
Mining the Web for Answers to Natural Language Questions

Abstract

The web is now becoming one of the largest information and knowledge repositories. Many

large scale search engines (Google, Fast, Northern Light, etc.) have emerged to help users find

information. In this paper, we study how we can effectively use these existing search engines to

mine the Web and discover the “correct” answers to factual natural language questions.

We propose a probabilistic algorithm calledQASM (Question Answering using Statistical

Models) that learns the best query paraphrase of a natural language question. We validate our

approach for both local and web search engines using questions from the TREC evaluation. We

also show how this algorithm can be combined with another algorithm (AnSel) to produce precise

answers to natural language questions.

1 Introduction

The web is now becoming one of the largest information and knowledge repositories. Many large scale

search engines (Google, Fast, Northern Light, etc.) have emerged to help users find information. An

analysis of the Excite corpus [7] of 2,477,283 actual user queries shows that around 8.4% of the queries

are in the form of natural language questions. The breakdown of these questions is as follows: 43.9%

can be counted as factual questions (e.g., “What is the country code for Belgium”) while the rest are

either procedural (“How do I ...”) or “other” (e.g., syntactically incorrect). A significant portion of the

91.6% that are not in the form of natural language questions were still generated by the user with a

question in mind.

Traditional information retrieval systems (including modern Web-based search engines as men-

tioned above) operate as follows: a user types in a query and the IR system returns a set of docu-

ments ordered by their expected relevance to the user query and, by extension, to the user’s information

need. This framework suffers from two problems: first, users are expected to follow a specific engine-

dependent syntax to formulate their information need in the form of a query and second, only a small

portion of each document may be relevant to the user query. Moreover, a study of search engine capa-

bilities to return relevant documents [21] when the query is in the form of a natural language question
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shows that search engines provide some limited form of processing of the question, namely removing

stop words such as “who” and “where”. Unfortunately, in factual question answering, such words can

indicate the type of the answer sought and therefore simple removal may lead to lower accuracy of the

search results.

We address these two problems in the context of factual, natural language question answering. In our

scenario, when a user types in factual natural language questions such as “When did the Neanderthal

man live?” or “Which Frenchman declined the Nobel Prize for Literature for ideological reasons?”,

he/she will expect to get back the precise answer to these questions rather than a set of documents that

simply contain the same keywords as the questions. We make two assumptions here: one, users should

not have to learn idiosyncratic search engine query syntax to ask a factual question; two, a document

returned by a search engine may contain only a small portion that is relevant to the user question. It

is therefore important to allow users to type questions as they see fit and only get the answer to their

questions rather than the full document that contains it.

We introduce a probabilistic algorithm for domain-independent natural language factual question

answering,QASM , which converts a natural language question into a search engine specific query.

In our approach, we view question answering and the related problem of natural language document

retrieval as instances of the noisy channel problem [3]. We assume that there exists a single best query

Q that achieves high precision and recall given a particular information need, a particular search engine,

and a particular document collection. The queryQ is then transformed into a grammatical natural

language questionN through a noisy channel by the new proposedQASM algorithm. Our goal is,

givenN , to recover the original queryQ from the spaceUQ of all possible queries that can be generated

fromN using a limited sequence of linguistically-justified transformation operators.

QASM is based on expectation maximization (EM) and learns which paraphraseQ̂ from UQ

achieves the highest score on a standardized benchmark. That paraphrase is then assumed to be the

closest approximation to the original queryQ. The algorithm makes use of a moderate number of la-

beled question-answer pairs for bootstrapping. Its generalization ability is based on the use of several

classes of linguistic (lexico-semantic and collocational) knowledge.

We have incorporatedQASM in a system which is used to answer domain-independent natural

language questions using both a local corpus and the Web as knowledge sources.

1.1 Question answering

The problem of factual question answering in the context of the TREC evaluation is best described

in [24]. The goal is to return the most likely answers to a given question that can be located in a

predefined, locally accessible corpus of news documents. To that end, most systems need to perform
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the following steps: query analysis (to determine, for example, that a “who” question is looking for

a person), document retrieval (to establish which documents are likely to contain the answer to the

question), document analysis (to determine which portions of the document are relevant), and answer

selection (return a short string containing the most likely correct answer from all retrieved documents).

