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Statistical image reconstruction for X-ray CT

x̂ ∈ arg min
x

{
ΨPWLS(x) , 1

2 ‖y − Ax‖2
W + R(x) + ιΩ(x)

}Statistical image reconstruction (SIR)
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First-order algorithms with ordered-subsets
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Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).
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Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
1
2 ‖u− y‖2

2 + h(x)
}

s.t. u = Ax , (1)

where h are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference
between the linear model Ax and noisy measurement y, and h is a
regularization term that introduces the prior knowledge of x to the
reconstruction. For example,

(x̂, û) ∈ arg min
x,u

{
1
2

∥∥u−W1/2y
∥∥2

2
+ (R + ιΩ)(x)

}
s.t. u = W1/2Ax

represents an X-ray CT image reconstruction problem.
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(x̂, û) ∈ arg min
x,u

{
1
2

∥∥u−W1/2y
∥∥2

2
+ (R + ιΩ)(x)

}
s.t. u = W1/2Ax

represents an X-ray CT image reconstruction problem.

4/20



Equality-constrained composite minimization

Consider an equality-constrained minimization problem:
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Standard AL method

The standard AL method finds a saddle-point of the augmented
Lagrangian (AL) of (1):

LA(x,u,d; ρ) , 1
2 ‖u− y‖2

2 + h(x) + ρ
2 ‖Ax− u− d‖2

2

in an alternating direction manner:
x(k+1) ∈ arg min

x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
1
2 ‖u− y‖2

2 + ρ
2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) − Ax(k+1) + u(k+1) ,

where d is the scaled Lagrange multiplier of u, and ρ > 0 is the AL
penalty parameter.

[Gabay and Mercier, Comput. Math. Appl., 1976]
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Linearized AL method

The linearized AL method adds an additional G-proximity term to
the x-subproblem in the standard AL method:
x(k+1) ∈ arg min

x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ ρ

2

∥∥x− x(k)
∥∥2

G

}
u(k+1) ∈ arg min

u

{
1
2 ‖u− y‖2

2 + ρ
2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) − Ax(k+1) + u(k+1) ,

where G , DL − A′A, and DL is a diagonal majorizing matrix of
A′A.

Here, we linearize the algorithm in a sense that the Hessian
matrix of the “augmented” quadratic AL term is diagonal.

[Zhang et al., J. Sci. Comput., 2011]
[HN and Fessler, IEEE Trans. Med. Imag., 2015]
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Linearized AL algorithm for X-ray CT

Algorithm: OS-LALM for CT reconstruction.

Input: K ≥ 1, M ≥ 1, and an initial (FBP) image x.

set ρ = 1, ζ = g = M∇LM(x)
for k = 1, 2, . . . ,K do

for m = 1, 2, . . . ,M do
s = ρζ + (1− ρ) g

x+ =
[
x− (ρDL + DR)−1 (s +∇R(x))

]
Ω

ζ+ = M∇Lm(x+)
g+ = ρ

ρ+1ζ
+ + 1

ρ+1g
decrease ρ gradually

end

end

Output: The final image x.
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Relaxed AL method

The relaxed AL method accelerates the standard AL method with
under- or over-relaxation:

x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
1
2 ‖u− y‖2

2 + ρ
2

∥∥r(k+1)
u,α − u− d(k)

∥∥2

2

}
d(k+1) = d(k) − r

(k+1)
u,α + u(k+1) ,

where
r

(k+1)
u,α , αAx(k+1) + (1− α)u(k)

is the relaxation variable of u, and 0 < α < 2 is the relaxation
parameter.

When α = 1, it reverts to the standard AL method.

[Eckstein and Bertsekas, Math. Prog., 1992]
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Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem
with a redundant equality constraint:

(x̂, û, v̂) ∈ arg min
x,u,v

{
1
2 ‖u− y‖2

2 + h(x)
}

s.t.

{
u = Ax

v = G1/2x .

