
Probabilistic Question Answering on the Web

Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, Amardeep Grewal
The University of Michigan

Ann Arbor, MI, 48105
USA

{radev, wfan, hqi, harriswu, agrewal}@umich.edu

ABSTRACT
Web-based search engines such as Google and NorthernLight
return documents that are relevant to a user query, not an-
swers to user questions. We have developed an architecture
that augments existing search engines so that they support
natural language question answering. The process entails
five steps: query modulation, document retrieval, passage
extraction, phrase extraction, and answer ranking. In this
paper we describe some probabilistic approaches to the last
three of these stages. We show how our techniques apply to a
number of existing search engines and we also present results
contrasting three different methods for question answering.
Our algorithm, probabilistic phrase reranking (PPR) using
proximity and question type features achieves a total recip-
rocal document rank of .20 on the TREC 8 corpus. Our
techniques have been implemented as a Web-accessible sys-
tem, called NSIR.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous; D.2 [Software]: Software Engineering; D.2.8 [Soft-
ware Engineering]: Metrics—performance measures

General Terms
Algorithms, Design, Experimentation, Performance, Lan-
guages

Keywords
question answering, information retrieval, natural language
processing, search engines, answer extraction, answer selec-
tion, query modulation.

1. INTRODUCTION TO WEB-BASED Q&A
Given the amount of information that is available on the

Web, it is not surprising that it is an ideal source of answers
to a large variety of questions. The problem is that existing
front ends to the Web such as NorthernLight, Google, and
AlltheWeb’s FAST search engine are designed to retrieve
documents that are relevant to a user query, posed in an
idiosyncratic language, and not to a question formulated in
a human language such as English.

We claim that it is much more natural for a user to type
a question such as “Who wrote King Lear?” or “What

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

is the largest city in Northern Afghanistan?” rather than
queries such as “(wrote OR written OR author) AND (‘King
Lear’)”. We also believe that when a user is looking for
an answer, rather than a document, then the search en-
gine should return an actual answer, possibly in the context
of the document where it occurs. The process of retriev-
ing answers from questions is known as Natural Language
Question Answering (NLQA).

In this paper, we will introduce a method for Web-based
question answering called Probabilistic Phrase Reranking
(PPR). It is fully implemented at the University of Michi-
gan as a Web-accessible system, called NSIR (pronounced
“answer”). The existing NLQA systems that are closest
to PR are Ask Jeeves1, Mulder2 [1], and Ionaut3 [2]. Ask
Jeeves accepts questions but doesn’t actually return answers
and rather engages in a menu-driven dialogue with the user.
Mulder is no longer available on the Web for a comparison.
Ionaut is fast and interactive, but it is based on a local cache
of files and doesn’t provide access to the full Web.

We should note that all search engines allow a user to enter
a natural language question instead of a query. The search
engines then remove certain frequent stop words such as “is”
or “where” and treat the rest of the question as a query.
Thus search engines behave as if they can handle the first
stage of NLQA (input in the form of a question). However,
they still provide documents rather than answers as their
output results. For example, when we asked the question
“What is the largest city in Northern Afghanistan?” in the
Google4 search engine, we got the following results back (the
full list has been truncated for reasons of space).

Yahoo! Full Coverage - Afghanistan
... within three miles of the airport at Mazar-e-Sharif,
the largest city in northern Afghanistan,
held since 1998 by the Taliban. There was no
immediate comment ...
uk.fc.yahoo.com/photos/a/afghanistan.html
- 13k - Cached - Similar pages

washingtonpost.com: World
... died in Kano, northern Nigeria’s largest city,
during two days of anti-American riots led by Muslims
protesting the US-led bombing of Afghanistan,
according to ...
www.washingtonpost.com/wp-dyn/print/world/ -
Similar pages

1http://www.ask.com
2http://mulder.cx
3http://www.ionaut.com:8400/
4http://www.google.com

The result consists of short summaries of all relevant docu-
ments plus pointers to the documents themselves. It is clear
that a document returned by the search engine as relevant
to the input question is likely to contain the answer. If the
very first returned document doesn’t contain the answer, it
is still possible for another top-ranked document to contain
it. The problem becomes then how to identify the correct
answer within the top n relevant documents returned by a
search engine.

A similar output, produced by AlltheWeb is shown in Fig-
ure 1.

After reviewing relevant previous work, this paper will
describe our new method for Web-based NLQA. The PPR
technique (Probabilistic Phrase Reranking) relies on an ex-
isting search engine to return documents that are likely to
contain the answer to a user question. PPR goes through
several stages until it extracts and ranks the most likely
answers to the question. These stages are query modu-
lation, document retrieval, passage (or sentence) retrieval,
phrase (answer) extraction and answer ranking. These are
described in more detail in the following Sections.

All experiments described in this paper were performed by
the authors using AlltheWeb, Google, and Northern Light
in the period September – November 2001.

2. RELATED WORK
START [3] is one of the first QA systems. However, it

focuses only on questions about geography and the MIT
InfoLab. A pre-compiled knowledge base is used to answer
questions. Another earlier system, MURAX [4], uses an
encyclopedia as a knowledge base to answer trivia questions.
Given a question, MURAX uses a shallow parser to extract
potential answers from sections of the encyclopedia based
on the phrasal relationships between words in the question.

A large number of QA systems have emerged recently.
Primarily, they follow two directions: one direction is to use
the TREC Q&A [5] data as the test corpus and develop their
own search engines and answer extraction techniques on top
of the corpus; the other direction is to use the WWW as the
potential answer source and use generic search engines, such
as Google, to retrieve information related to the question
and do further post-processing to extract the answers for the
questions. We will review some recent work in this section.

2.1 Related work from TREC
The TREC question answering evaluation [5] is the mo-

tivating force behind a recent surge in question answering
research. Systems participating in TREC have to identify
short passages from a 2-GB text corpus that contain an-
swers to a list of factual questions. [6, 7] introduced the
technique of predictive annotation, a methodology for in-
dexing texts for fact-seeking question answering. The idea
of this approach is that texts in documents are annotated
with labels anticipating their being targets of certain kinds
of questions. Given a question, their system retrieves a set
of passages that may contain the answers. The potential
answers are then extracted from these passages and ranked
using a linear ranking function of various heuristics, which
is learned by logistic regression.

