Relaxed linearized algorithms for faster X-ray CT image reconstruction

Hung Nien and Jeffrey A. Fessler

University of Michigan, Ann Arbor

The 13th Fully 3D Meeting - June 2, 2015

$$\hat{\boldsymbol{x}} \in \arg\min_{\boldsymbol{x}} \left\{ \Psi_{\text{PWLS}}(\boldsymbol{x}) \triangleq \tfrac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \right\|_{\boldsymbol{W}}^2 + R(\boldsymbol{x}) + \iota_{\Omega}(\boldsymbol{x}) \right\}$$

$$\hat{\boldsymbol{x}} \in \arg\min_{\boldsymbol{x}} \left\{ \Psi_{\text{PWLS}}(\boldsymbol{x}) \triangleq \frac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \right\|_{\boldsymbol{W}}^2 + R(\boldsymbol{x}) + \iota_{\Omega}(\boldsymbol{x}) \right\}$$

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \Psi_{\text{PWLS}}(\mathbf{x}) \triangleq \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|_{\mathbf{W}}^2 + \mathbf{R}(\mathbf{x}) + \iota_{\Omega}(\mathbf{x}) \right\}$$

$$\hat{\boldsymbol{x}} \in \arg\min_{\boldsymbol{x}} \left\{ \Psi_{\text{PWLS}}(\boldsymbol{x}) \triangleq \tfrac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \right\|_{\boldsymbol{W}}^2 + R(\boldsymbol{x}) + \iota_{\boldsymbol{\Omega}}(\boldsymbol{x}) \right\}$$

$$\hat{\boldsymbol{x}} \in \arg\min_{\boldsymbol{x}} \left\{ \Psi_{\text{PWLS}}(\boldsymbol{x}) \triangleq \tfrac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{\mathsf{A}} \boldsymbol{x} \right\|_{\boldsymbol{\mathsf{W}}}^2 + \mathsf{R}(\boldsymbol{x}) + \iota_{\Omega}(\boldsymbol{x}) \right\}$$

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).

Figure: Chest: Existing first-order algorithms with ordered-subsets (OS).

Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}) \in \arg\min_{\mathbf{x}, \mathbf{u}} \left\{ \frac{1}{2} \|\mathbf{u} - \mathbf{y}\|_{2}^{2} + h(\mathbf{x}) \right\} \text{ s.t. } \mathbf{u} = \mathbf{A}\mathbf{x},$$
 (1)

where h are closed and proper convex functions.

Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

$$(\hat{\mathbf{x}},\hat{\mathbf{u}}) \in \arg\min_{\mathbf{x},\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_2^2 + h(\mathbf{x}) \right\} \text{ s.t. } \mathbf{u} = \mathbf{A}\mathbf{x} \,, \tag{1}$$

where h are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference between the linear model $\mathbf{A}\mathbf{x}$ and noisy measurement \mathbf{y} , and h is a regularization term that introduces the prior knowledge of \mathbf{x} to the reconstruction.

Equality-constrained composite minimization

Consider an equality-constrained minimization problem:

$$(\hat{\mathbf{x}},\hat{\mathbf{u}}) \in \arg\min_{\mathbf{x},\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_2^2 + h(\mathbf{x}) \right\} \text{ s.t. } \mathbf{u} = \mathbf{A}\mathbf{x} \,, \tag{1}$$

where h are closed and proper convex functions.

In particular, the quadratic loss function penalizes the difference between the linear model $\mathbf{A}\mathbf{x}$ and noisy measurement \mathbf{y} , and h is a regularization term that introduces the prior knowledge of \mathbf{x} to the reconstruction. For example,

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}) \in \arg\min_{\mathbf{x}, \mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{W}^{1/2} \mathbf{y} \right\|_2^2 + (\mathsf{R} + \iota_{\Omega})(\mathbf{x}) \right\} \text{ s.t. } \mathbf{u} = \mathbf{W}^{1/2} \mathbf{A} \mathbf{x}$$

represents an X-ray CT image reconstruction problem.

Standard AL method

The standard AL method finds a saddle-point of the augmented Lagrangian (AL) of (1):

$$\mathcal{L}_{\mathsf{A}}(\mathbf{x}, \mathbf{u}, \mathbf{d}; \rho) \triangleq \frac{1}{2} \|\mathbf{u} - \mathbf{y}\|_{2}^{2} + h(\mathbf{x}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} - \mathbf{u} - \mathbf{d}\|_{2}^{2}$$

in an alternating direction manner:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \big\| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \big\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \,, \end{cases}$$

where ${\bf d}$ is the scaled Lagrange multiplier of ${\bf u}$, and $\rho>0$ is the AL penalty parameter.

