region. The rotation angle has been set to α = 0◦. Then

the initial conditions describe a zonal flow whose u and h profiles are illustrated in

figure A.6. The meridional wind is zero. In this test case, the geopotential height can
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Figure A.6: Initial latitudinal profiles and reference solutions of the geopotential
height (left) and the zonal wind u (right).

no longer be evaluated analytically but with a numerical integration method (e.g.

trapezoidal rule). The initial conditions are also the reference solution (see details

in Williamson et al. [1992]. The height of the mountain hs is zero.

A.1.4 Test case 4: Forced nonlinear system with a translating low

The flow field of test case 4 is the solution to a forced shallow water system

where the right hand sides of the equations 2.1 and 2.2 are replaced with the time-

dependent forcing functions Fh, Fu and Fv (see Williamson et al. [1992]). The flow is

a translating low pressure center in the Northern Hemisphere which is superimposed

on a symmetric jet stream about the equator. The maximum translating wind speed

is u0 = 20m/s. The initial and analytic solution at day 5 of the geopotential height
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field are displayed in figure A.7. The reference position (λ, ϕ) of the low pressure

center at day 5 is 77.7◦ E, 45◦ N . The orography field is set to zero.
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Figure A.7: (a) Initial geopotential height and (b) analytic reference solution after
5 days plotted on an orthographic projection centered at 45N and the
longitude of the through ((a) 0E and (b) 77.7E). The contour intervals
are 100 m.

A.1.5 Test case 5: Flow over a mountain

Test case 5 consists of a zonal flow over an isolated mountain on the Northern

Hemisphere. The wind components and geostrophic initial height field are defined

as in test case 2 with α = 0◦, but h0 = 5960m and u0 = 20m/s. The height of the

mountain is given by

hs = hs0 (1− r/R) (A.5)

where hs0 = 2000m, R = π/9 and r2 = min[R2, (λ − λc)
2 + (ϕ − ϕc)

2]. The center

of the mountain is placed at (λc, ϕc) = (3π/2, π/6). The initial geopotential height

and orography fields are depicted in Chapter V in figure 5.9 on page 174. The initial

meridional wind v is zero and the initial zonal wind profile u is shown in figure A.8.
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Figure A.8: Initial latitude-height profile of the zonal wind u.

The initial flow is not in geostrophic equilibrium with the topography, resulting

in gravity waves of significant amplitude. Over time a complex flow pattern develops

that illustrates the evolution of a lee-side trough with subsequent wave trains. This

flow field does not have an analytic solution. Therefore, a high resolution reference

solution in form of spectral expansion coefficients has been provided by NCAR (see

also explanations in Section 4.1.3 on page 117 and Jakob et al. [1993]). The NCAR

reference solutions for the geopotential height plus orography field at day 10 and 15

are presented in figure A.9 on the next page. The mountain is overlaid for illustration

purposes. In addition, figures A.10 and A.11 on page 232 show the NCAR reference

solution for the wind components u and v at day 15.

These reference flow fields are used for the computation of the normalized error norms

in Chapter V.
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Figure A.9: NCAR reference solution of h = h∗ + hs (geopotential height plus orog-
raphy) at (a) day 10 and (b) day 15. The mountain is overlaid for
illustration purposes.
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Figure A.10: NCAR reference solution of the zonal wind u at day 15. Contour in-
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Figure A.11: NCAR reference solution of the meridional wind v at day 15. Contour
interval is 5 ms−1.
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A.1.6 Test case 6: Rossby-Haurwitz wave

Shallow water test case 6 comprises a Rossby-Haurwitz wave with wavenumber

4 which is an analytic solution to the nonlinear barotropic vorticity equation on

the sphere. However, the flow field is not an analytic solution of the shallow water

equations but has been used many times for shallow water model assessments.

The initial h and nondivergent u and v fields are defined by analytic expressions

(see Phillips [1959] or Williamson et al. [1992]) which describe a global wavenumber

4 pattern. This flow field is depicted in figure A.12 on the next page. During the

course of the integration the pattern moves from west to east without change of

shape. The orography field is set to zero.

