
Multi-Period Production Capacity Planning for 
Integrated Product and Production System Design* 

Emre Kazancioglu Kazuhiro Saitou 
Institute for Manufacturing Dept. of Mechanical Engineering 

University of Cambridge University of Michigan 
Mill Lane, Cambridge CB2 1RX, UK Ann Arbor, MI 48109-2125, USA 

cek33@cam.ac.uk kazu@umich.edu 

.Abstract – This paper presents a simulation-based 
method to aid multi-period production capacity planning 
by quantifying the trade-off between product quality and 
production cost. The product quality is estimated as the 
statistical variation from the target performances 
obtained from the output tolerances of the production 
machines that manufacture the components. The 
production cost is estimated as the total cost of owning 
and operating a production facility during the planning 
horizon. Given demand forecasts in future production 
periods,  a multi-objective genetic algorithm searches for 
the optimal types and quantity of the production 
machines to be purchased during each period, which 
simultaneously maximize the product quality and 
minimize the production cost during the entire planning 
horizon. Case studies on automotive valvetrain 
production are presented as a demonstration. 

Index Terms – Capacity Planning, Tolerance 
Allocation, Product-Process Design, Genetic Algorithms 

I. INTRODUCTION

With the increased number of players competing in a 
global market, numerous substitute products became 
available for the consumers to choose from. It is crucially 
important for manufacturing firms to be able to 
accommodate changes in market demand and product 
requirements in a timely manner, by optimally designing 
their production facilities. Lack of accurate long-range 
forecasts of demand and production requirements drives 
firms to formulate short-sighted strategic adjustments as a 
reaction to emerging market realities, which compromises 
profits since:  

Firms making incremental changes in production 
capacity cannot take advantage of scale economies. 
Time lag between the placing a purchase order and the 
delivery of machine tools hinders timely adjustments.  
Allocating extra capacity early or maintaining over-
capacity in anticipation of future demand increase may 
be economically advantageous. Short-sighted planning 
cannot accommodate this option. 

Despite the increased uncertainty in long-term demand 
forecasts, it is often desirable to consider multiple 
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production periods in order to meet fluctuating demand 
with minimum capital and operating costs.   

On the other hand, if cost is reduced at the expense of 
quality, the brand image may easily be damaged and future 
demand may be jeopardized. However increasing product 
quality by investing on higher quality machinery drives the 
cost of the product up. For smarter capacity planning 
decisions, therefore, it is important to understand the trade-
off between the capital and operating costs incurred by the 
expansion/retraction of production capacity and the 
resulting changes in product quality.  

To address this issue in a practical framework, this 
paper presents a simulation-based method to aid multi-
period production capacity planning by quantifying the 
trade-off between product quality and production cost.  
Given market demand for multiple production periods, the 
method determines the types and quantity of production 
machines to be purchased during each period, which 
maximize the product quality and minimize the production 
cost. As our first attempt, future demand is assumed as 
given as a deterministic forecast. The product quality is 
estimated as the statistical variation from the target 
performances obtained from the output tolerances of the 
machines that manufacture the components, via Monte 
Carlo simulation. The production cost is estimated as the 
total cost of owning and operating a production facility 
during the planning horizon. Case studies on automotive 
valvetrain production are presented as a demonstration. 

