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Statistical image reconstruction for X-ray CT

A

Doooooooooooon <
)
n
DEDNEEBEEREE X
-+ 00000D00O00000O0 O

DO00000 =sesss
L
ooooooo

COLLEGE OF ENGINEERING
EPIT,EELB‘I,%&ITCEEEINEERING & COMPUTER SCIENCE 2/20



Statistical image reconstruction for X-ray CT

A

DOoooOOOEEEEEER <
)
n
DEDEEREEEEE ¥
- 00000D0DEEEEEE O

DO00000 =sesss
L
ooooooo

COLLEGE OF ENGINEERING
Eh%gEBlE&HCE,'}IPINEERlNG & COMPUTER SCIENCE 2/20



Statistical image reconstruction for X-ray CT

A

EEEEEBE0000000 <
)
n
DEDEEREEEEE ¥
« BEEEEEE0000000 O

DO00000 =sesss
L
ooooooo

COLLEGE OF ENGINEERING
Eh%gEBlE&HCE,'}IPINEERlNG & COMPUTER SCIENCE 2/20



Statistical image reconstruction for X-ray CT

A

Doooooooooooon <
)
n
DEDEEREEEEE ¥
-+ 00000D00O00000O0 O

DEEEEEE s
L
[=]=]=]=]=]=]=}

COLLEGE OF ENGINEERING
Eh%gEBlE&HCE,'}IPINEERlNG & COMPUTER SCIENCE 2/20



Statistical image reconstruction for X-ray CT

A

DooEEDEEEEEEER <
)
n
DEDNEEBEEREE X
- JDDDDDEEODEEEEE O

.....
~. -
............

DEEEEEE s
L
[=]=]=]=]a]=]=]

COLLEGE OF ENGINEERING
EPIT,EELB‘I,%&ITCEEEINEERING & COMPUTER SCIENCE 2/20



Statistical image reconstruction for X-ray CT

A

DooEEDEEEEEEER <
)
n
DEDNEEBEEREE X
- JDDDDDEEODEEEEE O

......
oooooooo

DEEEEEE s
L
[=]=]=]=]=]=]=}

Statistical image reconstruction (SIR)

X € arg mxin {\UPWLS(X) £ % lly — Ax||3v + R(x) + LQ(X)}
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First-order algorithms with ordered-subsets

RMS difference [HU]
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Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).
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Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

(%,0) € arg min {Lu—y[5+h(x)} st u=Ax,

where h are closed and proper convex functions.
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Equality-constrained composite minimization

Consider an equality-constrained minimization problem:
PN coql o2 _
(%,0) € arg min {5lu—yl5+ h(x)} s.t. u=Ax, (1)

where h are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference
between the linear model Ax and noisy measurement y, and h is a

regularization term that introduces the prior knowledge of x to the
reconstruction.
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Equality-constrained composite minimization

Consider an equality-constrained minimization problem:
A A . 1 _ 2 _
(%,0) € arg min {5lu—yl5+ h(x)} s.t. u=Ax, (1)

where h are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference
between the linear model Ax and noisy measurement y, and h is a

regularization term that introduces the prior knowledge of x to the
reconstruction. For example,

(%,0) € arg min {%Hu — Wl/zyHg + (R+ LQ)(X)} s.t. u=W"?Ax

represents an X-ray CT image reconstruction problem.
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Standard AL method

The standard AL method finds a saddle-point of the augmented
Lagrangian (AL) of (1):

La(x,u,d; p) £ 3 [lu —yl3 + h(x) + 5 |Ax —u —d||3

in an alternating direction manner:

x(k+1) € arg mxin {h(x) + 2]|Ax — ud) — d(k)Hg}
1) € argmin {3 Ju— y[3 + 5[|Ax+) —u - a7}
d0+D) Z g0 — Ag(ktD) 4 (kD)

where d is the scaled Lagrange multiplier of u, and p > 0 is the AL
penalty parameter.

[Gabay and Mercier, Comput. Math. Appl., 1976]
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Linearized AL method

The linearized AL method adds an additional G-proximity term to
the x-subproblem in the standard AL method:

KD € argmin { h(x) + § [ Ax — () — ][5+ 41x — x|}

ulk+t1) € arg min {% lu—yl[f5 + || AxHD) —u — d(k)Hz}
A1) = g0 — Ax(k+1) 4 (k1) |

where G £ D — A’A, and Dy is a diagonal majorizing matrix of
A'A.

[Zhang et al., J. Sci. Comput., 2011]
[HN and Fessler, IEEE Trans. Med. Imag., 2015]
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Linearized AL method

The linearized AL method adds an additional G-proximity term to
the x-subproblem in the standard AL method:

40 € argmin {h(x) + §[Ax — ) — a2+ £~ <92}

ulk+t1) € arg min {% lu—yl[f5 + || AxHD) —u — d(k)Hz}
A1) = g0 — Ax(k+1) 4 (k1) |

where G £ D — A’A, and Dy is a diagonal majorizing matrix of
A’A. Here, we linearize the algorithm in a sense that the Hessian
matrix of the “augmented” quadratic AL term is diagonal.