[8] developed a Q&A system called Webclopedia based on
IR and NLP techniques. A given question is first parsed
to create a query to retrieve the top ranked documents.
These top-ranked documents are then split into segments

and further ranked. Potential answers are then extracted
and sorted according to a ranking function involving the
match with the question type and patterns. These ques-
tion patterns are manually constructed. The classification of
each question and potential answer to these patterns is done
using rules learned from a machine-learning based grammar
parser.

Abney et al. [2] described a method based on named en-
tity identification techniques. For each question, a set of
relevant passages that mostly contain the answers are first
identified. A candidate set of entities are extracted from
these retrieved passages. Both the question and these ex-
tracted entities are classified into a pre-defined set of cate-
gories. Only those entities that match the category required
by the question are retained and re-ranked using the fre-
quency and other position related information.

Clarke et al. [9] also applied the passage retrieval tech-
niques for initial preprocessing. The passage ranking uti-
lized semantic match information between the query type
and term, the IDF-liked term weighting information of each
term and also the coverage of these query related terms in
the passage itself. A statistical context free grammar parser
based on WordNet is used to determine the question cat-
egory. Those top ranked passages were then scanned for
patterns matching the answer category and the potential
answers were extracted and ranked using various quality
heuristics.

A different technique named boosting, which integrates
different forms of syntactic, semantic and pragmatic knowl-
edge, is presented in [10]. For example, question reformula-
tion is used to construct a query that contains more semantic
information based on WordNet and named entity recogni-
tion techniques are employed to ensure high quality passage
retrieval. Potential answers are extracted from the seman-
tically rich passages that match the question type. These
candidate answers are further justified by using abductive
reasoning and only those that pass the test are retrieved.
The system, named Falcon, scored very high in the recent
TREC Q&A evaluation contest [5].

2.2 Related work on the Web
The TREC conference offers an exciting environment for

competitive research on Question-Answering. However, the
questions that can be answered from the fixed text corpus
as in TREC are limited. Various efforts are now under way
and try to port existing Q&A techniques to a much larger
context — the World Wide Web. Our earlier study [11]
already shows that the current WWW search engines, espe-
cially those with very large index like Google, offers a very
promising source for question answering.

Agichtein et al. [12] presented a technique on how to learn
search engine specific query transformations for question an-
swering. A similar transformation technique also appeared
in [13]. The idea is that the current query interfaces of
most generic search engines, such as Google, etc., does not
provide enough capability for direct question answering in
natural language mode. By transforming the initial natural
questions into a certain format which include more domain
specific information can dramatically improve the chances
of finding good answers at the top of the search hit lists.
A set of transformation rules are learned from a training
corpus and applied to the questions at the search time and
the experiments have shown promising results. Their work,

Figure 1: Sample output from AlltheWeb.

however, is focused on improving the chances of getting high
quality documents from a search engine. It does not provide
any mechanism to identify the true answers from the search
results. A even more general framework on query transfor-
mation in discussed in [14]. A total of 15 query modulation
operators are identified and trained using the EM algorithm
for a wide range of training questions. The best operators
tailored to different questions are then identified and applied
for later online question answering using the web search en-
gines.

A relatively complete, general-purpose, web-based Q&A
system is discussed recently in [1]. Similar techniques as in
TREC conferences are applied to the web context. For ex-
ample, the user question is processed by a parser to learn its
syntactic structure. In order to help extract the answers and
make the classification task easier, the questions are classi-
fied into three categories: nominal, numerical and temporal.
Similar to the techniques used in [12, 7], various query mod-
ulation techniques, such as query expansion, noun phrase
formation, transformation are applied to the initial ques-
tions to get high quality results for later answer extraction.
Their answer extraction module utilize both IDF (inverse
document frequency, a measure of the spread of a word or
phrase among documents in a corpus) information and word
distance to extract answers. These extracted answers are
then assigned scores based on their contexts in documents
and then further clustered into groups. The member with
the highest score in each group is selected as representative
for that group and is presented to the user as a potential
answer.

Our system is different from [1] in that we did not use
a deep natural language parser. As the authors admit on

the Mulder Web page, such approaches are very slow and
are not usable on the Web until faster parsers and/or hard-
ware becomes available. In fact, the Mulder system runs
on 100 workstations in parallel (Oren Etzioni and Daniel
S. Weld, Personal Communication, 2002) to make it scal-
able. Instead, we replace these time-consuming parts with
approaches based on rule-based classifiers and probabilistic
phrase reranking and still achieve reasonable performance
on a single Sun workstation. As will be shown later, these
new additions offer a much more scalable approach for the
web context than previous work.

3. A PROBABILISTIC APPROACH TO
PHRASE RERANKING

3.1 The general architecture of our system
Our general approach includes the following stages:

• query modulation — that is the process of converting
a question to an appropriate query. This is an op-
tional stage. We have already described an approach
for query modulation in [14]. In this paper we will
present an approach that doesn’t need query modula-
tion to answer natural language questions.

• question type recognition — in this stage questions are
subdivided depending on the type of answer that they
expect: e.g., person, place, organization, distance, etc.

• document retrieval — the process of returning docu-
ments that are likely to contain, among other things,
the answer(s) to the input question.

Figure 2: The architecture of the NSIR system.

• passage (or sentence) retrieval — the process of identi-
fying in the retrieved documents the textual units that
contains the answers.

• answer extraction — that is where the relevant sen-
tences or passages are split up into constituent phrases,
each of which is a potential answer candidate.

• phrase (answer) ranking — these phrases extracted in
the previous stage are ranked with the goal of getting
the right answer near the top of the phrase-level hit
list.