[Gabay and Mercier, Comput. Math. Appl., 1976]

Standard AL method

The standard AL method finds a saddle-point of the augmented Lagrangian (AL) of (1):

$$\mathcal{L}_{\mathsf{A}}(\mathbf{x}, \mathbf{u}, \mathbf{d}; \rho) \triangleq \frac{1}{2} \|\mathbf{u} - \mathbf{y}\|_{2}^{2} + h(\mathbf{x}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} - \mathbf{u} - \mathbf{d}\|_{2}^{2}$$

in an alternating direction manner:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \,, \end{cases}$$

where ${\bf d}$ is the scaled Lagrange multiplier of ${\bf u}$, and $\rho>0$ is the AL penalty parameter.

[Gabay and Mercier, Comput. Math. Appl., 1976]

Linearized AL method

The linearized AL method adds an additional **G**-proximity term to the **x**-subproblem in the standard AL method:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_{2}^{2} + \frac{\rho}{2} \| \mathbf{x} - \mathbf{x}^{(k)} \|_{\mathbf{G}}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{u} - \mathbf{y} \|_{2}^{2} + \frac{\rho}{2} \| \mathbf{A} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} , \end{cases}$$

where $\mathbf{G} \triangleq \mathbf{D}_L - \mathbf{A}'\mathbf{A}$, and \mathbf{D}_L is a diagonal majorizing matrix of $\mathbf{A}'\mathbf{A}$.

[Zhang et al., J. Sci. Comput., 2011] [HN and Fessler, IEEE Trans. Med. Imag., 2015]

Linearized AL method

The linearized AL method adds an additional **G**-proximity term to the **x**-subproblem in the standard AL method:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{x} - \mathbf{x}^{(k)} \right\|_{\mathbf{G}}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x}^{(k+1)} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{u}^{(k+1)} \,, \end{cases}$$

where $\mathbf{G} \triangleq \mathbf{D}_L - \mathbf{A}'\mathbf{A}$, and \mathbf{D}_L is a diagonal majorizing matrix of $\mathbf{A}'\mathbf{A}$. Here, we linearize the algorithm in a sense that the Hessian matrix of the "augmented" quadratic AL term is diagonal.

[Zhang et al., J. Sci. Comput., 2011] [HN and Fessler, IEEE Trans. Med. Imag., 2015]

Linearized AL algorithm for X-ray CT

Algorithm: OS-LALM for CT reconstruction.

```
Input: K \ge 1, M \ge 1, and an initial (FBP) image x.
set \rho = 1, \zeta = \mathbf{g} = M \nabla L_M(\mathbf{x})
for k = 1, 2, ..., K do
          for m = 1, 2, ..., M do
             |\mathbf{s}| = \rho \boldsymbol{\zeta} + (1 - \rho) \mathbf{g}
          \mathbf{x}^{+} = \left[\mathbf{x} - (\rho \mathbf{D}_{\mathsf{L}} + \mathbf{D}_{\mathsf{R}})^{-1} (\mathbf{s} + \nabla \mathsf{R}(\mathbf{x}))\right]_{\mathsf{O}}
                 \boldsymbol{\zeta}^{\scriptscriptstyle +} = ar{M} 
abla \mathsf{L}_m(\mathbf{x}^{\scriptscriptstyle +})
                 \mathbf{g}^{\scriptscriptstyle +} = rac{
ho}{
ho+1} oldsymbol{\zeta}^{\scriptscriptstyle +} + rac{1}{
ho+1} \mathbf{g} decrease 
ho gradually
          end
end
```

Output: The final image **x**.

Relaxed AL method

The relaxed AL method accelerates the standard AL method with under- or over-relaxation:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} + \mathbf{u}^{(k+1)}, \end{cases}$$

where

$$\mathbf{r}_{\mathbf{u},\alpha}^{(k+1)} \triangleq \alpha \mathbf{A} \mathbf{x}^{(k+1)} + (1-\alpha) \mathbf{u}^{(k)}$$

is the relaxation variable of $\mathbf{u},$ and $0<\alpha<2$ is the relaxation parameter.