As in test case 5, the reference solutions to test case 6 are provided by high

resolution spectral model integrations (NCAR). The corresponding flow fields of the

geopotential height h at day 7 and 14 as well as the wind components u and v at

day 14 are shown in figure A.13 on page 235.
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A.2 McDonald-Bates shallow water test

The McDonalds and Bates [1989] shallow water test case is not part of the stan-

dard shallow test suite but could be considered an extension of the standard testing

framework. The test has been e.g. used by Bates et al. [1990], Giraldo [2000b]

and Giraldo et al. [2002] who also coined the name “Dancing High-Low Waves”.

The initial condition consists of a geostrophically balanced flow pattern where the

geopotential is given by

Φ(λ, ϕ) = Φ̄ + 2 Ω a v0 sin3 ϕ cos ϕ sin λ (A.6)

with Φ̄ = 5.768 × 104 m2s−2 and v0 = 20ms−1. The corresponding geopotential

height field is displayed in figure A.14. The wind components u and v can then be
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Figure A.14: Initial geopotential height for the McDonald test. Contour interval is
100 m.

derived from expression A.6 using the geostrophic relationship. The resulting wind

field is shown in figure A.15 on the facing page.

This test does not have an analytic solution. It consists of two large waves with

the high wave in the west and the low wave in the east (in the Northern Hemisphere).

The positions in the Southern Hemisphere are reversed. The wave rotates clockwise
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Figure A.15: Initial (a) zonal wind and (b) meridional wind for the McDonald test.
Contour intervals are 2.5 m−1.
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in a dance like fashion. After 5 days, the low and high wave exchange their positions

and arrive again at their original locations at day 10.

A.3 Idealized tests for 3D dynamical cores

A.3.1 Jablonowski-Williamson baroclinic wave test

The Jablonowski-Williamson baroclinic wave test case for 3D dynamical cores

has been developed as part of the adaptive grid research project. As outlined in Sec-

tion 6.1 on page 190, the initial conditions are defined analytically. A brief overview

of the derivation is given below.

Derivation of the Jablonowski-Williamson baroclinic wave test case

The starting point is the 3D primitive equation system in spherical coordinates

(λ, ϕ) with a pressure-based hybrid vertical coordinate η. The PE equations are

given by

Horizontal momentum equations:

d u

d t
− u v tan ϕ

a
=

− 1

a cos ϕ

(
∂ Φ

∂ λ
+ Rd T

∂ ln p

∂ λ

)
+ f v + Fr,λ

d v

d t
+

u2 tan ϕ

a
=

− 1

a

(
∂ Φ

∂ ϕ
+ Rd T

∂ ln p

∂ ϕ

)
− f u + Fr,ϕ

Hydrostatic equation:

∂ Φ

∂ η
= − Rd T

p

∂ p

∂ η

if ps = p0 ⇒ η
∂ Φ′

∂ η
= − Rd T ′

Thermodynamic equation:

d Θ

d t
=

Θ

T

Q
cp
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Continuity equation:

∂

∂ t

(∂ p

∂ η

)
+

1

a cos ϕ

∂

∂ λ

(∂ p

∂ η
u
)
+

1

a cos ϕ

∂

∂ ϕ

(∂ p

∂ η
(v cos ϕ)

)
+

∂

∂ η

(∂ p

∂ η
η̇
)

= 0

Equation of state for dry air:

p = ρRd T

with:

η̇ =
d η

d t
d

d t
() =

∂

∂ t
() + (~v∇)()

=
∂

∂ t
() +

u

a cos ϕ

∂

∂ λ
() +

v

a

∂

∂ ϕ
() + η̇

∂

∂ η
()

Based on this formulation the goal is to derive a steady state, balanced initial data

set for the model variables u, v, ps, T, Φs where u and v stand for the horizontal wind

components, ps symbolizes the surface pressure, T denotes the temperature field and