3.2 Evaluation metric
As an evaluation metric, we use total reciprocal document

rank (TRDR). The value of TRDR is the sum of the recip-
rocal values of the rank of all correct documents among the
top n (arbitrary) extracted by the system:

TRDR =

N∑
i

1

ranki
(1)

where N is the number of returned documents (resp., pas-
sages or phrases). For example, if the system has retrieved
10 documents, of which three: the second, eighth, and tenth,
contain the correct answer, TRDR for that given paraphrase
is 1

2
+ 1

8
+ 1

10
= .725. TRDR can be defined similarly for

the sentence level or the phrase level. In these cases, it is
based on the rank of the correct sentences (resp., phrases).
The TRDR metric is similar to the metric used in the TREC
evaluation. The difference between the two is that in TREC,
only the top-ranked answer counts whereas, in our case, we
want to be able to tell apart two runs, one of which only

gets a correct answer in second place and another, which
gets correct answers not only in second, but also in eighth
and tenth places. Using TRDR rather than the metric em-
ployed in TREC, we are able to make such finer distinctions
in performance. Another departure from the TREC scheme
is our inability to perform a manual evaluation due to the
large number of judgments that are needed to evaluate the
different methods described in this paper. We need to rely
instead on an automatic evaluation scheme in which a doc-
ument (resp., sentence or phrase) is checked by a program
for the presence (even unjustified) of the expected answer.
This sort of evaluation is similar to the “lenient” evaluation
described in [5]. In the next subsection, we will show that
it is a reasonable compromise to use an automatic evalua-
tion mechanism to measure performance in a large system.
We should note here that for all experiments described in
this paper we have used the TREC 8, 9, and 10 corpora
from NIST [5]. They contain a total of more than 1,000
question/answer pairs. Unless otherwise indicated, we have
evaluated our system on the 200 questions form TREC8.
The Mulder system uses a different metric for evaluation,
namely user effort which measures the total number of words
shown on a page before the first correct answer is identified.
We chose to use a metric closer in spirit to the established
metrics in TREC.

3.3 Manual vs. automatic evaluation
consistency

There are some cases where the document does match the
answer patterns but does not actually support the answer.
For example, “1987” is one of the answers for the ques-
tion “When was London’s Docklands Light Railway con-

structed”; automatic evaluation cannot tell if a document
containing 1987 is really about when the railway was con-
structed or about other events happened in 1987, which a
human can judge correctly. The question that arises is to
what extent the automatic evaluation is consistent with hu-
man judges. So we did an experiment to examine the con-
sistency between the results of automatic and manual eval-
uation.

We ran the first 100 TREC8 questions on the AlltheWeb
search engine and evaluate the first 5 hits automatically and
manually. Document-level TRDR performance scores are
computed for each question and for both methods. We use
the formula to get the Pearson correlation between the two
data sets,

r =
n
∑
xy −

∑
x
∑
y√(

n
∑
x2 − (

∑
x)2)(n∑ y2 − (

∑
y)2) (2)

where x and y are the 100 reciprocal performance scores of
manual evaluation and automatic evaluation, respectively.
The Pearson correlation score derived from this formula is
.538 which shows reasonably high correlation between the
manual and automatic performance scores and, as a result,
justifies the use of automatic evaluation when manual evalu-
ation is too expensive (e.g., on tens of thousands of question-
document pairs). Note that this automatic method for eval-
uation contrasts with the small-scale manual evaluation de-
scribed in [12].

4. QUESTION TYPE IDENTIFICATION
To identify the semantic type of the question is an im-

portant step before extracting the actual answer. For ex-
ample, a question like “Who was the tallest U.S. presi-
dent?” expects a person as answer. Currently, we have 17
question types, listed in Table 4. Two methods have been
implemented to categorize questions: decision rule induc-
tion using Ripper [15] and a heuristic rule-based algorithm.
1200 questions from TREC8, TREC9 and TREC10 are used
in our experiment. The automatically identified question
types are then compared against manually annotated ques-
tion types.

Table 1: List of question types
PERSON PLACE DATE

NUMBER DEFINITION ORGANIZATION
DESCRIPTION ABBREVIATION KNOWNFOR

RATE LENGTH MONEY
REASON DURATION PURPOSE

NOMINAL OTHER

“Description” is used for questions seeking a description
of some person, such as “Who was Whitcomb Judson?”;
while questions like “Who invented the paper clip?” should
be labeled as “Person” type. “Nominal” describes ques-
tions which have nominal phrase as answers but cannot be
assigned to other specific categories such as person or orga-
nization. Questions not belonging to any of the above types
fall in “Other”.

4.1 Machine learning approach
Ripper is the machine learning tool used for question cat-

egorization. In our experiment, each question is represented
by 13 features, 9 of which are semantic features based on

WordNet. For instance, one of the semantic features is “if-
NounIsMoney” which checks if the hypernyms of the first
noun in the sentence contains money related words such as
“monetary, economic, liability, and etc. The questions have
also been processed by LTCHUNK [16], which yields the
NumberOfNounPhrases features. All the features are listed
in Table 4.1.

Table 2: Features for question representation
QuestionWords Whword

WordBesideWhwords ifWordBesideIsWealthy
ifNounIsMoney ifNounIsLength

ifNounIsDuration ifNounIsPerson
ifNounIsLocation ifNounIsGroup

ifNounIsRate ifNounIsNumber
NumberOfNounPhrases

Several experiments have been done using Ripper for ques-
tion type identification. Questions of TREC9, TREC8 and
TREC10 have been incrementally added to the training data
set. In addition, we manually added 37 data points to the
training data set, which helps produce more robust rules.
For example, “, how, many, n, , y, , , , , , , , LENGTH:4.”
means that questions which have wh-word “how many” fol-
lowed by a “Length” noun should be categorized as a
“Length” type. These manual data points are very help-
ful when Ripper uses training data set to produce the hy-
potheses. For the example data point, Ripper generates a
hypothesis which can be represented as “LENGTH 5 0 IF
(ifNounIsLength LIKE y) AND (wordbeside LIKE many)”.
So when Ripper predicts question types on testing data set,
it will know that the questions such as “How many miles
is it from London, England to Plymouth, England” are ex-
pecting a length as its answer. The Results of using Ripper
to identify question types are listed in Table 3.