Note also that the questions used in the TREC evaluation areguaranteedto have at least one answer in

the corpus, while in general no question is guaranteed to an answer on the Web.

The SMU systems, Lasso [17] and Falcon [10], make significant use of knowledge representation

techniques such as semantic unification and abduction to retrieve relevant answers. For example, they

are able to answer the question “Who was the first Russian astronaut to walk in space” by combining

knowledge from the fact that the firstpersonto walk in space was Leonov and from the fact that Leonov

is Russian.

The IBM project [20, 22] requires that the corpus be tagged with semantic tokens calledQA-tokens.

For example, “In the Rocky Mountains” is tagged as PLACE$, while “The US Post Office” is tagged

as ORG$. When a question is processed by the search engine, the QA tokens are passed along with

the words in the query in order to enhance retrieval performance. This process requires that the entire

corpus be pre-processed with QA-token information.

We claim that it is unrealistic to rely on semantic tagging or deep semantic understanding of both

question and source documents when the QA problem is moved from a pre-defined, locally accessible

corpus to the Web. It can be argued that a search engine may indeed annotate semantically all pages in

its index, however that process is quite expensive in terms of processing time and storage requirements

and it is clearly preferable to not have to rely on it. In other words, we are decoupling the problem

of natural language document retrieval from the problem of answer selection once the documents have

been found. In that case, only the top-ranked retrieved documents need to be annotated.

We need to note here that the service AskJeeves (www.ask.com) is not a QA system. It does process

natural language queries but it returns sites that may be relevant to them without trying to identify the

precise answers.

In this paper we will describe an algorithm for domain-independent factual question answering that

does not rely on a locally-accessible corpus or to large-scale annotation. A system based on this algo-

rithm thus provides the documents that contain the answers and needs to be connected to a component

like AnSel to actually extract these answers. Note that AnSel only needs to annotate a small number of

documents retrieved byQASM and thus the problem of annotating the whole Web disappears.

Figure 1 shows some sample questions that our system can handle.

Note that we make several assumptions about the questions and their answers. First, we assume

that each question may contain several answers (this assumption also appears in the TREC setup), all of
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Question/Answer
Q: When did the Neanderthal man live?
A: about 125,000 to 30,000 years ago
Q: Which Frenchman declined the Nobel Prize for Literature for ideological reasons?
A: Jean-Paul Sartre
Q: What is the second largest planet in the Solar system
A: Saturn

Figure 1: Sample questions.

which are equally acceptable. For example, both “125,000 to 30,000 years ago” and “the Paleolithic age”

can be considered to be correct answers to the question “When did the Neanderthal man live?”. Second,

for purposes of automatic evaluation, we assume that a document does not need to justify the answer it

contains (this is a departure from TREC where all submissions are judged by hand as to whether they

contain an instance of the correct answer that is justifiably the answer to the given question). As an

example, if a document contains the string “the Paleolithic age” we will consider that it contains the

answer to the question even if the document’s topic is not about the Neanderthal man.

Let’s now consider two alternative paraphrases of the same question‘‘When did the Nean-

derthal man live?’’ . When we sent that question as it is to Excite, the first four hits didn’t

contain the answer. One of them was the home page of the Neanderthal museum in Germany while

the second was about the Neanderthal flute. The third hit was about the discovery of the Neanderthal

man but has no mention of the time he lived. The fourth one is an advertisement for a book on the

Neanderthal man. Only the fifth match did contain a correct answer. On the other hand, when we

usedlive OR lived AND ‘‘Neanderthal man’’ as the query, the first two hits did contain

accurate answers.

1.2 Statistical Translation Models

We will now describe a technique used in a large variety of text mining tasks - the statistical translation

model. We make extensive use of this paradigm in our work.