Φs is the geopotential of the surface orography. The derivation of such an initial data

set contains several degrees of freedom, e.g. the chosen wind profiles and constant

parameters. Here, the selected profiles and parameters guarantee that the resulting

initial data closely resemble a realistic climatic state and fulfill the symmetric and

static stability criterion. On the other hand, the flow is designed to be baroclinically

and barotropically unstable. The design principles and derivation steps are

1. Assume adiabatic and frictionless atmosphere, set Q and ~F to zero.

2. Choose nondivergent wind field u and v (e.g. as in Section 6.1).

3. Choose constant surface pressure ps, e.g. ps = p0 = 1000 hPa.
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4. Choose the horizontally averaged temperature profile 〈T (η) 〉. This can easily

be done in z coordinates, e.g. 〈T 〉 = T0 − Γ z where Γ is the vertical tem-

perature gradient. This equation can then be transformed into the p system

(or equivalently into the η− or σ-systems) via integration of the hydrostatic

relationship ∂ p
p

= − g
Rd 〈T 〉 ∂z. It follows z = T0

Γ

(
1− (

p
p0

)Rd Γ

g

)
.

5. Derive the geopotential Φ and compute the surface geopotential Φs:

• start with v momentum equation

• assume steady state solution: set d v
d t

to zero

• take chosen equation for u, plug it into the momentum equation for v and

integrate (note that ∂ ln ps

∂ ϕ
= 0 on η-surfaces)

1

a

∂Φ′

∂ϕ
= − u (2 Ω sin ϕ +

u

a
tan ϕ)

Φ′ is the deviation of the geopotential from a horizontal mean value 〈Φ 〉

• integrate analytically in order to arrive at the expression Φ′ = (. . .) + Φ0

• find integration constant Φ0 using the condition that the deviations vanish

when averaged horizontally

1

4π

∫ 2π

0

∫ π
2

−π
2

Φ′ cos ϕ dϕ dλ = 0

• calculate: Φ(ϕ, λ, η) = 〈Φ(η) 〉 + Φ′(ϕ, λ, η) where 〈Φ(η) 〉 is the hori-

zontally averaged geopotential. In hydrostatic GCMs, it is only neces-

sary to calculate the surface geopotential Φs which represents the orog-

raphy. Therefore, the horizontally averaged geopotential at the surface

〈Φ(η) 〉 = 〈Φ(ηs) 〉 is set to zero. In general, 〈Φ 〉 can be computed via

〈Φ 〉 = gz(p).
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6. Derive the temperature T :

• Determine the horizntal temperature deviation T ′ using the hydrostatic

equation (differentiate Φ′)

T ′(λ, ϕ, η) =
−η

Rd

∂Φ′(λ, ϕ, η)

∂η

• calculate: T (ϕ, λ, η) = 〈T (η) 〉 + T ′(ϕ, λ, η) where 〈T (η) 〉 is the hori-

zontally averaged temperature discussed in step 4.

In this setup, the initial vertical velocity is zero and the thermodynamic equation

is automatically fulfilled. A baroclinic wave can then be triggered when disturbing

the steady state initial conditions as explained in Section 6.1. All constants are listed

in Appendix C.

High resolution reference solution

The baroclinic wave test case can be used in two configurations. First, model runs

without a perturbation can be performed. They assess how well the model keeps its

initial state which ultimately could break down over time due to the possible accumu-

lation of truncation errors. In this configuration, error norms can be computed using

the initial state as the true solution. Second, when adding the perturbation to the

zonal wind field a complex flow field evolves over time that no longer has an analytic

solution. Therefore, high-resolution runs can serve as the best estimate of the true

reference field. High resolution simulations with the baroclinic wave test case have

been performed with 4 different dynamical cores, namely with the dynamics package

of the weather prediction code GME (German Weather Service DWD) and the three

dynamical cores in the NCAR CCSM/CAM2.0 model framework. Among theses

three NCAR dynamics modules is the NASA/NCAR finite-volume dynamical core.
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The results of this comparison are presented in Jablonowski and Williamson [2004].

In summary, the high resolution reference simulations converge (see also figure A.16)

and produce very similar 10-day forecasts.

As an example of the reference flow pattern, the results of the NASA/NCAR

finite-volume dynamical core (CAM2 model framework) at the resolution 0.625◦×0.5◦

are selected. It is important to note, that this dynamical core is very similar to the

adaptive finite-volume dynamical core. The numerical concepts are identical but

the computational grid in the CAM2 framework is shifted by half a grid length

in longitudinal and meridional direction. This adds one more grid point in the

meridional direction that now includes the two grid boxes centered at the pole points.