Table 3: Results (in error rate) of using Ripper to
identify question types

Train Test Train Error Test Error
TREC9 TREC8 22.4% 24%
TREC8,9 TREC10 17.03% 30%
TREC8,9,10 - 20.69% -

4.2 Heuristic algorithm
The second method for type identification that we use to

categorize questions is heuristic in nature. Question catego-
rization seems trivial since the question word is often a good
indication of the semantic type of the answer. However, this
is not true even for the “who” questions. 484 TREC9 ques-
tions containing wh-words are examined with respect to the
mapping between wh-words and question types.

As it can be from Table 4, only a small number of these
wh-words can determine the question types, such as “when”
and “why”. “what” questions can cover almost all the dif-
ferent types. For the exceptions of who and where questions,
we use the simple rules like listed in Table 5.

But for what/which questions, syntactic and semantic
analysis is needed. In our system, Brill’s transformation-
based POS tagger is used to tag questions [17]. What/which
can either be tagged as a WDT (determiner) as in “What
state in the United States covers the largest area?”, or as a

Table 4: Analysis of Wh-words and their corre-
sponding types

Wh-word Types
who (102) PERSON(77) DESCRIPTION(19) ORG(6)
where(60) PLACE(54) NOMINAL(4) ORG(2)
when(40) DATE(40)
why(1) REASON(1)
what NOMINAL(78) PLACE(27) DEFINITION(26)
/which(233) PERSON(18) ORG(16) NUMBER(14)

ABBREVIATION(13) DATE(11) RATE(4)
KNOWNFOR(8) MONEY(3) PURPOSE(2)
REASON(1) TRANSL(1) LENGTH(1)
DESCOTHER(10)

how(48) NUMBER(33) LENGTH(6) RATE(2)
MONEY(2) DURATION(3) REASON(1)
DESCOTHER(1)

Table 5: Sample rules
Template Types
who is <Person Name> Description
who (manufacture|produce|grow|provide) ... Organization

WP (wh-phrase) as in “What is the population of Japan?”.
The base noun phrase right after a WDT “what” can of-
ten be used to determine the question type. We select the
last noun of this noun phrase as the informative noun which
will be further used to determine the question type with se-
mantic analysis. For example, in the question “What/WDT
card/NN company/NN sells/VBZ Christmas/NNP ornam-
ents/NNS ?/.”, the first base noun phrase is “card com-
pany”, then “company” becomes the informative noun for
this question; we then categorize this question as “ORGA-
NIZATION”. Compared to WDT “what”, questions with
a WP what are more complicated for this task. First, the
verbs in questions are used to categorize questions like “What
caused the Lynmouth floods?” in which the verbs indicate
the types; then questions are typed as “DEFINITION” if
the number of question words is one or two excluding wh-
words or any determiners; for the remaining questions, the
system needs to extract the informative noun. Our general
heuristics for finding the informative noun is to locate the
last noun of the first base noun phrase. For example, in the
question “What’s the average salary of a professional base-
ball player?”, we get two base noun phrases which are “the
average salary” and “a professional baseball player”, and we
then use “salary” as the informative noun for this question.
Different heuristics are used for questions like “What was
the name of the first Russian astronaut to do a spacewalk?”
or “What person’s head is on a dime?”. These heuristics
have also been applied to the questions containing no wh-
word, like “Name a film in which Jude Law acted”.

The decision of some questions’ types are left to the infor-
mative nouns. This is implemented through a lexicon built
manually which maps nouns to their corresponding cate-
gories, such as length|circumference|diameter|diam|radius –
> LENGTH. So if the informative noun is “diameter”, then
the question will be categorized as LENGTH type. WordNet
has been used to build the mapping lexicon. Table 6 shows
the result of using our heuristics to determine the question
types. The first line is the results of the heuristics generated
by only looking at TREC9 questions; the second is includ-
ing both TREC8 and TREC9 questions; the last line shows

the results of the heuristics modified based on all the three
TREC question sets.

Table 6: Results (in error rate) of using heuristics
to identify question types

Train Test
TREC9 TREC8 TREC10

TREC9 7.8% 15% 18%
TREC8,9 7.4% 6% 18.2%

TREC8,9,10 4.6% 5.5% 7.6%

The accuracy has been greatly improved by using heuris-
tics. When using Ripper, the training error rate is around
20% and the test error rate is even higher which goes to 30%
when trained on TREC8,9 and tested on TREC10. As can
be seen from Table 6, training error rate never goes above 8%
and testing error is around 18%. It should be noted that the
training error rate exists because some questions are really
hard to categorize without any additional information. For
example, questions like “Who won...” could expect a per-
son as its answer such as “Who won the Nobel Peace Price
in 1991”, but it also could expect an organization such as
“Who won the Superbowl in 1982”.

5. DOCUMENT RETRIEVAL
We use the offline interfaces to three of the major search

engines, AlltheWeb, Northern Light, and Google. The in-
put to these interfaces is a query (or a question in our case).
The output is a list of the URLs of the top matching docu-
ments. We use the Perl LWP::Download module to retrieve
the actual documents before we split them up into sentences
and/or phrases. We retrieve the top 40 documents from the
search engine. In the evaluation section we will show our
method’s performance on the document level as well as the
passage and phrase levels. Note: all retrievals used in this
paper were performed in late October and early November
of 2001.

6. SENTENCE RANKING
The purpose of sentence ranking is to reduce the compu-

tational complexity of the later phrase ranking stage. Pro-
ducing phrases directly from the downloaded documents re-
quires substantial computation.

To perform sentence ranking, two models were used in
our system. One is based on an N-gram model. The other
is based on the traditional Vector Space model.