II. RELATED WORK

Capacity planning involves analysis and decisions to 
balance capacity at a production or service point with 
demand from customers. Once capital expenditure has 
been made, it cannot be recovered entirely since salvage 
values are well below the original costs [1]. Therefore, 
bearing over-capacity and under-capacity may prove to be 
more cost efficient in some production periods. Extensive 
research has been done on developing tools to make 
effective capacity planning decisions. Ref. [2] presents a 
survey covering a broad spectrum of capacity expansion 
problems, listing modeling approaches, algorithmic 
solutions and applications. A general model that considers 
replacement of capacity as well as expansion and disposal, 
together with scale economy effects assuming 
deterministic technological changes is developed in [3]. 
Focusing on the problem of a firm that must satisfy a 
monotone increasing demand over time, ref. [4] aims to 
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minimize the cost of investing in new capacity, production, 
inventory and shortage over a finite horizon. Existence of 
uncertainty influences the investment, production and 
pricing decision of firms and thus capacity expansion 
models need to take uncertainty into consideration [5]. 
Stochastic programming [6] and finite-horizon Markov 
decision models [7] are two methods used to model 
stochastic problems. Ref. [8] studies the discrete-time 
capacity expansion problem involving multiple product 
families, multiple machine types and non-stationary 
stochastic demand. An important observation in the paper 
is that the long procurement time requires the capacity 
expansion decisions to be made based on the demand 
forecasts 2-3 years into the future, which are prone to be 
erroneous. Ref. [9] presents an optimal solution to the 
capacity management problem in Reconfigurable 
Machining Systems [10] using stochastic market demand 
with time delay between the time capacity change is 
ordered and the time it is delivered, based on the Markov 
Decision Theory. Ref. [11] presents a model to determine 
optimal investment strategies for a manufacturing firm that 
employs multiple resources to market several products to 
an uncertain demand.  

Integrated or concurrent design of products and 
production systems has been studied to eliminate 
inefficiencies resulting from the traditional sequential 
design framework. Some studies focus on the product 
development side while considering production related 
criteria. Others focus on the production system design and 
incorporate product related criteria in the formulation.  

Ref. [12] discusses a systematic method for evaluating 
the overall performance of different machining system 
configurations with respect to productivity, quality, 
scalability and convertibility. Ref. [13] presents a 
methodology for simultaneously selecting optimal 
machining process parameters and tolerance specifications 
for multi-stage machining systems. Ref. [14] combines the 
production-inventory and capacity expansion problem by 
modeling it as a linear, integer problem. Ref. [15] develops 
a model to simultaneously determine the optimum capacity 
level, production schedule and inventory levels given a 
deterministic demand forecast. Ref. [16] develops a 
formulation for machine cell formation with reliability 
considerations in cellular manufacturing systems. Ref. [17] 
attempts to integrate design and process planning by 
assessing manufacturability, and estimating the cost of the 
conceptual design early at the design stage. Ref. [18] 
develops a quantitative method to optimize part design, 
tolerancing, and production & inventory control 
concurrently. Ref. [19] modifies the Taguchi method and 
the response surface methodology (RSM) to fit a 
multicriteria framework in order to design and control a 
cellular manufacturing system in a robust and optimal 
fashion.  

Despite extensive research, the issue of product quality 
resulting from the change in production facility has not 
been addressed properly. In addition, most capacity 
planning literature use simplified analytical models of the 
production process and does not provide generic tools that 

have applicability in a wide array of problems. The 
presented method, on the other hand, provides a generic 
approach by utilizing multi-objective optimization along 
with a simulation-based analysis of the production process 
and product performance. This allows the examination of 
the tradeoffs between production cost and product quality 
in more realistic scenarios. 

III. METHOD

The method developed for the analysis and design of 
multi-period capacity planning problem is illustrated in 
Fig. 1. Given demand forecasts for the planning horizon 
and the capacity plan (selection of the types and quantity 
of production machines for each period), the production 
system model simulates the production process until steady 
state, and calculates the capital and operating costs for the 
whole planning horizon. In addition, the dimensional 
variations of components of the parts collected in the 
finished goods inventory (FGI) are tracked during the 
production simulation. The dimensional variations of 
components are used as an input to the product model, 
which calculates the quality of the end product as the 
statistical variation of product performance via Monte 
Carlo simulation. Based on the production cost and the 
product quality, a multi-objective optimizer determines the 
Pareto-optimal selections of the types and quantity of 
machines in the production system during each period in 
the planning horizon. 