A translation model is a probabilistic channel model. Given an observed stringt in a target lan-

guageT and asourcelanguageS, a probabilityP (tjs) is assigned to all transformations from a string

s 2 S to t. In statistical machine translation (e.g., French to English), for example, the probabil-

ity P (tjs) should be high for reasonable translations between the two languages, e.g.,P (the small

boy j le petit garc ¸on ) should be high whileP (the dog ate my homework j le petit

garç on ) should be low.

The goal of a translation model is to find thet that maximizes the probabilityP (sjt). In practice,

the Bayesian rule is applied:
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argmax
s

P (sjt) = argmax
s

P (s) � P (tjs)

and the goal becomes to find the value ofs that maximizesP (tjs).

The strings can be also thought as theoriginal message that got somehow scrambled in the noisy

channel and converted into thetarget string t. Then the goal of translation modeling becomes that of

recoverings. Since the space of all possible strings inS is infinite, different heuristic techniques are

normally used. We will discuss some of these techniques below.

Statistical translation models originate in speech processing (see [11] for an overview), where they

are used to estimate the probability of an utterance given its phonetic representation. They have been

also successfully used in part of speech tagging [5], machine translation [2, 4], information retrieval

[3, 19], transliteration [12] and text summarization [13]. The reader can refer to [14] for a detailed

description of statistical translation models in various applications.

In question answering, the source string is the queryQ that produces the best results while the target

string is the natural language questionN . Obviously, there is an infinite number of queries that can be

generated from a natural language question. These paraphrases are typically produced through a series

of transformations. For example, the natural language question “Who wrote King Lear” can be con-

verted into the query(wrote j author) ‘‘king lear’’ by applying the following operators:

(1) bracket “King” and “Lear” together to form an immutable phrase, (2) insert the word “author” as an

alternative to “wrote”, and (3) remove the question word “who” (note that before removing that word,

the information that it conveys, namely the fact that the expected answer to the question is a person, is

preserved through the use of the “insert” operator which adds a person word “author” to the query. The

problem of question answering using a noisy channel model is reduced essentially to the problem of

finding the best querŷQ which may have been generated fromN . We will discuss in the next section

what “best” means.

We have identified the following differences between statistical machine translation and question

answering (QA).

1. In QA, the swap operator is not particularly needed as typical search engines give the same hits

regardless of the order of the query terms.

2. Since swaps are not allowed, alignments are simpler in QA and the process of parameter estima-

tion is simpler.

3. In QA, the source and target language are essentially the same language. The only difference is

the addition of logical operators, parentheses, and double quotes in the queries.
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4. The generation of queries in QA is much more robust than translation in the sense that the perfor-

mance of a query typically degrades gracefully when an operator is applied to it while a correct

translation can immediately become a horrible one when two words are swapped.

5. Since queries don’t need to be grammatical English sentences, there is no need to use a language

model (e.g., a bigram model) to determine the correctness of a query. On the other hand, this

places an additional burden on the translation model, given that in SMT, the language model

prevents a high-probability but ungrammatical translation from being produced.

6. SMT is trained on a parallel corpus with aligned sentences with hidden alignments. QA needs

a parallel corpus of questions and answers while the actual queries that can produce documents

containing the answers are hidden.

2 TheQASM algorithm

TheQASM algorithm (Question Answering using Language Modeling) is based on the premise that

it is possible to select the best operator to apply on a particular natural language question (or query).

That operator will produce a new query which is “better” than the one from which it was generated

using some objective function such as precision or recall. We will later define some empirically justified

objective functions to compare query paraphrases. In a sense the problem of finding the best operator

given a query paraphrase is a classification problem. The class of a paraphrase is the same as the class of

all equivalent paraphrases and is the operator that would most improve the value of the objective function

when applied to the paraphrase. For example, the class of the paraphrase “who wrote King Lear” may be

“delete-wh-word” if the resulting query “wrote King Lear” is the best of all possible queries generated

by applying a single operator to “who wrote King Lear”. Note that we make a distinction between the

compositeoperator that converts a question to a query through aseriesof steps and theatomicoperators

that compose each step. For practical reasons, it is more feasible to deal with atomic operators when

training the system.