For the N-gram model, the question submitted by a user
is parsed to generate unigrams, bigrams, and trigrams. Var-
ious lexical statistics about these grams are used for sen-
tence ranking. The formula for scoring sentences (passages)
by proximity to the words of the query using the N-gram
model is as follows:

Score =
w1

∑N1
i=1 tfi ∗ idfi + w2

∑N2
j=1 tfj + w3

∑N3
k=1 tfk

Normalized Factor
(3)

where Ni(i = 1, 2, 3) is the total number of occurrences of
unigram, bigram, and trigram in a sentence. wi(i = 1, 2, 3)
is the linear combination weight. We set the weights as 1,
1.5, and 4, respectively in our experiments. tfi is the term
frequency of i-gram. idf is the inverse document frequency,

which measures the rarity of a unigram. Normalized Factor
is defined as follows:

{
1 if Sentence Length < 40
Sentence Length/40 if Sentence Length > 40

Another sentence ranking function is designed based on
modification of the Okapi ranking function used for docu-
ment ranking [18]. It s defined as follows:

Score(S) =
∑
T∈Q

3× tf × idf
0.5 + 1.5× Sentence Length

Sentence Lengthavg
+ tf

(4)

where Sentence Length is the length of a sentence in
words and Sentence Lengthavg is the average sentence
length in the top 20 documents returned from a search.
tf, idf is the same meaning as above in the linear combi-
nation formula. In the evaluation section we show the per-
formance of NSIR on the sentence level.

7. PHRASE EXTRACTION AND RANKING

7.1 Potential answer identification
In our study, we convert all retrieved documents from

the Web into chunks using an off-the-shelf chunker [16].
For a typical question, after downloading the top 40 hits
from a given search engine, the chunker produces several
tens of thousands of phrasal chunks. Here is an example.
Given the question (from TREC 8) Who is the author of the
book, “The Iron Lady: A Biography of Margaret Thatcher”?,
10,360 phrases are returned. Of these 10,360 phrases, 10
contain the correct answer “Hugo Young”. However, these
10 phrases are scattered among the 10,360 phrases and need
to be identified automatically. To address this issue, our cur-
rent algorithm utilizes the following feature: proximity be-
tween the text and the question — that is, a phrase that con-
tains most query terms gets a high score, however a phrase
that is near a phrase that contains most query terms will get
a slightly lower score. Figure 3 shows the effect of proximity
on the score of a phrase. Phrases that are next to a large
number of query words get higher scores than phrases that
are further away.

pi Pi+1Pi-1Pi-w Pi+w

phrase
position

activation
weight

0

1

Figure 3: Proximity feature.

7.2 Phrase ranking
Answer Extraction and Ranking is the module that looks

at additional sources of information to improve the perfor-
mance of the previous module. We have been experimenting
with the so-called part-of-speech “phrase signatures” which
associate with a particular question or answer type. For
example, the expected answer type for the question about
Margaret Thatcher’s biography is a person. We can compute
the probabilities P (PHRASETYPE|SIG) for all possible sig-
natures and phrase types. For example, the phrase signature
for the phrase “Hugo Young” is determined by the chunker
as “NNP NNP”. The probability P (PERSON|NNP NNP) is
.458. We will call this probability the signature score. For a
given phrase, we can then multiply two numbers, the prox-
imity score from the previous subsection and the signature
score from the current subsection. Figure 4 shows some of
the most common part of speech (POS) signatures and the
phrase types that correspond to each of them. The part of
speech symbols are generated by the text chunker [16]. For
instance, VBD indicates the past participle form of a verb,
JJ is an adjective, DT is a determiner (e.g., “the”), and
“NNP” is a proper noun. Other Q&A systems use commer-
cial grade named entity taggers. Our approach could also
benefit from such taggers although phrase signatures seem
to work quite well.

Note that the step of answer identification and ranking
can be done based on sentences instead of the original down-
loaded documents. We will compare the performances of
these approaches in the experiments section.

8. EXAMPLE
Let’s consider question 21 from TREC8: Who was the

first American in space?.5 The expected correct answer is
“Alan Shepard”.

We submit this question to the Google search engine and
get the following results back (see Figure 5). Note that a
number of person names appear in the hit list. These include
several occurrences of the correct answer as well as a many
other names. The top 40 documents returned by Google
for this question contain a total of 14,717 phrases, of which
approximately 2% are names of people for a total of 300
names. Among these names, our system needs to pick out
the instances of “Alan Shepard”.

It is not difficult to see from Figure 5 that articles in the
top 2 of the hit list are about the first American woman, not
the first American in general. The correct answer appears
in the third hit.

The output of our system at the sentence level is shown
in Figure 6.

Figure 7 shows the top phrases retrieved by our system
directly from the documents and using the proximity feature
only. Figure 8 reflects the use of both features (proximity
and qtype) but without taking into account the top-ranked
sentences. Figure 9 shows how these phrases are re-ranked
after taking into account the top sentences from the returned
documents and also the qtype feature. As we will show in
the following sections, such combination of features improves
overall system performance by a factor of at least 2.

Let’s consider an example. The top-ranked phrase in Fig-
ure 7 is “the Space Flight Operations contractor”. Its sig-

5This question was used as a running example in the Kwok
et al. paper as well.

Signature Phrase Types
VBD NO (100%)
DT NN NO (86.7%) PERSON (3.8%) NUMBER (3.8%) ORG (2.5%)
NNP PERSON (37.4%) PLACE (29.6%) DATE (21.7%) NO (7.6%)
DT JJ NN NO (75.6%) NUMBER (11.1%) PLACE (4.4%) ORG (4.4%)
NNP NNP PLACE (37.3%) PERSON (35.6%) NO (16.9%) ORG (10.2%)
DT NNP ORG (55.6%) NO (33.3%) PLACE (5.6%) DATE (5.6%)

Figure 4: Common part-of-speech signatures and their corresponding phrase types. A NO means that this
particular signature cannot be the answer to any type of question. The frequencies are derived from a
manually annotated corpus of text unrelated to the TREC corpus.

Figure 5: Google result given TREC8 Question 21.

American in space Alan Shepard Becomes the First American in Space 1961 On May 5 1961

Alan Shepard Jr. was launched into space.

Keep in mind that Alan Shepard was the first American in space not the first man.

First American woman in space: Sally Ride First American woman in space: Sally Ride
Sally Ride was the first American woman to travel into space.

Submitted by Anonymous Contributor Title: First American woman in space: Sally Ride
Description: Physicist Sally Ride was the first American woman in space participating in
two missions aboard the Space Shuttle Challenger.

It was the first American space flight involving human beings.

Privacy Copyright Disclaimer First American in Space May 5 In 1961 I lived in a small
town in Florida called Neptune Beach.

As a Mercury astronaut he was chosen to be the first American in space.

He was the first American to dare the unknown and enter space.