product modelproduct model

performance performance 
variation variation 
vs. costvs. cost

Multi-criteria 
optimizer

cost modelcost model

discrete event 
system 

simulation

production 
system model

production 
system model

machine type machine type 
and quantityand quantity

demanddemand

part tolerancespart tolerances

Fig. 1 Overview of the method 

A. Product and Production System Models 

The product model takes a set of product parameters 
(e.g., component dimensions) as an input and calculates 
the product performances. In the present study, the quality 
of the product is estimated as the statistical variation of the 
product performance due to the variations of the product 
parameters, and is calculated by Monte Carlo simulation of 
the product performances with samples input product 
parameters. The variation of a product parameter is 
assumed as normally distributed with mean being nominal 
value and standard deviation being 1/3 of the tolerance 
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(accuracy) of the types of machines used to process the 
parameter, and accordingly sampled during the Monte 
Carlo simulation. 

We consider a class of production systems which are 
comprised of cells of machines each performing one 
manufacturing operation, and part buffers between each 
cell. Fig. 2 shows an example with three cells and five 
buffers. As illustrated in Fig. 2, each cell consists of one or 
more machines. While machines in a cell perform the same 
manufacturing operation which affects one or more 
product parameters, they can be of different types. A type 
of machines is defined based on the following information:  

manufacturing operation 
process time (mean and standard deviation) 
tolerances of the relevant product parameters 
operating cost 
machine price 

B1

B2
M1

M2

M2
M1

M2

M1

M2
B4

B3

cell 1cell 1
cell 2cell 2

cell 3cell 3

B5

B6

Fig. 2 Example production system 

During the optimization process, the topology of a 
production system remains constant, whereas the types and 
quantity of machines in each cell are altered among the 
available choices, in order to maximize the product quality 
and minimize the production cost.  

For a given selection of machine types and quantities, 
the operation of the production facility is simulated by a 
discrete event simulation [20]. The process time of each 
machine type is assumed as normally distributed with 
given mean and standard deviation, and accordingly 
sampled during the simulation. After simulating 
production for the periods with forecasted demands, the 
total amount of production and the utilization of each 
machine for each period are calculated, in order to estimate 
the operating cost as demonstrated in detail in the 
following section. In addition, the types of machines in 
each cell which are used to manufacture each product are 
recorded during the simulation, in order to estimate the 
quality of the finished product as described in the next 
section.  

B. Design Variables and Constraints 

The design variables are the types and number of 
machines in each cell in the production system at each 
period. It can be represented as the number of machines of 
type k in cell j during period i:

 , 0, 1, , , 1, , , 1, ,ijk ijk jx x i n j m k lZ  (1) 

where n is the number of periods, m is the number of  cells, 
lj is the number of available machine types at cell j.

There must be at least one machine in a cell, which 
imposes the following constraint: 

1
1;   1, , , 1, ,

jl

ijk
k

x i n j m    (2) 

C. Objective Functions 

The first objective function is the measure of product 
quality defined as the sum of the coefficient of variations 
of the performance criteria:  

1
1

cn
i

i i

f    (3) 

where nc is the number of performance criteria, i and i
are the mean and standard deviation of the i-th 
performance criterion obtained by Monte Carlo simulation 
of product model. Alternatively, a weighted sum of i can 
be used.  

The second objective function is the estimation of the 
capital and operating costs of production, defined as the 
sum of the annual equivalent of capital investment cost 
(AECC), operating cost (AEOC), backorder cost (AEBC), 
and holding cost (AEHC) for all periods [21].  

2f AECC AEOC AEBC AEHC   (4) 
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where is cost of capital of the project, is the capital 
recovery factor for equal payments during n periods, and i
is the discount factor for the present value of future cash 
flows [21].  