[Eckstein and Bertsekas, Math. Prog., 1992]

Relaxed AL method

The relaxed AL method accelerates the standard AL method with under- or over-relaxation:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_{2}^{2} + \frac{\rho}{2} \left\| \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} - \mathbf{u} - \mathbf{d}^{(k)} \right\|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} + \mathbf{u}^{(k+1)} \,, \end{cases}$$

where

$$\mathbf{r}_{\mathbf{u},\alpha}^{(k+1)} \triangleq \alpha \mathbf{A} \mathbf{x}^{(k+1)} + (1-\alpha) \mathbf{u}^{(k)}$$

is the relaxation variable of ${\bf u}$, and $0<\alpha<2$ is the relaxation parameter. When $\alpha=1$, it reverts to the standard AL method.

[Eckstein and Bertsekas, Math. Prog., 1992]

Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem with a redundant equality constraint:

$$(\hat{\textbf{x}}, \hat{\textbf{u}}, \hat{\textbf{v}}) \in \arg\min_{\textbf{x}, \textbf{u}, \textbf{v}} \left\{ \frac{1}{2} \left\| \textbf{u} - \textbf{y} \right\|_2^2 + \textit{h}(\textbf{x}) \right\} \text{ s.t. } \begin{cases} \textbf{u} = \textbf{A}\textbf{x} \\ \textbf{v} = \textbf{G}^{1/2}\textbf{x} \, . \end{cases}$$

[HN and Fessler, IEEE Trans. Med. Imag., 2015]

Implicit linearization via redundant variable-splitting

Consider an equivalent equality-constrained minimization problem with a redundant equality constraint:

$$(\hat{\mathbf{x}}, \hat{\mathbf{u}}, \hat{\mathbf{v}}) \in \arg\min_{\mathbf{x}, \mathbf{u}, \mathbf{v}} \left\{ \frac{1}{2} \left\| \mathbf{u} - \mathbf{y} \right\|_2^2 + h(\mathbf{x}) \right\} \text{ s.t.} \begin{cases} \mathbf{u} = \mathbf{A}\mathbf{x} \\ \mathbf{v} = \mathbf{G}^{1/2}\mathbf{x} \,. \end{cases}$$

Suppose we use the same AL penalty parameter ρ for both equality constraints in AL methods. The quadratic AL term

$$\frac{\rho}{2} \| \mathbf{A} \mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_2^2 + \frac{\rho}{2} \| \mathbf{G}^{1/2} \mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_2^2$$

has a diagonal Hessian matrix $\mathbf{H}_{\rho} \triangleq \rho \mathbf{A}' \mathbf{A} + \rho \mathbf{G} = \rho \mathbf{D}_{\mathsf{L}}$, leading to a separable quadratic AL term.

[HN and Fessler, IEEE Trans. Med. Imag., 2015]

Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent minimization problem with a redundant equality constraint using the relaxed AL method:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \begin{array}{l} h(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_{2}^{2} \\ + \frac{\rho}{2} \| \mathbf{G}^{1/2}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \end{array} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{u} - \mathbf{y} \|_{2}^{2} + \frac{\rho}{2} \| \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} + \mathbf{u}^{(k+1)} \\ \mathbf{v}^{(k+1)} = \mathbf{r}^{(k+1)}_{\mathbf{v},\alpha} - \mathbf{e}^{(k)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{r}^{(k+1)}_{\mathbf{v},\alpha} + \mathbf{v}^{(k+1)} \end{array}.$$

Proposed relaxed linearized AL method

The proposed relaxed linearized AL method solves the equivalent minimization problem with a redundant equality constraint using the relaxed AL method:

$$\begin{cases} \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ \begin{array}{l} h(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A}\mathbf{x} - \mathbf{u}^{(k)} - \mathbf{d}^{(k)} \|_{2}^{2} \\ + \frac{\rho}{2} \| \mathbf{G}^{1/2}\mathbf{x} - \mathbf{v}^{(k)} - \mathbf{e}^{(k)} \|_{2}^{2} \end{array} \right\} \\ \mathbf{u}^{(k+1)} \in \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \| \mathbf{u} - \mathbf{y} \|_{2}^{2} + \frac{\rho}{2} \| \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} - \mathbf{u} - \mathbf{d}^{(k)} \|_{2}^{2} \right\} \\ \mathbf{d}^{(k+1)} = \mathbf{d}^{(k)} - \mathbf{r}^{(k+1)}_{\mathbf{u},\alpha} + \mathbf{u}^{(k+1)} \\ \mathbf{v}^{(k+1)} = \mathbf{r}^{(k+1)}_{\mathbf{v},\alpha} - \mathbf{e}^{(k)} \\ \mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mathbf{r}^{(k+1)}_{\mathbf{v},\alpha} + \mathbf{v}^{(k+1)} \,. \end{cases}$$

When $\alpha=1$, the proposed method reverts to the linearized AL method.