Suppose we use the same AL penalty parameter ρ for both equality
constraints in AL methods. The quadratic AL term

ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ ρ

2

∥∥G1/2x− v(k) − e(k)
∥∥2

2

has a diagonal Hessian matrix Hρ , ρA′A + ρG = ρDL, leading to
a separable quadratic AL term.

[HN and Fessler, IEEE Trans. Med. Imag., 2015]
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Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent
minimization problem with a redundant equality constraint using
the relaxed AL method:

x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

+ρ
2

∥∥G1/2x− v(k) − e(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
1
2 ‖u− y‖2

2 + ρ
2

∥∥r(k+1)
u,α − u− d(k)

∥∥2

2

}
d(k+1) = d(k) − r

(k+1)
u,α + u(k+1)

v(k+1) = r
(k+1)
v,α − e(k)

e(k+1) = e(k) − r
(k+1)
v,α + v(k+1) .

When α = 1, the proposed method reverts to the linearized AL
method.
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Proposed relaxed linearized AL method (cont’d)

The proposed relaxed linearized AL method further simplifies as
follows:

γ(k+1) = (ρ− 1) g(k) + ρh(k)

x(k+1) ∈ arg min
x

{
h(x) + 1

2

∥∥x− (ρDL)−1 γ(k+1)
∥∥2

ρDL

}
ζ(k+1) = ∇L

(
x(k+1)

)
, A′

(
Ax(k+1) − y

)
g(k+1) = ρ

ρ+1

(
αζ(k+1) + (1− α)g(k)

)
+ 1

ρ+1g
(k)

h(k+1) = α
(
DLx

(k+1) − ζ(k+1)
)

+ (1− α)h(k) ,

where L(x) , (1/2) ‖Ax− y‖2
2 denotes the quadratic data-fidelity

term, and g(k) , A′
(
u(k) − y

)
denotes the split gradient of L.
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Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

x̂ ∈ arg min
x

{
1
2 ‖y − Ax‖2

W + R(x) + ιΩ(x)
}

using the proposed relaxed linearized AL method, we apply the
following substitution: {

A←W1/2A

y←W1/2y

and set h , R + ιΩ.

The image update now is a diagonally weighted denoising problem.
We solve it using a projected gradient descent step from x(k). For
speed-up, ordered subsets (OS) or incremental gradients are used.
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Speed-up with decreasing continuation sequence

We also use a continuation technique to speed up convergence;
that is, we decrease ρ gradually with iteration.

Based on a second-order recursive system analysis, we use

ρi (α) =

1, if i = 0

π
α(i+1)

√
1−

(
π

2α(i+1)

)2
, otherwise .

(2)

Therefore, we use a faster-decreasing continuation sequence in a
more over-relaxed linearized AL method.

[HN and Fessler, IEEE Trans. Med. Imag., submitted]
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Proposed relaxed linearized algorithm

Algorithm: Relaxed OS-LALM for CT reconstruction.

Input: K ≥ 1, M ≥ 1, 0 < α < 2, and an initial (FBP) image x.

set ρ = 1, ζ = g = M∇LM(x), h = DLx− ζ
for k = 1, 2, . . . ,K do

for m = 1, 2, . . . ,M do
s = ρ (DLx− h) + (1− ρ) g

x+ =
[
x− (ρDL + DR)−1 (s +∇R(x))

]
Ω

ζ = M∇Lm(x+)
g+ = ρ

ρ+1 (αζ + (1− α) g) + 1
ρ+1g

h+ = α (DLx+ − ζ) + (1− α)h
decrease ρ using (2)

end

end

Output: The final image x.
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Chest region helical scan

We reconstruct a 600× 600× 222 image from an 888× 64× 3611
helical (pitch 1.0) CT scan.