The capital investment cost ICi of period i is the sum of 
the cost of machines purchased at the beginning of the 
period. Assuming there is no machine available at the 
beginning of period 1:

1
1 1

jlm

jk ijk
j k

IC c x   (6) 

For the subsequent periods, the cost incurs only when new 
machines are purchased: 

( 1)
1 1

max(0, );   2,
jlm

i jk ijk i jk
j k

IC c x x i n  (7) 

where cjk is the price of machine of type k in cell j.
The purchased machines can be sold at their market 

value at the end of period i to if there is excess capacity for 
the next period, which can be represented as a negative 
salvage cost SCi:

1 1
;   1, 1

j
ijko

i

lm
A

i jk
j k o O

SC c i n  (8) 
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where is the yearly percentage decrease in the market 
value of a machine, Aijko is the age of the o-th machine of 
type k in cell j in period i. Oi is a set of max(0, x(i-1)jk - xijk)
indices of machines of type k in cell j sold after period i.
There are no priorities set among machines as to which one 
is to be sold first. This is done intentionally since 
depending on the rate of market value depreciation and the 
rate of increase in the operating cost, fixed policies such as 
selling the oldest machines may be suboptimal. At the end 
of period n, all purchased machines are assumed to be 
sold:

1 1 1

j njk
njko

l xm
A

n jk
j k o

SC c    (9) 

However, depending on the type of a production system 
and the range of the periods considered, this assumption 
can be replaced with a more suitable one. 

The operating cost OCi of period i is the sum of the 
product of the machine utilization, operating cost, and total 
operation time in a period: 

1 1 1
(1 )

j ijk
ijko

l xm
A

i ijko jk i
j k o

OC u oc t  (10) 

where uijko is the utilization of the o-th machine of type k in 
cell j in period i, ocjk is the operation cost of machine type k
in cell j, is the yearly percentage increase in the 
operation cost, and ti is the operating time. The values of 
uijko and ti are provided by the discrete event simulation of 
the production process.  

The back order cost BCi penalizes poor customer 
service due to unmet demand by a cost proportional to the 
amount of the demand that cannot be filled:  

max(0, )i b i iBC c d n    (11) 

where cb is the back order cost. Similarly, the excess 
production incurs the inventory holding cost HCi:

max(0, )i h i iHC c n d   (12) 

where ch is the holding cost.  

D. Optimization Problem 

The problem can be formulated as the follows: 

1 2

1

min { , }

s.t. 1;   1, , , 1, ,

      , 0, 1, , , 1, , , 1, ,

jl

ijk
k

ijk ijk j

f f

x i n j m

x x i n j m k lZ

 (13) 

In the following case study, the problem is solved using a 
multi-objective genetic algorithm (MOGA) [22]. 

IV. CASE STUDIES

A case study is conducted on an automotive valvetrain 
production system. The main function of the valvetrain 
(Fig. 3 (a)) is to control the flow of intake and exhaust 
gases with linear motion of valves, which is obtained by 

transforming the rotational motion of camshaft. The case 
study focuses on the production of valve stems and 
camshafts, and their effects on the horsepower, torque, and 
fuel consumption of the engine.  

(a) (b) 
Fig. 3 (a) Valvetrain; (b) Integrated Valvetrain-Engine Simulation [23] 

A. Product and Production System Models 

The product model is a surrogate model (Artificial 
Neural Network) of an integrated valvetrain-engine 
simulation model of Ford Duratec 2.5L V6 SI engine, 
developed using commercial software GT-Vtrain and GT-
Power [23] (Fig.  3 (b)). The inputs are the selective 
dimensions of valves and cams: valve stem length (LVS), 
valve stem diameter (VD), cam lift duration angle 
(ANGD), and cam lift beginning angle (D0). The outputs 
are the horsepower, torque, and fuel consumption of the 
engine. 

