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Abstract—This paper introduces a positioning system for walking 
persons, called “Personal Dead-reckoning” (PDR) system. The PDR 
system does not require GPS, beacons, or landmarks. The system is 
therefore useful in GPS-denied environments, such as inside build-
ings, tunnels, or dense forests. Potential users of the system are mili-
tary and security personnel as well as emergency responders. 

The PDR system uses a 6-DOF inertial measurement unit (IMU) 
attached to the user’s boot. The IMU provides rate-of-rotation and 
acceleration measurements that are used in real-time to estimate the 
location of the user relative to a known starting point. In order to 
reduce the most significant errors of this IMU-based system––caused 
by the bias drift of the accelerometers––we implemented a technique 
known as “Zero Velocity Update” (ZUPT). With the ZUPT tech-
nique and related signal processing algorithms, typical errors of our 
system are about 2% of distance traveled for short walks. This typi-
cal PDR system error is largely independent of the gait or speed of 
the user. When walking continuously for several minutes, the error 
increases gradually beyond 2%. The PDR system works in both 2-
dimensional (2-D) and 3-D environments, although errors in Z-
direction are usually larger than 2% of distance traveled. 

Earlier versions of our system used an impractically large IMU. In 
the most recent version we implemented a much smaller IMU. This 
paper discussed specific problems of this small IMU, our measures 
for eliminating these problems, and our first experimental results 
with the small IMU under different conditions. 

Keywords: Personal Odometry, Personal Dead-reckoning, non-GPS 
navigation, GPS-denied navigation, Inertial Measurement Unit, IMU 

I. INTRODUCTION 

This paper describes our Personal Dead-reckoning (PDR) 
system for measuring and tracking the momentary location 
and trajectory of a walking person, even if GPS is not avail-
able. Such a system is of value for military and security per-
sonnel, as well as for emergency responders. For example, our 
system would allow tracking the position of soldiers in urban 
combat operations. Another application involves the “clear-
ing” of a large building by emergency or security personnel. 
Their challenge often is to keep track of rooms already cleared 
and areas that were not cleared, yet. Our system’s ability to 
track each person’s location provides a useful solution for this 
problem. Other applications for the PDR system are the inte-

rior mapping of buildings and improved situation awareness 
for soldiers.  

As mentioned, our proposed PDR system does not require 
GPS. This is an important distinction, since GPS is not avail-
able indoors. Furthermore, GPS is unreliable under dense foli-
age, in so-called “urban canyons,” and generally in any envi-
ronment, in which a clear view of a good part of the sky is not 
available.  

There are some other approaches to personal position esti-
mation without GPS. Typically, these other systems require 
external references, also called “fiducials,” which in most 
cases must be installed in the work space at precisely sur-
veyed locations before the system can be used. This installa-
tion is time consuming and expensive, and in the cases of 
emergency response or urban combat completely unfeasible. 
Some fiducial-based systems also require an active radiation 
source, such as infrared light [1], ultrasound [2], or magnetic 
fields [3], which may be undesirable in security-related appli-
cations. Generally, fiducial-based systems perform well and 
are able to provide absolute position and orientation in real-
time. If the application permits the installation of fiducials 
ahead of time, then these systems have the significant advan-
tage that errors don’t grow with time, whereas with our sys-
tem they do.  

Another way of implementing absolute position estimation 
is computer vision [4][5]. Images are compared and matched 
against a pre-compiled database. Computer vision has the 
advantage that the environment does not need to be modified, 
but the approach requires potentially very large databases. 
Work is also being done on so-called Simultaneous Location 
and Mapping (SLAM) methods, which don’t require a pre-
compiled database [5]. However, SLAM systems are not as 
reliable, may accrue errors over time and distance, and poor 
visibility and unfavorable light conditions can result in com-
pletely false position estimation.  