Proposed relaxed linearized AL method (cont'd)

The proposed relaxed linearized AL method further simplifies as follows:

$$\begin{cases} \boldsymbol{\gamma}^{(k+1)} = (\rho-1)\,\mathbf{g}^{(k)} + \rho\mathbf{h}^{(k)} \\ \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{1}{2} \left\| \mathbf{x} - (\rho\mathbf{D}_{\mathsf{L}})^{-1}\,\boldsymbol{\gamma}^{(k+1)} \right\|_{\rho\mathsf{D}_{\mathsf{L}}}^2 \right\} \\ \boldsymbol{\zeta}^{(k+1)} = \nabla\mathsf{L}\big(\mathbf{x}^{(k+1)}\big) \triangleq \mathbf{A}'\left(\mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{y}\right) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1}\big(\alpha\boldsymbol{\zeta}^{(k+1)} + (1-\alpha)\mathbf{g}^{(k)}\big) + \frac{1}{\rho+1}\mathbf{g}^{(k)} \\ \mathbf{h}^{(k+1)} = \alpha\big(\mathbf{D}_{\mathsf{L}}\mathbf{x}^{(k+1)} - \boldsymbol{\zeta}^{(k+1)}\big) + (1-\alpha)\mathbf{h}^{(k)} \,, \end{cases}$$

where $L(\mathbf{x}) \triangleq (1/2) \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$ denotes the quadratic data-fidelity term, and $\mathbf{g}^{(k)} \triangleq \mathbf{A}'(\mathbf{u}^{(k)} - \mathbf{y})$ denotes the split gradient of L.

Proposed relaxed linearized AL method (cont'd)

The proposed relaxed linearized AL method further simplifies as follows:

$$\begin{cases} \boldsymbol{\gamma}^{(k+1)} = (\rho-1)\,\mathbf{g}^{(k)} + \rho\mathbf{h}^{(k)} \\ \mathbf{x}^{(k+1)} \in \arg\min_{\mathbf{x}} \left\{ h(\mathbf{x}) + \frac{1}{2} \left\| \mathbf{x} - (\rho\mathbf{D}_{\mathsf{L}})^{-1}\,\boldsymbol{\gamma}^{(k+1)} \right\|_{\rho\mathsf{D}_{\mathsf{L}}}^2 \right\} \\ \boldsymbol{\zeta}^{(k+1)} = \nabla\mathsf{L}\big(\mathbf{x}^{(k+1)}\big) \triangleq \mathbf{A}'\,\big(\mathbf{A}\mathbf{x}^{(k+1)} - \mathbf{y}\big) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho+1}\big(\alpha\boldsymbol{\zeta}^{(k+1)} + (1-\alpha)\mathbf{g}^{(k)}\big) + \frac{1}{\rho+1}\mathbf{g}^{(k)} \\ \mathbf{h}^{(k+1)} = \alpha\big(\mathbf{D}_{\mathsf{L}}\mathbf{x}^{(k+1)} - \boldsymbol{\zeta}^{(k+1)}\big) + (1-\alpha)\mathbf{h}^{(k)} \,, \end{cases}$$

where $L(\mathbf{x}) \triangleq (1/2) \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$ denotes the quadratic data-fidelity term, and $\mathbf{g}^{(k)} \triangleq \mathbf{A}'(\mathbf{u}^{(k)} - \mathbf{y})$ denotes the split gradient of L.

Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|_{\mathbf{W}}^2 + \mathsf{R}(\mathbf{x}) + \iota_{\Omega}(\mathbf{x}) \right\}$$

using the proposed relaxed linearized AL method, we apply the following substitution:

$$\begin{cases} \mathbf{A} \leftarrow \mathbf{W}^{1/2} \mathbf{A} \\ \mathbf{y} \leftarrow \mathbf{W}^{1/2} \mathbf{y} \end{cases}$$

and set $h \triangleq R + \iota_{\Omega}$.

Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|_{\mathbf{W}}^2 + \mathsf{R}(\mathbf{x}) + \iota_{\Omega}(\mathbf{x}) \right\}$$

using the proposed relaxed linearized AL method, we apply the following substitution:

$$\begin{cases} \mathbf{A} \leftarrow \mathbf{W}^{1/2} \mathbf{A} \\ \mathbf{y} \leftarrow \mathbf{W}^{1/2} \mathbf{y} \end{cases}$$

and set $h \triangleq R + \iota_{\Omega}$.

The image update now is a diagonally weighted denoising problem. We solve it using a projected gradient descent step from $\mathbf{x}^{(k)}$.

Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction problem:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|_{\mathbf{W}}^{2} + \mathsf{R}(\mathbf{x}) + \iota_{\Omega}(\mathbf{x}) \right\}$$

using the proposed relaxed linearized AL method, we apply the following substitution:

$$\begin{cases} \mathbf{A} \leftarrow \mathbf{W}^{1/2} \mathbf{A} \\ \mathbf{y} \leftarrow \mathbf{W}^{1/2} \mathbf{y} \end{cases}$$

and set $h \triangleq R + \iota_{\Omega}$.

The image update now is a diagonally weighted denoising problem. We solve it using a projected gradient descent step from $\mathbf{x}^{(k)}$. For speed-up, ordered subsets (OS) or incremental gradients are used.

Speed-up with decreasing continuation sequence

We also use a continuation technique to speed up convergence; that is, we decrease ρ gradually with iteration.

Speed-up with decreasing continuation sequence

We also use a continuation technique to speed up convergence; that is, we decrease ρ gradually with iteration.

Based on a second-order recursive system analysis, we use

$$\rho_i(\alpha) = \begin{cases} 1, & \text{if } i = 0\\ \frac{\pi}{\alpha(i+1)} \sqrt{1 - \left(\frac{\pi}{2\alpha(i+1)}\right)^2}, & \text{otherwise} . \end{cases}$$
 (2)

Therefore, we use a faster-decreasing continuation sequence in a more over-relaxed linearized AL method.

[HN and Fessler, IEEE Trans. Med. Imag., submitted]

Proposed relaxed linearized algorithm

Algorithm: Relaxed OS-LALM for CT reconstruction.

```
Input: K > 1, M > 1, 0 < \alpha < 2, and an initial (FBP) image x.
set \rho = 1, \zeta = \mathbf{g} = M \nabla L_M(\mathbf{x}), \mathbf{h} = \mathbf{D}_1 \mathbf{x} - \zeta
for k = 1, 2, ..., K do
         for m = 1, 2, ..., M do
                 \mathbf{s} = \rho \left( \mathbf{D}_{\mathsf{L}} \mathbf{x} - \mathbf{h} \right) + (1 - \rho) \mathbf{g}
                \mathbf{x}^{\scriptscriptstyle +} = \left[\mathbf{x} - \left(
ho \mathbf{D}_{\mathsf{L}} + \mathbf{D}_{\mathsf{R}}
ight)^{-1} \left(\mathbf{s} + 
abla \mathsf{R}(\mathbf{x})
ight)
ight]_{\mathsf{Q}}
                \zeta = M \nabla L_m(\mathbf{x}^+)
                 \mathbf{g}^+ = \frac{\rho}{\rho+1} \left( \alpha \boldsymbol{\zeta} + (1-\alpha) \mathbf{g} \right) + \frac{1}{\rho+1} \mathbf{g}
                 \mathbf{h}^+ = \alpha \left( \mathbf{D}_1 \mathbf{x}^+ - \zeta \right) + (1 - \alpha) \mathbf{h}
                 decrease \rho using (2)
         end
```

end

Output: The final image x.

Chest region helical scan

We reconstruct a $600 \times 600 \times 222$ image from an $888 \times 64 \times 3611$ helical (pitch 1.0) CT scan.

Figure: Chest: Cropped images of the initial FBP image $\mathbf{x}^{(0)}$ (left), the reference reconstruction \mathbf{x}^* (center), and the reconstructed image $\mathbf{x}^{(20)}$ using relaxed OS-LALM with 10 subsets after 20 iterations (right).

Figure: Chest: Convergence rate curves of different OS algorithms with 10 (left) and 20 (right) subsets.

Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^{\star}$ and the reconstructed image $\mathbf{x}^{(10)} - \mathbf{x}^{\star}$ using OS algorithms with 10 subsets after 10 iterations.

Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^*$ and the reconstructed image $\mathbf{x}^{(5)} - \mathbf{x}^*$ using OS algorithms with 20 subsets after 5 iterations.

Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^{\star}$ and the reconstructed image $\mathbf{x}^{(10)} - \mathbf{x}^{\star}$ using OS algorithms with 20 subsets after 10 iterations.

Figure: Chest: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^{\star}$ and the reconstructed image $\mathbf{x}^{(20)} - \mathbf{x}^{\star}$ using OS algorithms with 20 subsets after 20 iterations. More results

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
- ightharpoonup Experimental results showed that the proposed algorithm converges lpha-fold faster than its unrelaxed counterpart
- ► The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
- ► Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
- \blacktriangleright Experimental results showed that the proposed algorithm converges α -fold faster than its unrelaxed counterpart
- ► The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
- ► Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
- ightharpoonup Experimental results showed that the proposed algorithm converges lpha-fold faster than its unrelaxed counterpart
- ► The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
- ► Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
- ightharpoonup Experimental results showed that the proposed algorithm converges lpha-fold faster than its unrelaxed counterpart
- The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
- Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
- ightharpoonup Experimental results showed that the proposed algorithm converges lpha-fold faster than its unrelaxed counterpart
- ► The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
- ► Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

In summary,

- We proposed a relaxed variant of linearized AL methods for faster X-ray CT image reconstruction
- ightharpoonup Experimental results showed that the proposed algorithm converges lpha-fold faster than its unrelaxed counterpart
- The speed-up means that one needs fewer subsets to reach an RMS difference criteria in a given number of iterations
- ► Empirically, the proposed algorithm is reasonably stable when we use moderate numbers of subsets

For future work,

Acknowledgments

- ► Supported in part by NIH grant U01 EB-018753
- Equipment support from Intel Corporation
- Research support from GE Healthcare

Shoulder region helical scan

We reconstruct a $512 \times 512 \times 109$ image from an $888 \times 32 \times 7146$ helical (pitch 0.5) CT scan.

Figure: Shoulder: Cropped images of the initial FBP image $\mathbf{x}^{(0)}$ (left), the reference reconstruction \mathbf{x}^* (center), and the reconstructed image $\mathbf{x}^{(20)}$ using relaxed OS-LALM with 20 subsets after 20 iterations (right).

Shoulder region helical scan (cont'd)

Figure: Shoulder: Convergence rate curves of different OS algorithms with 20 (left) and 40 (right) subsets.

Shoulder region helical scan (cont'd)

Figure: Shoulder: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^*$ and the reconstructed image $\mathbf{x}^{(20)} - \mathbf{x}^*$ using OS algorithms with 20 subsets after 20 iterations.

Abdomen region helical scan

We reconstruct a $600 \times 600 \times 239$ image from an $888 \times 64 \times 3516$ helical (pitch 1.0) CT scan.

Figure: Abdomen: Cropped images of the initial FBP image $\mathbf{x}^{(0)}$ (left), the reference reconstruction \mathbf{x}^{\star} (center), and the reconstructed image $\mathbf{x}^{(20)}$ using relaxed OS-LALM with 10 subsets after 20 iterations (right).

Abdomen region helical scan (cont'd)

Figure: Abdomen: Convergence rate curves of different OS algorithms with 10 (left) and 20 (right) subsets.

Abdomen region helical scan (cont'd)

Figure: Abdomen: Difference images of the initial FBP image $\mathbf{x}^{(0)} - \mathbf{x}^{\star}$ and the reconstructed image $\mathbf{x}^{(20)} - \mathbf{x}^{\star}$ using OS algorithms with 10 subsets after 20 iterations. Conclusions and future work

Simple vs. proposed relaxed OS-LALM

Figure: Chest: Convergence rate curves of different relaxed algorithms with a fixed AL parameter $\rho=0.05$ (left) and the decreasing ρ (right).

Wide-cone axial scan

We reconstruct a $718 \times 718 \times 440$ image from an $888 \times 256 \times 984$ axial CT scan.

Figure: Wide-cone: Cropped images of the initial FBP image $\mathbf{x}^{(0)}$ (left), the reference reconstruction \mathbf{x}^* (center), and the reconstructed image $\mathbf{x}^{(20)}$ using relaxed OS-LALM with 24 subsets after 20 iterations (right).

Wide-cone axial scan (cont'd)

Figure: Wide-cone: Convergence rate curves of different OS algorithms with 12 (left) and 24 (right) subsets.