In other words, we need to build a classifier which decides what operator is best applied on a given

questionN . In practice, we need to decompose the problem into a series of smaller problems and to

produce a sequence of paraphrasesQi with the following properties:

1. The first paraphraseQ0 is the same as the natural language questionN .

2. Each subsequent paraphraseQi is generated fromQi�1 using a single atomic operator. Note that

operators have to be unambiguous given an arbitrary query. For example, “bracket” is ambigous,
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because in a general query, many different subsequences can be bracketed together. On the other

hand, “bracket the leftmost noun phrase in the query” is unambiguous.

3. If F (Qi) is the objective function that determines how good a paraphrase is (we will call this

function the fitness function, borrowing a term from the evolutionary computation literature),

then we wantQi to be chosen from among all possible paraphrasesQi;j of Qi�1 using a single

operatorOj , or thatQi � Qi;k for k = argmax
j

F (Qi;j).

4. The sequence of operators is interrupted whenk = argmax
j

F (Qi;j) is the index of the identity

operatorI. The identity operator has the following property:I(Q) = Q. In other words, when

no atomic operator can improve F, the process stops. Note that other stopping conditions (e.g.,

stability of the probability matrix) are also possible.

Two problems need to be resolved at this stage. First, it is obvious that the sequence of operators

depends on the initial queryQ0 � N . Since there is an infinite number of natural language questions

N , it is necessary to perform some sort of smoothing. In other words, each question (and by extension,

each query) has to be converted to a representation that preserves some subset of the properties of the

question. The probability of applying a given operator on a question will depend on its representation,

not on the question itself. This way, we avoid maintaining an operator probability distribution for

each natural language question. In the following section, we will discuss a particular solution to the

representation problem.

Second, we need to learn from a set of examples the optimal operator to apply given a particular

paraphrase. The decomposition of transformation operators into atomic operators such as “insert” or

“bracket” significantly reduces the complexity of finding the right operator to apply on a given question.

Since it is very expensive to produce a large training corpus of pairs of questions and their best para-

phrases, we have to recur to an algorithm that is stable with regard to missing data. Such an algorithm

is the expectation maximization (EM) algorithm.

2.1 The EM algorithm

The EM algorithm [6] is an iterative algorithm for maximum likelihood estimation. It is used when

certain values of the training data are missing. In our case, the missing values are the paraphrases that

produce the best answers for given natural language questions. We only have question-answer pairs

but no paraphrases. In other words, the known variables are the scores for each operator; the hidden

variables are the probabilities for picking each operator.

The EM algorithm uses all the data available to estimate the values of the missing parameters. Then

it uses the estimated values to improve its current model. In other words, the EM algorithm works as
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follows: first, it seeds the parameters of the model with some reasonable values (e.g., according to the

uniform distribution). Then it performs the following two steps repeatedly until a local maximum has

been reached.

� E-step: use the best available current classifier to classify some datapoints

� M -step: modify the classifier based on the classes produced by theE-step.

The theory behind EM [6] shows that such an algorithm is guaranteed to produce increasingly better

models and eventually reach a local maximum.

2.2 Generic operators

We now need operators that satisfy the following criteria: they must be easy to implement, they must

be unambiguous, they must be empirically justified, and they must be implemented by a large number

of search engines. A list of such generic operators follows (see also Figure 2). We call them generic

because they are not written with any particular search engine in mind. In the following section, we will

discuss how some of these operators can be operationalized in a real system.

1. INSERT, add a word or phrase to the query (similar to the fertility operator in SMT),

2. DELETE, remove a word or phrase (“infertility” operator),

3. DISJUNCT, add a set of words or phrases in the form of a disjunction,

4. REPLACE, replace a word or phrase with another,

5. BRACKET, add double quotes around a phrase,

6. REQUIRE, insist that a word or a phrase should appear (most search engines require such oper-

ator to explicitly include a word in the query),

7. IGNORE, for example the querycleveland -ohio will return documents about President

Cleveland and not about the city of Cleveland, Ohio.

8. SWAP, change the order of words or phrases,

9. STOP, this is the identity operator,

10. REPEAT, add another copy of the same word or phrase
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Figure 2: Sample operators.