The scientific literature offers a few approaches that do not 
require external references. The simplest one of them is the 
pedometer, that is, a device that counts steps. Pedometers 
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must be calibrated for the stride length of the user and they 
produce large errors when the user moves in any other way 
than his or her normal walking pattern. One commercially 
available personal navigation system based on this principle is 
the Dead Reckoning Module (DRM) [6]. The DRM uses ac-
celerometers to identify steps, and linear displacement is 
computed assuming that the step length is constant. Heading 
is measured using a digital compass, which is combined with 
the traveled distance (step counts) to estimate 2-D position. 
Under this condition, Pointresearch/Honeywell claims an ac-
curacy of up to 5% of the traveled distance. However, we be-
lieve that the requirement for a constant step length is imprac-
tical, since step size changes as a function of operational 
needs, fatigue, and weight carried by the user. 

A very sophisticated pedometer-like approach was intro-
duced by Cho and Park [7]. Their system uses a two-axes ac-
celerometer and a two-axes magnetometer located on the 
user’s boot. Step length is estimated from accelerometers 
readings that are passed through a neural network, and ad-
vanced Kalman Filter techniques are aimed at reducing the 
effect of magnetic disturbances. While the reported results in 
an outdoor environment are very good, we found that indoors, 
especially in large steel structures, magnetic disturbances are 
omnipresent and varying, making it virtually impossible to 
filter them out. 

Other solutions actually measure the length of every stride 
in real-time. One such solution using ultrasonic sensors at-
tached to the user’s boots is explained in [8]. Ultrasonic sen-
sors require a direct line of “sight” between the boots, which 
may be a problem on rough terrain. In straight-line walking 
experiments the authors report an average and maximum error 
of 1.3% and 5.4%, respectively. Another approach measures 
the RF phase change between a reference signal located in a 
waist pack and the one coming from a transmitter located on 
each boot [9]. A drawback of these approaches is that position 
estimation is restricted to 2-D environments since neither sys-
tem can determine altitude changes and assumes that any 
change is horizontal. Another potential problem is that these 

technologies use active emissions, which are undesirable for 
military applications, and they are vulnerable to external inter-
ference from the environment or from other units.   

In our own previous work we demonstrated accurate 3-D 
position estimation using a six-Degree-of-Freedom (6-DOF) 
Inertial Measurement Unit (IMU) attached to the user’s boot 
[10] [11]. The main disadvantage of our previous PDR system 
(shown in Fig. 1a), was that our IMU, the SiIMU01 made by 
BAE [12] was bulky, heavy and expensive. In this paper we 
present our new PDR system (shown in Fig. 1b), which uses 
the much smaller and lighter nano IMU (“nIMU,” in short) 
made by MemSense [13]. The nIMU, however, has signifi-
cantly worse performance specifications than the SiIMU01.    

Both the old and the new version of our system compute the 
complete trajectory of the boot during each step. On first 
glance it appears that this approach is destined to fail, since 
measuring linear displacement using accelerometers is not 
very feasible. That is because data samples from accelerome-
ters must be integrated twice to yield linear displacement and 
this process tends to amplify even the smallest errors, notably 
those due to bias drift. However, we use a practical method 
(explained in detail in Section B) that almost completely 
eliminates this problem – under certain operational condi-
tions. We found that such operational conditions exist in 
legged motion, such as when people walk, run, or even climb. 
Conversely, our method does not work at all with wheeled, 
sea-, or airborne motion. We should also note that since the 
PDR system uses only passive sensors, it has a zero-radiation 
signature, i.e., it does not emit any signals. This makes our 
system “invisible” to sensors in hostile environments and im-
mune to interference or jamming. 

The PDR system offers two distinct capabilities: (1) it can 
measure linear displacement (i.e., odometry) and (2) it can 
estimate the subject’s actual location in terms of x, y, and z 
coordinates, relative to a known starting location. Such a 
function, if performed without external beacons or landmarks, 
is referred to as “dead-reckoning.” The simpler but less useful 

Fig. 1: The University of Michigan’s two IMUs mounted on rescuer’s boots.  
(a) The SiIMU used in our earlier proof-of-concept prototype; (b) the small-sized nIMU, described in this paper. 
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function – Odometry – has errors of less that 2% of distance 
traveled, regardless of the duration of the walk. The more 
complex but also more useful dead-reckoning function pro-
duces errors of up 2% of distance traveled in walks of up to 
about two minutes. Longer walks will produce larger errors 
due to bias drift in the gyroscopes. The bias drift errors in the 
gyroscopes can be measured and removed from subsequent 
readings when the user stands still for a few seconds. How-
ever, any accumulated heading error remains.  