The selected horizontal resolutions, e.g. the 0.625◦ × 0.5◦ grid, represent a standard

NCAR setting with a slightly finer resolution in the meridional direction. Though,

this resolution is comparable to the finest adapted grid run with a 0.625◦ × 0.625◦

grid (Section 6.2 on page 201). 26 vertical levels are chosen (see also Appendix B).

In figure A.16 on the next page snapshots of the surface pressure field in the

Northern Hemisphere at day 8 are presented that have been computed with the

CAM2.0 finite-volume dynamical core at three different horizontal resolutions. This

plot provides a reference for the statically adapted 3D runs in Section 6.2. The

flow has evolved rapidly up to this point and wave breaking processes set in shortly

thereafter.

In addition, figure A.17 on page 244 shows the surface pressure and surface1

temperature field at day 10 for two different horizontal resolutions. The flow fields

have almost converged at these resolutions and only a minor intensification of the low

1Temperature at the lowermost η model level.
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Figure A.16: Surface pressure in the Northern Hemisphere at day 8 for the horizontal
resolutions (lon x lat) (a) 2.5◦×2◦, (b) 1.25◦×1◦ and (c) 0.625◦×0.5◦.
The contour intervals are 6 hPa.
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pressure system is apparent in the 0.625◦ × 0.5◦ plot. In the Southern Hemisphere,

no wave activities develop during the first 10 days, which makes the test ideal for

adaptive mesh simulations.

A.3.2 Polvani baroclinic wave test

An alternative test case for idealized baroclinic wave assessments in 3D dynamical

cores has recently been suggested by Polvani et al. [2004]. The test strategy is similar

to the aforementioned Jablonowski-Williamson test. The Polvani test case also starts

with a steady state initial data set. Baroclinic waves are then triggered by an unbal-

anced temperature perturbation that overlays the temperature field. The forecast

period also covers 10-12 model days. In the Polvani test, the initial conditions are

not entirely based on analytic expressions. Here, numerically approximated integrals

need to be computed for the initial temperature field. The resulting flow pattern

resembles the realistic climatic state only in the Northern Hemisphere whereas the

Southern Hemisphere is held passive.

Figure A.18 on the next page shows the initial conditions for the zonal wind u

and temperature T (see details in Polvani et al. [2004]). In addition, the potential

temperature field and initial temperature perturbation are presented. It must be

noted that the temperature perturbation is placed at (λc, ϕc) = (67.5◦E, 45◦N) which

is different from the position mentioned in the publication. Furthermore, the initial

meridional wind v as well as the surface geopotential Φs are zero and the surface

pressure field is set to ps = 1000 hPa.

As before, reference solutions have been computed with the NASA/NCAR CAM2.0

finite-volume dynamical core with 26 vertical levels. Examples of the surface pressure

field in the Northern Hemisphere at day 8 and day 10 are shown in figure A.19. These
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Figure A.18: Initial (a) zonal wind, (b) temperature, (c) potential temperature and
(d) temperature perturbation that is added to the temperature field at
each level. Contour intervals are (a) 5 ms−1, (b) 5 K, (c) 5 K (except
at upper levels) and (d) 0.1 K. The zero contour is omitted.
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two days illustrate the baroclinic wave shortly before and after the wave breaking

event. Subfigures A.19 (c,d) represent an almost converged solution (see also conver-

gence discussion for this test case in Polvani et al. [2004]. Here they are considered

the reference solution for the adaptive run in Section 6.3. Higher resolution runs

with a uniform 0.625◦× 0.5◦ grid have also been performed with the CAM2.0 finite-

volume dynamical core (not shown). The figures are almost indistinguishable from

subfigures (c,d) although a slight intensification of the main low pressure system can

be observed.
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APPENDIX B

Vertical coordinate

The Eulerian reference frame of the NASA/NCAR dynamical core is based on the

hybrid, orography following η-coordinate in the vertical direction (see also Simmons

and Burridge [1981]. It is comprised of a pure pressure and the so-called σ-component

with σ = p
ps

. Here, p and ps symbolize the pressure and surface pressure, respectively.