2.3 The probabilistic generation model

We will now turn to the need for question and query representations. The space of questions is infinite

and therefore any classification algorithm must use a compact representation of the questions. An em-

pirical analysis [21, 23] shows that certain features of questions interact with the scores obtained from

the search engines and that questions with the same features tend to be treated similarly. In the next

section we will discuss the particular features that we have implemented. At this moment, we only want

to specify that all questions with the same feature representation will be treated in the same way by our

algorithm. We will call the state of all questions with the same values for all features thecontextC of

the query.

The model� contains the probabilitiesp(OijCJ) of applying operatorOi given contextCj are

represented in a two-dimensional probability matrix. Given a state (context) we can determine the most

likely operator. Later in this section we will discuss our algorithm for learning the values of the�

matrix. Note that� hasNs states andNo operators and the sum of operator probabilities for each row

(state) is:
P

No

i
p(OijCj) = 1.

2.4 Generating query paraphrases

In order to learn the� matrix, we need to be able to produce different paraphrases of a given natural

language questionN . We will N as the initial seed queryQ0: Q0 � Ni and then applyQASM to

produce subsequent paraphrasesQi fromQi�1.

2.5 Evaluating paraphrase strength

At each iteration, we must determine which operator is the best. We need to define afitnessfunction.

In general, such fitness function can be one of a large number of information theoretic measures such
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as entropy or perplexity. It can also be a metric from information retrieval such as precision (accuracy)

or recall (coverage). In the next section, we will introduceTRDR, a metric that we found particularly

useful.

2.6 TheQASM algorithm

We will now introduce theQASM algorithm. It is shown in Algorithm 1. Some notational clarifica-

tions: Cj represents the context (or state) of a question.� is the probabilistic model that determines

the probability of applying a given operator on question that is represented in a particular state. The

initialization step shown in the Figure can be replaced with one that uses an appropriate prior distribu-

tion other than the uniform distribution. After each iteration of the EM algorithm, the query is modified

using an operator generated probabilistically from the current distribution for the state where the current

paraphrase belongs. The global stop criterion is a function of the change in the probability matrix�.

Algorithm 1 QASM : Learning algorithm

initialize � with 8i; p(OijCj) = 1=No

setQ0 � N ; setj = 0

repeat
extract documents that matchQj

compute paraphrase fitnessF (OijCj) for all i
let l = argmax

k

F (OkjCj)

if F (STOP jCj) � F (OkjCj) then
next iteration

end if
pick an operatorOm according to�.
recompute contextCj+1

rerank operators based on fitness
readjust/normalize� based on the reranking
applyOm onQj to produceQj+1

incrementj
until Æ(�) < "

2.7 Decoding algorithm

Once the probabilistic modelP has been trained, it can be used to process unseen questions. The

decoding algorithm (to borrow another term from SMT) is shown in Algorithm 2
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Algorithm 2 Decoding algorithm

� is given from the training stage
setQ0 � N ; setj = 0

repeat
let l = argmax

k

F (OkjCj)

applyOl onQj to produceQj+1

incrementj
until F (STOP jCj�1) � F (OkjCj�1)

3 Implementation and Experiments

We now describe the operationalization of theQASM algorithm in our system. We will address the

following issues: choice of operators, training and test corpora of questions and answers, choice of

document corpora and search engine, question preprocessing, etc.

3.1 Specific operators

We have chosen a “basis” composed of 15 operators, grouped into four categories: DELETE, RE-

PLACE, DISJUNCT, and OTHER. We use five DELETE operators (delete all prepositions, delete all

wh-words, delete all articles, delete all auxiliaries, and delete allotherstop words based on a list of 163

stop words). We also use four REPLACE operators (replace the first noun phrase with another, replace

the second noun phrase, replace the third noun phrase, and replace the first verb phrase in the question).

Note that by specifying which exact terms we will replace, we are addressing the “where” question.

The four DISJUNCT operators are similar to the REPLACE operators, except that the new words and

phrases are disjoined using OR statements. Finally, the IDENTITY operator doesn’t modify the query.