[Zhang et al., J. Sci. Comput., 2011]
[HN and Fessler, IEEE Trans. Med. Imag., 2015]
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Linearized AL algorithm for X-ray CT

Algorithm: OS-LALM for CT reconstruction.
Input: K > 1, M > 1, and an initial (FBP) image x.
set p=1, ¢ =g = MVLy(x)
for k=1,2,...,K do
form=1,2,...,M do
s =pC+(1-p)g
x* =[x — (pDL + Dgr) " (s + VR(x)) ]
¢ = MVLy(x")
g = ¢+ e
decrease p gradually
end

end

Output: The final image x.
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Relaxed AL method

The relaxed AL method accelerates the standard AL method with
under- or over-relaxation:

x(k+1) € argmin {h(x) + g”Ax —ulk) — (k)Hg}
ulk+1) ¢ argmin{% ”u_yH% pH"ukH) —d(")H;}
u
d(k+1) — d(k) — rf‘kjl) + ulk+1)
where
rf,lf;rl) 2 (Ax(k+D) (1-— a)u(k)

is the relaxation variable of u, and 0 < o« < 2 is the relaxation
parameter.

[Eckstein and Bertsekas, Math. Prog., 1992]
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x(k+1) € argmin {h(x) + g”Ax —ulk) — (k)Hg}
ulk+1) ¢ argmin{% ”u_yH% pH"ukH) —d(")H;}
u
d(k+1) — d(k) — rf‘kjl) + ulk+1)
where
rf,lf;rl) 2 (Ax(k+D) (1-— a)u(k)

is the relaxation variable of u, and 0 < o < 2 is the relaxation
parameter. When o = 1, it reverts to the standard AL method.

[Eckstein and Bertsekas, Math. Prog., 1992]
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Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem
with a redundant equality constraint:

o T u = Ax
(x,u,v)Earg;mE{zHU Y||2+h }St {V:Gl/zx

[HN and Fessler, IEEE Trans. Med. Imag., 2015]
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Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem
with a redundant equality constraint:

o T u = Ax
(X,U,V)Earg;ﬂ:?’{QHU Y||2+h }St {v:G1/2x

Suppose we use the same AL penalty parameter p for both equality
constraints in AL methods. The quadratic AL term

Bl - ul®) - a2 4 4]/GH/2x v V)

has a diagonal Hessian matrix H, £ pA’A + pG = pDy, leading to
a separable quadratic AL term.

[HN and Fessler, IEEE Trans. Med. Imag., 2015]
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Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent
minimization problem with a redundant equality constraint using

the relaxed AL method:

(k+1) ;
X € arg mxm { /)HG1/2

ukt1) ¢ arg muin {% lu— YH2
D) = a0 — (7Y 4 ulktD)

vkt = (F) _ gk

e(k+1) — o(k) _ r\(,f((jl) 4+ y(k+1)
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Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent
minimization problem with a redundant equality constraint using

the relaxed AL method:

(k+1) ;
X € arg mxm { /)HG1/2

ulk+1) ¢ arg min {% lu— YH2
u
D) = a0 — (7Y 4 ulktD)

vkt = (F) _ gk

e(k+1) — o(k) _ r\(,f((jl) 4+ y(k+1)

(x) + 5||Ax —

uk) _d(k)H2}
—v() e[

+ gl - —d(“Hﬁ}

When « = 1, the proposed method reverts to the linearized AL

method.
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Proposed relaxed linearized AL method (cont'd)

The proposed relaxed linearized AL method further simplifies as
follows:

(~(+1) = (p — 1) g®) + ph(K)
x(k+1) ¢ arg mxin {h( Hx— (pDL) 1y k“)HpDL}
(k) — VL( (k+1)) 2 A7 (Ax(kHD) _y)

gkt = 2. (a¢lD) 4 (1 )g®) + Lrg®
h(k+1) — a(DLx(k-i-l C(k+1)) + (1 — a)h(9)

where L(x) £ (1/2) ||[Ax — y||§ denotes the quadratic data-fidelity
term, and g(¥) £ A’(u(¥) —y) denotes the split gradient of L.
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Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:
X € arg mxin {% ly — Ax|lsy + R(x) + LQ(X)}

using the proposed relaxed linearized AL method, we apply the
following substitution:

A« WA
y «— W2y

and set h £ R+ 1q.
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using the proposed relaxed linearized AL method, we apply the
following substitution:
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and set h 2 R+ 1q.
The image update now is a diagonally weighted denoising problem.

We solve it using a projected gradient descent step from x(k),
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Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:
X € arg mxin {% ly — Ax||3, + R(x) + LQ(X)}

using the proposed relaxed linearized AL method, we apply the
following substitution:

A« WA
y «— W2y

and set h £ R+ 1q.

The image update now is a diagonally weighted denoising problem.
We solve it using a projected gradient descent step from x(¥). For
speed-up, ordered subsets (OS) or incremental gradients are used.
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Speed-up with decreasing continuation sequence

We also use a continuation technique to speed up convergence;
that is, we decrease p gradually with iteration.
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Speed-up with decreasing continuation sequence

We also use a continuation technique to speed up convergence;
that is, we decrease p gradually with iteration.