The pressure at any model level η is given by

p(λ, ϕ, η, t) = a(η) + b(η) ps(λ, ϕ, t)

where the coefficients a(η) and b(η) are solely height-dependent and provided in

tabular form (see table B.1).

In the discrete system, the vertical direction is subdivided into Nlev model levels

which are bounded by Nlev + 1 interfaces, here also viewed as Lagrangian surfaces.

This leads to the following discrete representation

pk+ 1
2

= ak+ 1
2

+ bk+ 1
2
ps ,

with k = 0, 1, 2, · · ·Nlev. The index 1
2

denotes the positions of the level interfaces,

the index Nlev +1 symbolizes the model level at the ground. In order to ensure, that

this lowermost Lagrangian surface follows the actual topography in the system the
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following boundary conditions are imposed

aNlev+ 1
2

= 0 and bNlev+ 1
2

= 1 .

This guarantees that the pressure at the lowermost interface is the actual surface

pressure at any given location.

If the pressure needs to be evaluated at the center of a model layer, then the

pressure values can be linearly interpolated based on the surrounding surfaces

pk =
1

2
(pk+ 1

2
+ pk− 1

2
) .

Furthermore, the pressure thickness ∆pk in the Eulerian reference frame is defined

by

∆pk = pk+ 1
2
− pk− 1

2
.

and the thickness in terms of the time-invariant η levels is given by

ηk+ 1
2

=
ak+ 1

2

p0

+ bk+ 1
2

where the parameter p0 symbolizes a constant reference surface pressure, usually set

to 1000hPa or 1013.25hPa. Here the lower boundary condition is ηNlev+ 1
2

= 1.

If η values are required that lie in between two model interfaces, then they can

be computed via linear interpolations

η = ηk+ 1
2

+
(p− pk+ 1

2
)(ηk+ 1

2
− ηk− 1

2
)

(pk+ 1
2
− pk− 1

2
)

for pk− 1
2
≤ p ≤ pk+ 1

2
.

Table B.1 on the facing page shows the vertical coefficients ak+ 1
2

and bk+ 1
2

that

have been used for the 3D dynamical core model runs. The table contains the

Nlev+1 = 27 coefficients for the Lagrangian model surfaces that enclose the Nlev = 26

model layers. These model levels have been derived for NCAR’s atmosphere model

CAM and represent the current 26 standard layers for climate simulations with CAM.
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26 model layers
Level k

ak+ 1
2

(Pa) bk+ 1
2

0 219.4067 0.00000000

1 489.5209 0.00000000

2 988.2418 0.00000000

3 1805.201 0.00000000

4 2983.724 0.00000000

5 4462.334 0.00000000

6 6160.587 0.00000000

7 7851.243 0.00000000

8 7731.271 0.01505309

9 7590.131 0.03276228

10 7424.086 0.05359622

11 7228.744 0.07810627

12 6998.933 0.10694110

13 6728.574 0.14086370

14 6410.509 0.18077200

15 6036.322 0.22772200

16 5596.111 0.28295620

17 5078.225 0.34793640

18 4468.96 0.42438220

19 3752.191 0.51431680

20 2908.949 0.62012020

21 2084.739 0.72353550

22 1334.443 0.81767680

23 708.499 0.89621530

24 252.136 0.95347610

25 0. 0.98511220

26 0. 1.00000000

Table B.1: Vertical coefficients for the 26 model levels. The parameter ak+ 1
2

denotes

the pure pressure component (in Pa), bk+ 1
2

defines the σ part of the hybrid
η-system.
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APPENDIX C

Symbols and Acronyms

Model variables

σ vertical coordinate (σ = p
ps

)

η vertical coordinate (hybrid σ-p system)

ϕ geographical latitude in spherical coordinates (−π
2
≤ ϕ ≤ π

2
)

λ geographical longitude in spherical coordinates (0 ≤ λ ≤ 2π)

u zonal wind (m/s)

v meridional wind (m/s)

h geopotential height in m (shallow water system)

hs height of the orography in m (shallow water system)