When decidingwhat word to insert with the REPLACE and DISJUNCT operators, we use two

alternative approaches. In the first case, we look at the first three synonyms and the closest hypernym of

the first sense of the word (in the correct part of speech: verb or noun) based on the WordNet database

[16]. The second case uses distributional clusters of fixed size of the words [18]. We don’t have room

here to describe the implementation of the distributional algorithm but here is the basic idea: if two

words appear in the same context (looking at words in a window) in a large corpus, they are considered

to be distributionally similar. As an example, “professor” and “student” are not distributionally similar

because they tend to appear together, while “book” and “essay” are since they are in complementary

distribution in text. Figures 3 and 4 show up to five words or phrases similar to the word in the left

column.

Note that we did at this point, our implementation doesn’t include the following operators: IG-
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word related words
book publication, product, fact, dramatic composition, record
computer machine, expert, calculator, reckoner, figurer
fruit reproductive structure, consequence, product, bear
politician leader, schemer
newspaper press, publisher, product, paper, newsprint

Figure 3: Related words produced by WordNet.

word related words
book autobiography, essay, biography, memoirs, novels
computer adobe, computing, computers, developed, hardware
fruit leafy, canned, fruits, flowers, grapes
politician activist, campaigner, politicians, intellectuals, journalist
newspaper daily, globe, newspapers, newsday, paper

Figure 4: Related words produced by distributional similarity.

NORE, REPEAT, and SWAP. We implemented BRACKET in the preprocessing stage.

3.2 Fitness functions

Instead of precision and recall, we use total reciprocal document rank (TRDR). For each paraphrase,

the value ofTRDR is the sum of the reciprocal values of the rank of all correct documents among the

top 40 extracted by the system:TRDR = 1

n
(
P

n

i

1

ranki
). For example, if the system has retrieved 10

documents, of which three: the second, eighth, and tenth, contain the correct answer,TRDR for that

given paraphrase is1
2
+ 1

8
+ 1

10
= :725.

The metric used in TREC is slightly different from ours. In TREC’s case, only the rank of the

best answer counts so if the correct answer is retrieved in first place only, the score will be higher than

when the correct answer appears in all places from second to fortieth. Several observations motivated

this switch in formulas: (1) Since we are looking at finer distinctions between related paraphrases of

the same question, we need to pay more attention to subtle differences in performance, (2) In a Web

environment, some URLs on the hit list may no longer be around when the system tries to retrieve them,

so we want to reward systems, which other things being equal, return more documents with answers,

and (3) the need to accept different variants of the same answer, as illustrated in the following example.

Figure 5 gives a feeling for the diversity of the wordings of answers to the same question on the Web

and in some way provide an additional justification for our choice to include all correct hits in TRDR.

In this example, three competing documents specify the place where Dylan Thomas died.

We should note that the highest score that a given paraphrase can obtain on a given question is 4.279

(the sum of1=n for n from 1 to 40). Qualitatively, a paraphrase is acceptable if it obtains a score of at
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Question 151: Where did Dylan Thomas die?
Expected Answer: New York

http://news.bbc.co.uk/hi/english/entertainment/newsid_139000/139337.stm

In 1953 Thomas was on his fourth lecture tour of America and
drinking heavily. That he died in a New York hospitalfrom alcohol
poisoning is beyond dispute.

http://library.thinkquest.org/3187/thomas.html

The Welsh poet Dylan Thomas was born in Swansea, Wales, on
Oct. 27, 1914... He died in New York Cityon Nov. 9, 1953, and
was buried at Laugharne.

http://www.poetrymagazine.com/archives/1999/august/thomas.htm

Dylan Thomas was born in Swansea, Wales in 1914... Alcoholism
helped usher him to his death a few days after his 39th birthday in
New York Cityduring a lecture tour of the United States in 1953.

Figure 5: Sample texts answering a question about Dylan Thomas.

least .300 which corresponds roughly to one hit among the top five or two hits in the next five.