II. PDR SYSTEM HARDWARE  

Our current system uses a small IMU strapped to the side of 
the subject’s foot, as was shown in Fig. 1. The IMU is con-
nected to a tablet-style laptop computer through an RS-422 
communication port. The IMU is powered using a small ex-
ternal 7.8-Volt Lithium Polymer battery, making the whole 
system portable. The computer runs the Linux operating sys-
tem patched with a real-time extension and our algorithm runs 
in real-time. 

III. PDR SYSTEM SOFTWARE 

The software for the PDR system has three modules: 

• Position estimation module 
• Zero Velocity Updates” module (ZUPT) 
• Step detection module 
These modules are explained in more detail in the remainder 

of this section. 

A.  Position Estimation 
In this section we give a brief summary of the navigation 
equations used in our system. For a more detailed explanation 
see [16]. 

We follow the convention used in aeronautics for the desig-
nation of the navigation and body frames. In mobile robotics, 
the so-called Euler equations are commonly used for attitude 
representation. However, Euler equations have singularities at 
±90° – a limitation that is irrelevant in most ground-based 
mobile robot applications. However, since in our application 
the IMU is attached directly to the boot of a walking or run-
ning person, tilt angles of 90° or more are possible and likely. 
For this reason we chose the Quaternion representation, 
which handles any tilt angles.  

The Quaternion, q, is a vector that defines attitude using 
four parameters, a, b, c and d. q propagates as a function of 
the body angular rates, ωb, according to: 

 
2

pqq ⋅
=&  (1) 

where p = [0, ωb] and ωb = [ωx, ωy, ωz]. 

Once attitude is computed, the body acceleration, ab, can be 
computed in terms of the navigation reference frame, an, using 
the quaternion vector 

 *qaqa bn =  (2) 

where q*=(a –b –c –d) is the complex conjugate of q.  

In order to minimize the errors associated with the digital 
implementation of these algorithms, we used optimized dis-
crete-time algorithms as explained by Savage [17]. 

Velocity, vn, can be computed by integrating the accelera-
tions in the navigation frame after eliminating the local grav-
ity component gl 

 ( )dtgadtvv lnnn ∫ +=∫= &  (3) 

Finally, position can be computed as the integral of the veloc-
ity over time 

 dtvp nn ∫=

B. Zero Velocity Updates (ZUPT) 

Fig. 2 shows some of the phases of a stride during normal 
walking. As is evident from the motion sequence, Point A on 
the bottom of the sole is in contact with the ground for a short 
portion of time, ΔT. ΔT lasts roughly from just before Mid-
stance (T1= 0.48 sec) to just after Terminal Stance (T2 = 
0.72  sec) and is  ~0.24 sec in the example here (terminology 
based on [18]). During that time and unless the sole is slipping 
on the ground, ‘A’ is not moving relative to the ground and 
the velocity vector of ‘A’ is VA = 0. The non-slip assumption 
is warranted because during that phase almost all of the 
body’s weight rests solely on the area of the sole around ‘A’, 
thereby increasing traction.  

Since the condition VA = 0 is maintained for the significant 
period of time ΔT and not just for an instance, we reason that 
at least sometime during ΔT the velocity vector of Point A is 
also zero. We expect the three velocities to show readings of 
zero during this time. If the reading is not zero, then we as-
sume that the difference between zero and the momentary 
reading is the result of accumulated errors during the step 

T

Ground 
speed of 
point ‘A’