Based on a second-order recursive system analysis, we use

1, if i =0
pi(e) = ()

2
ﬁ 1-— <m) , otherwise .

Therefore, we use a faster-decreasing continuation sequence in a
more over-relaxed linearized AL method.

[HN and Fessler, IEEE Trans. Med. Imag., submitted|
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UNIVERSITY OF MICHIGAN 13/20




Proposed relaxed linearized algorithm

Algorithm: Relaxed OS-LALM for CT reconstruction.
Input: K>1, M>1, 0< «a< 2, and an initial (FBP) image x.

set p=1¢(=g=MVLy(x), h=Dx—-¢
for k=1,2,...,K do

form=1,2,...,M do

s =p(Dix—h)+(1-p)g

x" =[x — (pDL + Dr) (s + VR(x)) ]q
¢ = MVLu(x")

g =, (al+(1-a)g)+ 178

ht =a(Dx"—¢)+(1—a)h
decrease p using (2)

end

end

Output: The final image x.

COLLEGE OF ENGINEERING
EL.EELB!EFAMECENNNEENNG & COMPUTER SCIENCE 14/20



Chest region helical scan

We reconstruct a 600 x 600 x 222 image from an 888 x 64 x 3611
helical (pitch 1.0) CT scan.
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Converged = Proposed e

1100
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Figure: Chest: Cropped images of the initial FBP image x(® (left), the
reference reconstruction x* (center), and the reconstructed image x(2°)
using relaxed OS-LALM with 10 subsets after 20 iterations (right).
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Chest region helical scan (cont'd)
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Chest region helical scan (cont'd)

Relaxed OS-LALM

Figure: Chest: Difference images of the initial FBP image x(® — x* and
after 10 iterations.
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Chest region helical scan (cont'd)

Relaxed OS-LALM

Figure: Chest: Difference images of the initial FBP image x(® — x* and
after 5 iterations.
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Chest region helical scan (cont'd)

Relaxed OS-LALM

Figure: Chest: Difference images of the initial FBP image x(® — x* and
after 10 iterations.
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Chest region helical scan (cont'd)
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COLLEGE OF ENGINEERING

Figure: Chest: Difference images of the initial FBP image x(® — x* and
after 20 iterations.
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Conclusions and future work

In summary,
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Conclusions and future work

In summary,

» We proposed a relaxed variant of linearized AL methods for
faster X-ray CT image reconstruction

» Experimental results showed that the proposed algorithm
converges a-fold faster than its unrelaxed counterpart

> The speed-up means that one needs fewer subsets to reach an
RMS difference criteria in a given number of iterations

» Empirically, the proposed algorithm is reasonably stable when
we use moderate numbers of subsets

For future work,

» We want to work on the convergence rate analysis of the
proposed algorithm
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Shoulder region helical scan

We reconstruct a 512 x 512 x 109 image from an 888 x 32 x 7146
helical (pitch 0.5) CT scan.

1200
1100
1000
900
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Figure: Shoulder: Cropped images of the initial FBP image x(%) (left), the
reference reconstruction x* (center), and the reconstructed image x(2°)
using relaxed OS-LALM with 20 subsets after 20 iterations (right).
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Shoulder region helical scan (cont'd)
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Figure: Shoulder: Convergence rate curves of different OS algorithms

with 20 (left) and 40 (right) subsets.
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Shoulder region helical scan (cont'd)
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Figure: Shoulder: Difference images of the initial FBP image x(©) — x*

and the reconstructed image x(?®) — x* using OS algorithms with 20
subsets after 20 iterations.
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Abdomen region helical scan

We reconstruct a 600 x 600 x 239 image from an 888 x 64 x 3516
helical (pitch 1.0) CT scan.
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Figure: Abdomen: Cropped images of the initial FBP image x(®) (left),
the reference reconstruction x* (center), and the reconstructed image
x(20) using relaxed OS-LALM with 10 subsets after 20 iterations (right).
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Abdomen region helical scan (cont'd)
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Figure: Abdomen: Convergence rate curves of different OS algorithms
with 10 (left) and 20 (right) subsets.
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Abdomen region helical scan (cont'd)
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Figure: Abdomen: Difference images of the initial FBP image x(®) — x*
and the reconstructed image x(?®) — x* using OS algorithms with 10

subsets after 20 iterations.
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Simple vs. proposed relaxed OS-LALM
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Figure: Chest: Convergence rate curves of different relaxed algorithms
with a fixed AL parameter p = 0.05 (left) and the decreasing p (right).
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Wide-cone axial scan

We reconstruct a 718 x 718 x 440 image from an 888 x 256 x 984
axial CT scan.
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Figure: Wide-cone: Cropped images of the initial FBP image x(©) (left),
the reference reconstruction x* (center), and the reconstructed image
x(2) using relaxed OS-LALM with 24 subsets after 20 iterations (right).
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Wide-cone axial scan (cont'd)
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Figure: Wide-cone: Convergence rate curves of different OS algorithms
with 12 (left) and 24 (right) subsets.
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