Figure 6: The top ranked sentences from our system (names of PERSONs are shown in bold face, the correct
answer is boxed).

Rank Probability and phrase
1 0.599862 the DT Space NNP Flight NNP Operations NNP contractor NN . .
2 0.598564 International NNP Space NNP Station NNP Alpha NNP
3 0.598398 International NNP Space NNP Station NNP
4 0.598125 to TO become VB
5 0.594763 a DT joint JJ venture NN United NNP Space NNP Alliance NNP
6 0.593933 NASA NNP Johnson NNP Space NNP Center NNP
7 0.587140 will MD form VB
8 0.585410 The DT purpose NN
9 0.576797 prime JJ contracts NNS
10 0.568013 First NNP American NNP
11 0.567361 this DT bulletin NN board NN
12 0.565757 Space NNP : :
13 0.562627 ’Spirit NN ’ ” of IN
14 0.561702 space NN
15 0.561064 February NPN
...
41 0.516368 Alan NNP Shepard NNP

Figure 7: Document + Phrase, proximity only, Question 21 from TREC 8. The highest-ranking correct
answer is in position 41 out of 14,717 phrases when phrases are ranked solely based on proximity.

nature is “DT NNP NNP NNP NN”. That signature is not
associated with the expected question types “PERSON” or
“PLACE”. In other words,

P (“PERSON”|“DT NNP NNP NNP NN”)
= P (“PLACE”|“DT NNP NNP NNP NN”)
= 0

As a result, the combined probability is 0. On the other
hand, the highest-ranking “Alan Shepard” is in forty-first
place out of 14,717 phrases with a proximity score of .516368.

When taking into consideration the qtype feature in addi-
tion to proximity, that phrase moves up to tenth place with
a score of .376336. That score is the product of the proxim-
ity score .516368 and the qtype score .728814. How was the
qtype score computed? It is equal to

P (“PLACE”|“NNP NNP”) + P (“PERSON”|“NNP NNP”)

or in terms of actual numbers, .37288 + .35593. We should
note here that we have modified the output of Ripper to
specify the top two candidate categories for each question
— that is, why we are getting both PERSON and PLACE
as candidate question types for this question.

Finally, the phrase “Alan Shepard” moves even higher in
the list (to seventh place) when the list of phrases is limited
to the 1,935 phrases in the highest ranking 50 sentences
returned by our sentence ranking component. Overall, our
TRDR for this question is .18 (.14 + .03 + .01).

9. EVALUATION

9.1 Performance by question length
We ran an experiment, trying to compare performance

based on the length of the question in words. We noticed a
“V”-shaped behavior. The results are based on AlltheWeb,
D+P (Document+Phrase, not going through extraction of
sentences). For the shortest third of the questions, our
TRDR is .13; for the middle third, it is .06; while for the
longest third, it is .10. Our explanation is that really long
questions contain a large number of content words that help
identify the right documents and passages while it is easier
to guess the question type for short questions.

9.2 Robustness in question type guessing
We should note that our performance depends dramati-

cally on whether we get the question type right on our first
or second guess. Out of 173 questions for which we guess
the question type right on either guess, our performance
(AlltheWeb, D+P) is .120 while for the 27 questions whose
types we don’t guess correctly, the performance is .007, or
17 times lower.

10. EXPERIMENTAL COMPARISON
We performed several experiments at different levels of

granularity to study how we can effectively improve our
chances of finding good answers from the search results. As
we mentioned earlier, we have several different ways of prun-
ing the search space to get the answers at different levels:
document, sentence, and phrase.

We will next compare each of these ranking schemes from
searches of all three search engines.

10.1 Document level performance
The performance at the document level from all three en-

gines is summarized in Table 7, where “Avg.” is the average
of all total reciprocal scores. “# > 0” is the number of times
(of 200 questions) that correct answers are identified in top
40 documents. Using the results from AlltheWeb as the
baseline, we can see that both NorthernLight and Google
did better overall than AlltheWeb in getting good answers,
with Google completely dominant in this category. Using it
improves chances of finding correct answers by almost 60%.
Moreover, Google returns documents containing correct an-
swers for 164 questions out of 200, 10% improvement over
AlltheWeb. Google is the best engine as the potential an-
swers source for web-based question answering.

10.2 Sentence level performance
Table 8 summarizes the performance results for sentence

ranking using results from various search engines. The sen-
tence ranking results using the linear combination formula
is listed in the column under “Linear”, and Similar results
using the modified Okapi formula is listed under “Okapi”.

In each cell of the row for “Avg”, three values reported
are: total reciprocal value for the top 50 sentences of each
question, improvement over the upper-bound for a particu-
lar engine, and the improvement using one engine over the

Rank Probability and phrase
1 0.465012 Space NNP Administration NNP . .
2 0.446466 SPACE NNP CALENDAR NNP .
3 0.413976 First NNP American NNP
4 0.399043 International NNP Space NNP Station NNP Alpha NNP
5 0.396250 her PRP$ third JJ space NN mission NN
6 0.395956 NASA NNP Johnson NNP Space NNP Center NNP
7 0.394122 the DT American NNP Commercial NNP Launch NNP Industry NNP
8 0.390163 the DT Red NNP Planet NNP . .
9 0.379797 First NNP American NNP
10 0.376336 Alan NNP Shepard NNP
11 0.375669 February NNP
12 0.374813 Space NNP
13 0.373999 International NNP Space NNP Station NNP
14 0.372289 Als NNPS
15 0.371194 The NNP Spirit NNP

Figure 8: Document + Phrase, proximity + qtype, Question 21. The highest-ranking correct answer moves
up to 10th place based on proximity and question type.

Rank Probability and phrase
1 0.478857 Neptune NNP Beach NNP . .
2 0.449232 February NNP
3 0.447075 Go NNP
4 0.437895 Space NNP
5 0.431835 Go NNP
6 0.424678 Alan NNP Shepard NNP
7 0.423855 First NNP American NNP
8 0.421133 Space NNP May NNP
9 0.411065 First NNP American NNP woman NN
10 0.401994 Life NNP Sciences NNP
11 0.385763 Space NNP Shuttle NNP Discovery NNP STS-60 NN
12 0.381865 the DT Moon NNP International NNP Space NNP Station NNP
13 0.370030 Space NNP Research NNP A NNP Session NNP
14 0.366714 First NNP American NNP
15 0.359058 Sally NNP Ride NNP Sally NNP Ride NNP

Figure 9: Document + Sentence + Phrase, proximity + qtype, Question 21. The correct answer moves to
6th place when a sentence filter is used before extracting answer phrases.