3.3 Training data and choice of corpora and search engines

To train our system, we used pairsfN;Ag collected from a variety of sources: the TREC8 and TREC9

collections (893 datapoints) plus our own collection of 2,224 datapoints.

We used zzsearch (a search engine developed by our group) on the local corpus of 240,000 AP news

articles from the TREC collection. On the Web, we intended to use Google as the primary search engine,

however at some point it stopped processing queries longer than 10 words so we had to switch to the

Fast search engine [1]. We built a module that converts the same underlying query to the syntax of these

two search engines.

3.4 Preprocessing

Before we run any queries on a search engine, we preprocess them in order to identify immutable phrases

that would be preserved in the paraphrasing process. We use the ltchunk utility [15] to determine noun

phrases and we filter out these that contain an initial determiner followed by a single word such as “the

man”.

3.5 Feature representations of queries

We decided to adopt the particular representation scheme proposed by Radev et al. [21, 23] using three

features: semantic type of question based onwh-word (e.g., PERSON, LOCATION, etc.), number of

words in query, number of proper nouns in query.

As an example,who wrote King Lear can be represented as (“PERSON”,4,1). The general-

izations based on the representation can capture such patterns as “the probability of applying a DELETE

operator on a shorter query is smaller than on a longer query”.
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3.6 Sample run

We will now run through an example of the system in action. We will show how theQASM algorithm

readjusts the values of the� model using a particular question from the TREC 8 corpus. The fitness

scores are computed using the Fast search engine.

In this example, the questionN isWhich country is the biggest producer of tung-

sten (that is question 14 from TREC8). The expected answer is “China”.

The initial paraphraseQ0 � N is relegated to state (“LOCATION”,8,0) since it is a “where” ques-

tion, it is 8 words in length, and contains no proper nouns.

The probability values for the row (“LOCATION”,8,0) are all set to be 1/15 = .667 under the default

assumption that all 15 operators are equally likely.

Figure 6 shows theTRDR values for the first 8 paraphrases ofN . The 8 operators shown are the

IDENTITY operator, all five DELETE operators, and the first two REPLACE operators (see Subsec-

tion 3.1). In this run, we use the variants of the operators based on WordNet and not on distributional

clustering.

No. Operator Paraphrase TRDR

0 IDENTITY What country is the ” biggest producer ” of tungsten 0.837
1 DEL WH country is the ” biggest producer ” of tungsten 1.755
2 DEL AUX What country the ” biggest producer ” of tungsten 1.322
3 DEL ART What country is ” biggest producer ” of tungsten 1.436
4 DEL PREP What country is the ” biggest producer ” tungsten 1.436
5 DEL STOP What country is the ” biggest producer ” of tungsten 0.837
6 REPL 1N What ( ” administrative district ” OR ” political unit 1.181

“ OR people OR region OR ” geographical area ” OR
” rural area ” ) is the ” biggest producer ” of tungsten

7 REPL 2N What country is the ”biggest producer ” of ( ” 1.419
metallic element ” OR wolfram OR w OR ” atomic number 74 ” )

Figure 6: Example of the operation ofQASM .

Once all fitness scores are computed, the probabilities are readjusted proportionally to the scores.

As a result, the probability for operators 1 and 3 increase at the expense of operators 0, 5, and 6. The

resulting probabilities for the first 8 operators are as follows (only the first eight are shown for lack of

space): 0.0536, 0.1123, 0.0846, 0.0919, 0.0919, 0.0536, 0.0756, and 0.0908.

The next paraphrase is generated according to the new probability distribution. Obviously, at this

stage, all operators still have a chance of being selected as no fitness score was zero. In this example,

operator 0 (IDENTITY) was selected.

The new state is the same as the previous one: (“LOCATION”,8,0). The probability distribution

has now changed. Since the values ofTRDR in the second iteration will be the same as in the first,
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the probabilities will be readjusted once more in the same proportion as after the first iteration. After

the second EM iteration, the probabilities for state (“LOCATION”,8,0) are as follows: 0.0374, 0.1643,

0.0932, 0.1100, 0.1100, 0.0374, 0.0745, and 0.1074. After five iterations in the same state they become

0.0085, 0.3421, 0.0830, 0.1255, 0.1255, 0.0085, 0.0473, and 0.1184. After 23 iterations in the same

state, the probability of applying operator 2 is 0.9673 while all 14 other probabilities tend to 0.