V
T=0.12 sec T=0.24 sec T=0.36 sec T=0.48 sec T=0.60 sec T=0.72 sec

T1 T2  
Fig. 2: Key phases in a stride. During ΔT, all velocity  
components of point A in the sole of the boot are zero. 
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interval. It is now trivial to reset the velocity error to the 
known zero condition. This way we can effectively remove 
the accumulated errors from the accelerometer output, at least 
for a few seconds. Luckily, it is the nature of walking or run-
ning that the next footstep is just a second away, allowing us 
to repeat this cycle over and over without accumulating sig-
nificant errors. This frequent resetting of velocities to the 
known and absolutely true value of zero assures that any error 
produced during one step is not carried over to the next ones. 
For example, if the subject’s foot actually slipped during one 
step, then the resulting error in velocities exists for just the 
duration of this one step. Subsequent steps are again error-
free. The resulting error in position is just a few centimeters 
and it remains constant for the remainder of the walk, unless 
new errors occur. 

In the scientific literature, this method of counteracting drift 
is called “Zero Velocity Update” (ZUPT) and is commonly 
used in underwater navigation [19]. ZUPT is also used in oil 
drilling, where it provides real-time monitoring of the position 
and orientation of the bottom hole assembly [20]. In these 
applications, ZUPT has been used successfully with update 
intervals between two to ten minutes depending on the quality 
of the sensors. The accuracy of the ZUPT-based solution de-
pends on the time interval between ZUPT points. As men-
tioned, for walking or running these conditions occur once on 
every footfall, that is, about once every second. A detailed 
explanation of the ZUPT method can be found in [21]. 

The elegance of this approach lies in the fact that in each 
stride we know at least once the true velocity and acceleration 
of Point A. Our knowledge of the velocity and acceleration 
being zero and the resulting ZUPT correction is always abso-
lute, not relative to the previous correction. Therefore, at least 
once during every step the accumulated errors can be removed 
or bounded.  

After applying the ZUPT algorithm, there is an additional 
stage of conditioning the sensor data. A detailed discussion of 
this stage is beyond the scope of this paper. The experimental 
results of the following section, however, reflect the applica-
tion of the additional data conditioning stage.  

IV. EXPERIMENTAL RESULTS 

In this paper we present results of an experiment on level ter-
rain (2-D) and the result of a 3-D experiment. All algorithms 
were implemented in C++ on a Lippert LiteRunner PC-104 
computer, under Linux with real-time extensions. 

A. Walk on 2-D Terrain 
In this experiment the subject walked along a rectangle-
shaped path (Fig. 3). The longer side of the rectangle was just 
over 30 meters in length, and the shorter one about 20 m, re-
sulting in a total path length of D = 104 m. We ran five ex-
periments in clockwise (CW) and five experiments in counter-
clockwise (CCW) direction. In all cases the subject walked at 

the normal walking pace of 1 m/sec. After completing each 
loop, the subject stood still for about 30 sec. This zero motion 
condition was detected by our software, which updated the 
bias drift using the new information. The same experiment 
was performed by five different subjects. 

The absolute return position error in the x-y plane was com-
puted as 

22
eea yxE +=  (5) 

where 
xe – return position error in X-direction.  
ye – return position error in Y-direction. 

We also computed the relative error, Er, which expresses the 
average error as a percentage of total travel distance, D 

D
EE a

r 100=  (6) 

Tables 1 and 2 summarize the return position errors for 
these runs. Without our ZUPT implementation, the errors in 

Table 1: Summary of return position errors  
for the 2-D terrain clockwise (cw) walks. 

 Xe [m] Ye [m] D [m] Ea  [m] Er [%] 

Walk 1 -0.77 1.5 524.2 1.69 0.32 
Walk 2 -0.75 4.04 524.3 4.11 0.78 
Walk 3 1.94 -5.12 519.5 5.48 1.05 
Walk 4 3.26 -4.68 525.0 5.7 1.09 
Walk 5 0.46 -2.23 511.9 2.28 0.44 
Average   520.9 3.85 0.74 

Table 2:  Summary of return position errors  
for the  2-D terrain counter-clockwise (ccw) walks 

 Xe [m] Ye [m] D [m] Ea  [m] Er [%] 

Walk 1 -1.05 0.43 531 1.13 0.21 
Walk 2 -0.92 -0.17 527 0.94 0.18 
Walk 3 -1.22 -0.16 522 1.23 0.24 
Walk 4 2.59 1.14 524 2.83 0.54 
Walk 5 -2.24 -2.01 507 3.01 0.59 
Average   522 1.83 0.35 

 
Fig. 3: Recorded trajectory of a subject walking on the 2-D terrain. 
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this experiment would be on the order of hundreds or even 
thousands of meters! 