Table 7: The performance comparison among search engines at the document level. A score of 1 means that
either the top ranked document is the single correct answer or that the correct hits have a sum of reciprocal
ranks equal to 1 (e.g., 2, 4, 5, 20).

Search engine AlltheWeb NorthernLightn Google
Avg. 0.8355 1.0495 1.3361

Compared with AlltheWeb - 25.61% 59.92%
#>0 149 163 164

Compared with AlltheWeb - 9.40% 10.07%

Table 8: Sentence ranking comparison for TREC 8 questions
Engine AlltheWeb NorthernLight Google

Upper Linear Okapi Upper Linear Okapi Upper Linear Okapi
Avg 2.1313 0.3128 0.2622 2.5258 0.4765 0.4397 2.5528 0.5400 0.4932

Compared with Upper Bound - -85.32% -86.40% - -81.13% -82.59% - -78.85% -80.68%
Compared with AlltheWeb - - - - 52.33% 51.73% - 72.63% 70.19%

#>0 148 99 99 159 121 119 159 137 135
Compared with Upper Bound - -33.11% -33.11% - -23.90% -25.16% - -13.84% -15.09%

Compared with AlltheWeb - - - - 22.22% 20.20% - 38.38% 36.36%

baseline engine — “AlltheWeb”. The upper-bound perfor-
mance is obtained by calculating the total reciprocal score
for all those sentences containing the answer with the as-
sumption that these sentences are ranked at the top of list.
For example, if there are total 5 sentences containing the
answer, then the upper-bound for the sentence ranking is
(1+1/2+1/3+1/4+1/5). An ideal phrase ranking algorithm
would achieve the upper bound. Giving upper bounds at

each stage (document, passage, phrase) allows for the per-
formance at each stage to be measured separately. Similar
upper-bound definition is used for phrase ranking evaluation
discussed in next subsection.

As can be seen from the TREC 8 results (shown in Ta-
ble 8) that Linear combination sentence ranking, using sen-
tences extracted from top 20 search results from Google,
gives the best results. Similarly, the row for “#>0” reports

the number of questions where the correct answers have been
found in the sentences produced by the sentence ranking
formula, along with the comparison with the upper-bound
and that of the baseline engine of “AlltheWeb”. Again using
the linear combination formula with Google engine gives the
best result: 137 out of 200. Note that we lose some of the
correct answers for 22 (159–137) questions. This is due to
the fact that some of the sentences which contain the an-
swers are not ranked at the top according to the sentence
ranking formula. Our later manual evaluation of these re-
sults show that some of these problems are caused by our
simple sentence segmentator while others simply reflect the
existence of spurious answers by coincidence.

10.3 Phrase-level performance
The phrase level performance is shown in Table 9. “D+P”

means phrases are generated and ranked from the original
downloaded documents. “D+S+P” means phrases are cre-
ated and ranked from top 50 sentences after sentence rank-
ing. Four different types of performances are reported. The
upper-bound definition is similar to the one used in sentence
ranking. “Appearance Order” means that the phrases are
ordered based on the appearance position of these phrases in
original documents. “Proximity” utilizes only the proximity
information, i.e., the overlap between a phrase and a user
query, to rank phrases. “Proximity and qtype” uses both the
proximity and the signature information to do the phrase
ranking, which is essentially our proposed PPR (probabilis-
tic phrase ranking) approach.

As can be seen in Table 9, Google again is the best in
D+P (document + phrase) performance category among the
three search engine examined. A further test using D+S+P
(document + sentence + phrase) on Google shows that the
performance is dramatically improved over the “D+P” ap-
proach, which demonstrates that the application of sentence
ranking can indeed improve the performance of question an-
swering. The final TRDR performance of NSIR is 0.199. As
a comparison, the value of MRDR would be 0.151 which
is significantly lower than TREC (the top performance at
TREC 8 was around .40). There are multiple reasons for
this discrepancy. First, TREC 8 questions were pulled di-
rectly from the 2-GB TREC corpus by rephrasing existing
sentences. Second, all questions were guaranteed to have an-
swers in the corpus. Third, the TREC corpus consists only
of clean news articles while the Web contains significantly
more heterogeneous and dirty texts.

11. CONCLUSIONS AND FUTURE WORK
We presented a probabilistic method for Web-based Natu-

ral Language Question Answering. It has been implemented
in a robust system and has been tested on a realistic corpus
of questions.

One thing we didn’t address in this paper is the scalability
issue. Even though the current system performs relatively
faster than other web-based question answering system, the
current system’s performance for real-time question answer-
ing remains to be improved. One thing deserves further
attention is that, after extensive testing and manipulation
on top of various search engines, we found out that many
pro-processing steps such as page downloading, sentence seg-
mentation, part of speech tagging, etc., take most of the re-
sponse time. Even though, parallel processing can be used to
speed up the downloading phase, the dependence of existing

web search engines as answer sources is really the bottleneck
of our system. The performance could be expected to signif-
icantly improve if we have a pre-built snapshot of a search
engine’s content.

NSIR currently takes between 5 and 30 seconds per ques-
tion depending on the (user-specified) number of documents
to be downloaded from the Web and on the (again user-
specified) number of phrases to extract. The current version
of NSIR doesn’t include query modulation [14] (the process
of converting a question to the best query for a given search
engine).

Our future work is to add query modulation to the sys-
tem, fine tune various phrases of the system, and experiment
with additional heuristics in answer selection. Currently, the
PPR approach is not working as well as what we expected
mostly due to the simple sentence segmentation and POS
tagging and text chunking. We plan to combine the PPR
approach with other efficient heuristics to further improve
the final performance of our system.