Fig. 4 shows the cell configuration of the valvetrain 
production system with an example capacity allocation. It 
produces valve stems and cam shafts, and assembles them 
with engine blocks. The line for valve stems consists of 
cells 1 and 2 for machining LVS and VD, respectively. 
The line for camshafts consists of cell 3 for grinding cam 
lobes (controls ANGD) and cell 4 for assembling the 
finished cam lobes to camshaft (controls D0).   

Fig. 4 Valvetrain Production System 

Table 1 Machine data of valvetrain production system 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

machine type M1 M2 M1 M1 M2 M1 M1 M2 M1 M2
dimension VD VD LVS LVS ANGD ANGD D0 D0 N/A N/A

 process 
time [min] 40 50 20 30 40 70 40 70 4 6 

process 
time [min] 0.5 1 0.4 0.6 0.6 0.75 0.8 1 0.5 0.5

operating 
cost [$/h] 30 40 15 50 100 50 75 20 50 100

machine 
price [K$] 200 270 150 200 250 400 210 445 60 60 

tolerance 0.01 0.005 0.03 0.01 0.004 0.001 0.5 0.15 N/A N/A
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The type of machines available for the production 
system is listed in Table 1. The processing times of the 
machine tools correspond to the time it takes to process 
one batch of parts, which is 24 for both the valves and the 
cam lobes (4 cam shafts, 6 cam lobes on each). 

B. Optimization Problem 

Three, one-year periods (n = 3) are considered as a 
horizon of the capacity planning. The quality objective f1 is 
defined as the sum of the coefficient of variation of 
horsepower, torque and fuel consumption, obtained by the 
Monte Carlo simulation with the neural network model. 
Table 2 shows the market demand for the 3 periods (3 
years), representing the situation where demand falls in the 
2nd period and picks up again in the 3rd period.  

It is assumed the production stops as soon as the 
demand is met at each period (a no back-order, no-
inventory policy). Also, the input buffers providing raw 
materials never starve. The cost of capital , depreciation 
rate of machines and rate of increase operation cost 

are assumed 10%, 50%, and 10% per year, respectively. 
Table 2 Market demand for product 

 period 1 period 2 period 3 
demand [units] 18,000 10,000 20,000 

C. Results

To demonstrate the benefit of the multi-period 
planning, mixing multiple machine types in a cell, and the 
quantification of quality-cost trade off, the results are 
presented for the following four cases:   

Case 1. Single-period, single machine type, 
minimum cost planning: Three capacity planning 
problems for the three periods are separately solved 
considering only cost objective f2 using only machine 
type 1 for each cell. 

Case 2. Multi-period, single machine type, minimum 
cost planning: One capacity planning problem 
considering all three periods is solved considering only 
cost objective f2 using only machine type 1 for each 
cell.

Case 3. Multi-period, single machine type, minimum 
cost-maximum quality planning: One capacity 
planning problem considering all three periods is 
solved considering both quality objective f1 and cost 
objective f2 using only machine type 1 for each cell. 

Case 4. Multi-period, multi-machine type, minimum 
cost-maximum quality planning: One capacity 
planning problem considering all three periods is 
solved considering both quality objective f1 and cost 
objective f2 using both machine types 1 and 2 for each 
cell.

Table 3 Parameters for Genetic Algorithm 
 Case 1 Case 2 Case 3 Case 4 

Mutation prob. 0.01 0.01 0.01 0.01 
Crossover prob. 0.9 0.9 0.9 0.9 
Population size 45 120 120 120 

Max.  # of generations 30 60 80 100 

Table 3 shows the parameters of multi-objective 
genetic algorithm used to obtain the results. Number of 
generations is adjusted in an attempt to be as fair as 
possible when making comparisons between the cases. 

Table 4 shows the objective function values (minimum 
cost) for Cases 1 and 2 and Tables 9 and 10 shows their 
machine allocations, respectively. 