If we allow QASM to pick each subsequent operator according to� we observe that the sequence

that achieves the highest score for the state (“LOCATION”,8,0) is to apply operator 2 followed by

operator 4. Note that the state of the paraphrase changes after operator 2 is applied as one word has

been removed.

After all probabilities are learned from the training corpus of 2,224 datapoints,QASM can proceed

to unseen questions. For lack of space, we omit a complete illustration of the decoding process. We

will just take a look at all questions that fall in the same class as the one in the example. There are 18

such questions in our test corpus and for 14 of them (77.8%), as predicted, the sequence of operators 2

and 4 is the one that achieves the highest score. In two other cases, this sequence is second best and in

the last two cases it is still within 20% of the performance of the best sequence. For the 18 questions

the performance over the baseline (sending the natural language question directly to the search engine)

goes from 1.31 to 1.86 (an increase of 42.0%).

4 Related Work

There has been a lot of effort in applying the notion of language modeling and its variations to other

problems. For example, Ponte and Croft [19] adopt a language modeling approach to information

retrieval. They argue that much of the difficulty for IR lies in the lack of an adequate indexing model.

Instead of making prior parametric assumptions about the similarity of documents, they propose a non-

parametric approach to retrieval based probabilistic language modeling. Empirically, their approach

significantly outperforms traditional tf*idf weighting on two different collections and query sets.

Berger and Lafferty [3] suggest a similar probabilistic approach to information retrieval based on

the ideas and methods of statistical machine translation. The central ingredient in their approach is

a noisy-channel model of how a user might “translate” a given document into a query. To assess the

relevance of a document to a user’s query, they estimate the probability the query would have been

generated as a translation of the document, and factor in the user’s general preferences in the form of a

prior distribution over documents. They propose a simple, well-motivated model of the document-to-

query translation process, and describe the EM algorithm for learning the parameters of this model in

an unsupervised manner from a collection of documents.
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Brown et al. [4] lay out the mathematical foundation of statistical machine translation, while Berger

et al. [2] presents an overview of Candide, a system that uses probabilistic methods to automatically

translate French text into English.

Glover et al. [8, 9] address the issue of query modification when searching for specific types of Web

pages such as personal pages, conference calls for papers, and product announcements. They employ

support vector machines to learn engine-specific words and phrases that can be added to a query to locate

particular types of pages. Some of the words are quite unobvious, for example adding “w” as a word to

a query improves the performance of their system, Inquirus2, when it is set to search for personal pages.

Dempster, Laird, and Rubin [6] are the first ones to formalize the EM algorithm as an estimation

technique for problems with incomplete data.

5 Conclusion

In this paper we described an algorithm for learning a sequence of transformations that need to be

applied on a natural language question so that it can be run on a search engine and retrieve documents

containing the answer to the question. Our algorithm,QASM , is based on the EM estimation algorithm

and employs linguistically justified transformational operators.QASM has been implemented in a

natural language question answering system with two different backends - one based on a local corpus

and another - using an external search engine which retrieves answers from the World-Wide Web.

Our two main contributions are (a) the use of the Web as a knowledge source for domain-independent

question answering and (b) theQASM algorithm which produces the paraphrase of a natural language

question that is most likely to produce a list of hits containing the answer(s) to the question.

5.1 Future work

We plan to linkQASM with the AnSel system to complete the pipeline question - documents - set of

potential answers. We also intend to study user-specific question answering. For example, the answer to

the question “where is the Dynasty restaurant” may be different based on the user’s location, experience,

and preferences. We plan also to investigate the problem of cross-lingual question answering where the

question is in one language and the answer - in another. Finally, we are pursuing a separate study that

will indicate whether the choice of search engine can be parameterized in the probabilistic model. If we

are successful in this endeavor, we will be able to build a meta-search engine which will both choose

the best paraphrase of a question and the search engine where to send it.
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