 

 

FBP Converged Proposed

800

900

1000

1100

1200

Figure: Chest: Cropped images of the initial FBP image x(0) (left), the
reference reconstruction x? (center), and the reconstructed image x(20)

using relaxed OS-LALM with 10 subsets after 20 iterations (right).
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Chest region helical scan (cont’d)
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Figure: Chest: Convergence rate curves of different OS algorithms with
10 (left) and 20 (right) subsets.
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Chest region helical scan (cont’d)
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Figure: Chest: Difference images of the initial FBP image x(0) − x? and
the reconstructed image x(10) − x? using OS algorithms with 10 subsets
after 10 iterations.
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Chest region helical scan (cont’d)
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Figure: Chest: Difference images of the initial FBP image x(0) − x? and
the reconstructed image x(5) − x? using OS algorithms with 20 subsets
after 5 iterations.
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Chest region helical scan (cont’d)
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Figure: Chest: Difference images of the initial FBP image x(0) − x? and
the reconstructed image x(10) − x? using OS algorithms with 20 subsets
after 10 iterations.
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Chest region helical scan (cont’d)
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Figure: Chest: Difference images of the initial FBP image x(0) − x? and
the reconstructed image x(20) − x? using OS algorithms with 20 subsets
after 20 iterations. More results
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Conclusions and future work

In summary,

I We proposed a relaxed variant of linearized AL methods for
faster X-ray CT image reconstruction

I Experimental results showed that the proposed algorithm
converges α-fold faster than its unrelaxed counterpart

I The speed-up means that one needs fewer subsets to reach an
RMS difference criteria in a given number of iterations

I Empirically, the proposed algorithm is reasonably stable when
we use moderate numbers of subsets

For future work,

I We want to work on the convergence rate analysis of the
proposed algorithm
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Shoulder region helical scan

We reconstruct a 512× 512× 109 image from an 888× 32× 7146
helical (pitch 0.5) CT scan.
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Figure: Shoulder: Cropped images of the initial FBP image x(0) (left), the
reference reconstruction x? (center), and the reconstructed image x(20)

using relaxed OS-LALM with 20 subsets after 20 iterations (right).
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Shoulder region helical scan (cont’d)
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Figure: Shoulder: Convergence rate curves of different OS algorithms
with 20 (left) and 40 (right) subsets.
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Shoulder region helical scan (cont’d)
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Figure: Shoulder: Difference images of the initial FBP image x(0) − x?

and the reconstructed image x(20) − x? using OS algorithms with 20
subsets after 20 iterations.
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Abdomen region helical scan

We reconstruct a 600× 600× 239 image from an 888× 64× 3516
helical (pitch 1.0) CT scan.
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Figure: Abdomen: Cropped images of the initial FBP image x(0) (left),
the reference reconstruction x? (center), and the reconstructed image
x(20) using relaxed OS-LALM with 10 subsets after 20 iterations (right).
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Abdomen region helical scan (cont’d)
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Figure: Abdomen: Convergence rate curves of different OS algorithms
with 10 (left) and 20 (right) subsets.
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Abdomen region helical scan (cont’d)
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Figure: Abdomen: Difference images of the initial FBP image x(0) − x?

and the reconstructed image x(20) − x? using OS algorithms with 10
subsets after 20 iterations. Conclusions and future work
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Simple vs. proposed relaxed OS-LALM
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Figure: Chest: Convergence rate curves of different relaxed algorithms
with a fixed AL parameter ρ = 0.05 (left) and the decreasing ρ (right).
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Wide-cone axial scan

We reconstruct a 718× 718× 440 image from an 888× 256× 984
axial CT scan.

 

 

FBP Converged Proposed

800

900

1000

1100

1200

Figure: Wide-cone: Cropped images of the initial FBP image x(0) (left),
the reference reconstruction x? (center), and the reconstructed image
x(20) using relaxed OS-LALM with 24 subsets after 20 iterations (right).
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Wide-cone axial scan (cont’d)
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Figure: Wide-cone: Convergence rate curves of different OS algorithms
with 12 (left) and 24 (right) subsets.
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