Table 4 Cost results for Cases 1 and 2 
 Case 1 Case 2 

AEOC $ 1,357,813 $ 1,324,121 
AECC $ 1,583,009 $ 1,406,090 
AEBC $ 0 $ 0 
 f2 $ 2,940,957 $ 2,730,211 

Table 5 Optimal machine allocation for Case 1 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P1 5 - 6 - 5 - 6 - 5 - 
P2 3 - 2 - 3 - 3 - 3 - 
P3 6 - 5 - 5 - 5 - 5 - 

Table 6 Optimal machine allocation for Case 2 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P1 5 - 6 - 5 - 6 - 5 - 
P2 4 - 4 - 4 - 4 - 4 - 
P3 6 - 5 - 5 - 5 - 5 - 

In Case 1, an increase in the demand in the third period 
is not anticipated, and a capacity retraction is carried out in 
the second period due to reduced demand. In Case 2, on 
the other hand, the demand information about the third 
period is available and it is more cost effective to keep the 
excess capacity in the second period in comparison to 
retracting capacity in the second period and then to expand 
it later again in the third period. The annual equivalent cost 
of Case 2 is approximately $200K less than that of Case 1. 
This adds up to approximately $600K of cost savings over 
a three year planning horizon. 

Fig. 6 shows Pareto optimal solutions from multiple 
runs of Cases 3 and 4, indicating quality-cost trade-off in 
both cases. The square on the bottom right corner of Fig. 6 
shows the Case 2 optimum result. As expected, optimum 
value for Case 2 coincides with the results of the Cases 3 
and 4 on the low-quality, low-total cost part of the Pareto 
front. Option 1 in Fig. 6 tells cost increases by 20% for 
10% quality improvement over Case 2 optimum. Table 7 
shows the capacity plan for Option 1. Since consumers 
may be willing the pay the price premium for a higher 
quality product, this trade-off curve, along with the 
information on the price elasticity of the consumers, is 
very valuable to optimally position the products to 
maximize profit. 

A comparison of the results from Cases 3 and 4 reveals 
the benefit of allowing the use of mixed machine types in 
the production plan for attaining solutions that have better 
quality-cost characteristic. By using Option 4 (Case 4 
results), it is possible to attain the same level of production 
quality as in Option 3 (Case 3 results) without having to 
pay more. Similarly, it is possible to have the same 
production quality of Option 2 (Case 3) by actually paying 
less. The machine allocations for Options 2, 3 and 4 are 
shown in Tables 7, 8 and 9 respectively. 
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Fig. 6 Quality-cost tradeoff curve, Pareto optimal results 

Table 7 Optimal machine allocation for Option 1 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P1 0 5 5 0 4 0 4 0 4 0 
P2 0 5 2 0 4 0 4 0 3 0 
P3 0 6 4 0 4 0 4 0 4 0 

Table 8 Optimal machine allocation for Option 2 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P1 0 6 0 5 0 7 0 7 0 7 
P2 0 3 0 2 0 5 0 5 0 3 
P3 0 6 0 6 0 7 0 7 0 6 

Table 9 Optimal machine allocation for Option 3 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P1 0 6 0 5 6 0 0 7 0 6 
P2 0 5 0 5 0 5 0 7 0 5 
P3 0 6 0 5 0 7 0 7 0 6 

Table 10 Optimal machine allocation for Option 4 
 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P1 1 4 2 2 0 7 0 7 2 2 
P2 1 4 2 2 0 7 0 7 2 2 
P3 1 4 2 2 0 7 0 7 2 2 

V. SUMMARY AND FUTURE WORK

This paper presented an optimization-based method for 
capacity planning of production facilities considering the 
demand changes in multiple production periods and the 
trade-offs between the product quality and production cost. 
The method is then applied to a capacity planning problem 
in an automotive valvetrain production. The results 
demonstrated the effectiveness of considering multi-period 
demand forecast, quantitative quality-cost trade-off, and 
use of multiple machine types within a cell. Future work 
will investigate the capacity planning problem in multi-
product production lines under stochastic demands.  
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