12. ACKNOWLEDGMENTS
We would like to thank Bojan Peovski and Michael Gim-

bel for help with data annotation, and Airong Luo for proof-
reading.

Author biographies
Dragomir Radev is Assistant Professor of Information,
Computer Science and Engineering, and Linguistics at the
University of Michigan. He has a Ph.D. in Computer Sci-
ence from Columbia University. Before joining Michigan, he
worked at IBM’s T.J. Watson Research Center. Dragomir’s
interests are in Information Retrieval and Natural Language
Processing, more specifically Text Summarization and Ques-
tion Answering.

Weiguo Fan will join Virginia Tech as an Assistant Pro-
fessor of Information Systems and of Computer Science start-
ing in August 2002. He is currently finishing his Ph.D. in the
Department of Computer and Information Systems, Busi-
ness School, University of Michigan. He has a M.S. degree
in Computer Science from the National University of Singa-
pore. His research interests include Information Retrieval,
Data and Text Mining, Knowledge Management, Informa-
tion Integration and Question Answering.

Hong Qi is a Ph.D. Candidate at the School of Informa-
tion, University of Michigan. She holds an M.S. degree in In-
formation Science from Beijing University. She is interested
in Natural Language Processing and Question Answering.

Harris Wu is a Ph.D. student in the Department of Com-
puter and Information Systems, Business School, University
of Michigan. He has a M.S. degree in Computer Science from
Florida State University. His interests include Information
Retrieval and Question Answering.

Amardeep Grewal is an undergraduate student at the
University of Michigan pursuing his Bachelor’s in Computer
Science. He attended the Bronx High School of Science in
New York City. He is currently working on the analysis of
the results yielded by the Q&A project in order to determine
the weak points in the system.

Table 9: Phrase ranking performance
AlltheWeb D+P NorthernLight D+P Google D+P Google D+S+P

Upper bound 2.176 2.652 2.698 1.941
Default (Appearance Order) 0.026 0.048 0.068 0.0646

Proximity 0.038 0.054 0.058 0.0646
Proximity and qtype 0.105 0.117 0.157 0.199

13. REFERENCES
[1] Cody Kwok, Oren Etzioni, and Daniel S. Weld.

Scaling question answering to the web. In the
Proceedings of the 10th World Wide Web Conference
(WWW 2001), Hong Kong, 2001.

[2] Steven Abney, Michael Collins, and Amit Singhal.
Answer extraction. In the Proceedings of ANLP 2000,
2000.

[3] B. Katz. From sentence processing to information
access on the World Wide Web. In Natural Language
Processing for the World Wide Web: Papers from the
1997 AAAI Spring Symposium, pages 77–94, 1997.

[4] Julian Kupiec. Murax: A robust linguistic approach
for question answering using an on-line encyclopedia.
In the Proceedings of 16th SIGIR Conference,
Pittsburgh, PA, 2001.

[5] Ellen Voorhees and Dawn Tice. The TREC-8 question
answering track evaluation. In Text Retrieval
Conference TREC-8, Gaithersburg, MD, 2000.

[6] J. Prager, D. Radev, E. Brown, and A. Coden. The
use of predictive annotation for question answering in
trec8. In NIST Special Publication 500-246:The Eighth
Text REtrieval Conference (TREC 8), pages 399–411,
1999.

[7] Dragomir R. Radev, John Prager, and Valerie Samn.
Ranking suspected answers to natural language
questions using predictive annotation. In the
Proceedings of 6th Conference on Applied Natural
Language Processing (ANLP), Seattle, Washington,
2000.

[8] E. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C-Y
Lin. Question answering in webclopedia. In NIST
Special Publication 500-249: The Ninth Text REtrieval
Conference (TREC 9), pages 655–664, 2000.

[9] C. L. A. Clarke, G. V. Cormack, D. I. E. Kisman, and
T. R. Lynam. Question answering by passage selection
(multitext experiments for trec-9). In NIST Special
Publication 500-249: The Ninth Text REtrieval
Conference (TREC 9), pages 673–683, 2000.

[10] S. Harabagiu, D. Moldovan, R. Mihalcea M. Pasca,

R. Bunescu M. Surdeanu, R. Gîrju, V. Rus, and
P. Morarescu. Falcon: Boosting knowledge for answer
engines. In NIST Special Publication 500-249: The
Ninth Text REtrieval Conference (TREC 9), pages
479–488, 2000.

[11] D. R. Radev, K. Libner, and W. Fan. Getting answers
to natural language queries on the web. Journal of the
American Society for Information Science and
Technology (JASIST), 53(5), 359–364, 2002.

[12] Eugene Agichtein, Steve Lawrence, and Luis Gravano.
Learning search engine specific query transformations
for question answering. In the Proceedings of the 10th
World Wide Web Conference (WWW 2001), Hong
Kong, 2001.

[13] Eric J. Glover, Gary W. Flake, Steve Lawrence,
William P. Birmingham, Andries Kruger, C. Lee Giles,
and David M. Pennock. Improving category specific
web search by learning query modifications. In The
Proceedings of Symposium on Applications and the
Internet, SAINT 2001, San Diego, California, 2001.

[14] Dragomir R. Radev, Hong Qi, Zhiping Zheng, Sasha
Blair-Goldensohn, Zhu Zhang, Weiguo Fan, and John
Prager. Mining the web for answers to natural
language questions. In the Proceedings of ACM CIKM
2001: Tenth International Conference on Information
and Knowledge Management, Atlanta, GA, 2001.

[15] William W. Cohen. Learning trees and rules with
set-valued features. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence and the
Eighth Innovative Applications of Artificial
Intelligence Conference, pages 709–716, Menlo Park,
August 1996. AAAI Press / MIT Press.

[16] Andrei Mikheev. Document centered approach to text
normalization. In Proceedings of SIGIR’2000, pages
136–143, 2000.

[17] Eric Brill. Transformation-based error-driven learning
and natural language processing: A case study in part
of speech tagging. Computational Linguistics,
21(4):543–566, December 1995.

[18] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-4. In D. K. Harman, editor, Proceedings of the
Fourth Text Retrieval Conference, pages 73–97. NIST
Special Publication 500-236, 1996.