T temperature (K)

Θ potential temperature (K), Θ = T
(

p0

p

)κ

ps surface pressure (Pa)

p pressure (Pa)

δp pressure thickness of a Lagrangian layer (Pa)

ρ density (kgm−3), ρ = p
Rd T

Φ geopotential (m2/s2)

Φs surface geopotential (m2/s2)
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ζ relative vorticity (s−1), ζ = ~k · (∇× ~v)

D divergence (s−1), D = ∇ · ~v

〈 〉 horizontal average

( )′ deviation from the horizontal average

Model parameters for the idealized test case

u0 maximum wind speed of the zonal jet u0 = 35 m/s

η0 center of the jet stream η0 = 0.252

ηt tropopause level ηt = 0.2

ηs surface level ηs = 1.0

Γ lapse rate of the horizontally averaged temperature Γ = 0.005 K/m

p0 reference pressure at the ground p0 = 100000 Pa

T0 reference temperature T0 = 288 K

∆T parameter to adjust the temperature at upper levels ∆T = 480000 K

(λc, ϕc) center of the Gaussian perturbation (λc, ϕc) = (π
9
, 2 π

9
)

R radius of the Gaussian perturbation R = a
10

Physical constants and parameters

a radius of the earth a = 6371229 m

Ω angular velocity Ω = 7.29211 ∗ 10−5 s−1

f Coriolis parameter f = 2Ω sin ϕ

Rd gas constant for dry air Rd = 287.0 J/kgK

cp specific heat at constant pressure cp = 1004 J/kgK

κ κ = Rd

cp
= 2

7
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g gravitational acceleration g = 9.80616 m/s2

Acronyms

AMIP Atmospheric Model Intercomparison Project conducted by LLNL

AMR Adaptive Mesh Refinement

AMR++ AMR class library in the software package Overture

AMRCLAW Software package: Berger-Oliger AMR library and CLAWPACK

API Application Programmable Interface

ARPEGE Numerical Weather Prediction model at Meteo France

BATS-R-US Block Adaptive Tree Solar-wind Roe Upwind Scheme, UM

C, C++ Programming languages

CAM Community Atmosphere Model, dynamics package for CCSM

CCSM Community Climate System Model, developed at NCAR

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy condition for numerical stability

CHOMBO AMR software infrastructure

CLAWPACK Numerical toolbox ’Conservation LAW PACKage’

DAGH AMR software library (Distributed Adaptive Grid Hierarchy)

DWD German Weather Service, Offenbach, Germany

ECMWF European Centre for Medium-Range Weather Forecasts, England

FFT Fast Fourier Transformation

Fortran Programming language, Fortran77 or Fortran90

GCM General Circulation Model

GME Global weather prediction model at DWD
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GSFC Goddard Space Flight Center, Greenbelt, Maryland, USA

HDF5 Hierachical Data Format: self-describing data convention

IFS Integrated Forecasting System: ECMWF weather prediction code

KE Kinetic Energy

LBNL Lawrence Berkeley National Laboratory, Berkeley, CA, USA

LLNL Lawrence Livermore National Laboratory, Livermore, CA, USA

MC Monotonized central-difference limiter for finite-volume methods

MHD Magnetohydrodynamics

MPI Message Passing Interface, parallel communication library

NASA National Aeronautics and Space Administration, USA

NCAR National Center for Atmospheric Research, Boulder, CO, USA

NetCDF Portable data format, developed by NCAR

OpenMP Communication constructs for shared memory architectures

Overture Object-oriented library for overlapping grids for PDEs

PE Primitive Equations

PDE Partial Differential Equation

PARAMESH AMR software library for block-structured data

PPM Piecewise Parabolic Method

PV Potential vorticity

PYRAMID AMR software library for unstructured data

SAMRAI Structured AMR Application Infrastructure

SHMEM Parallel communication library (designed by CRAY)

SL semi-Lagrangian approach

T42 spectral resolution of a GCM, ≈ 2.8◦ × 2.8◦ grid

TE Total Energy
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