B. Walk on 3-D Terrain 
Fig. 4a shows a complex 3-D environment: a 4-story spiral 
staircase, and parts of three sets of square-shaped open corri-
dors surrounding the atrium of the Computer Science and En-
gineering building at the University of Michigan. In the ex-
periment described here, the subject started walking down the 
depicted spiral stair case from he top of the stair case on the 
fourth floor. The subject walked down the stairs all the way to 
the bottom of the stairs. Then, the subject walked up again. 
However, on the way up, on each floor the subject left the 
spiral stair case and walked around the square corridor, once 
on every floor, before continuing on to the next higher floor 
on the spiral stair case. After completing this ~324-meter walk 
in 5.3 minutes, the subject stopped at the exact same location 
where he had started. Fig. 4b shows a 3-D plot of the subject’s 
trajectory.  

Fig. 4c shows a zoomed-in top view of the start/stop area. The 
green and red dots indicate the starts and stop position of the 
subject, respectively, as computed by our PDR system. Since 
in reality the subject started and stopped at the exact same 
location, the distance between the green and red dot in Fig. 4c 
represents the error of our system in the x-y plane. In the case 
here, the error in this run was 1.1 m, or 0.32% of the total 
travel distance of 324 meters. This is especially remarkable in 
light of the excessive vertical travel, and in light of the fact 
that the subject’s gait differed significantly in the three modes 
of walking during this experiment: horizontal walking, as well 
as climbing up and down the spiral stair case. The error in 
vertical direction was larger, about 4.0 m or 1.2% of distance 
traveled.  

We should note that this run (the only one we performed 
on this 3-D terrain with the nIMU), appears to have uncom-
monly small errors. In other, less carefully recorded experi-
ments of this duration, we found that the high drift rate of the 
nIMU’s gyros resulted in larger errors.  

 
b 

a 

 

Fig. 4: Experimental result of a 3-D walk. (a) Four-story atrium and 
spiral staircase in the University of Michigan Computer Science 
Building. (b) Trajectory of walking subject as recorded by our PDR 
system.  (c) The return position error in the x-y plane (difference 
between the start and stop position, i.e., the green and red dot, respec-
tively) is about 1.1 m. 

 

 
c 
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V. CONCLUSIONS 

Our earlier work with the bulky SiIMU01 proved the feasibil-
ity of the PDR concept. This paper here presents a snapshot of 
the current state of development of our PDR system using the 
small-sized nIMU. Since this project is far from being com-
pleted, we could present in this paper only a limited set of 
experimental results. Nonetheless, these limited results, to-
gether with the extensive experimental results obtained with 
the SiIMU01 in our earlier work, suggest that the PDR system 
can indeed be based on a small-sized IMU, despite that 
nIMU’s performance limitations. 

As tested to date, the nIMU-based system is very accurate in 
measuring linear displacements (i.e., distance traveled, a 
measure similar to that provided by the odometer of a car), 
with errors being consistently less than 2% of distance trav-
eled. The PDR system is also indifferent to pauses or changes 
in walking gaits. The accuracy of the PDR system degrades 
gracefully with extreme modes of legged locomotion, such as 
running, jumping, and climbing.   

In the second mode of operation, dead-reckoning, the PDR 
system measures relative position in terms of X-Y-Z coordi-
nates. Because of the limited performance of the gyroscopes 
inside the nIMU, the heading errors and the position estima-
tion accuracy are larger than with the SiIMU01, and these 
errors grow faster than those of the SiIMU01 as a function of 
time. We are currently investigating methods for reducing 
these problems such as using a magnetometer or implement-
ing a Kalman filter to estimate some of the random errors. 
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