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ABSTRACT 
The spatial distribution of material phases within a 

periodic composite can be engineered to produce band gaps in 
its frequency spectrum. Applications for such composite 
materials include vibration and sound isolation. Previous 
research focused on utilizing topology optimization techniques 
to design two-dimensional periodic materials with a 
maximized band gap around a particular frequency or between 
two particular dispersion branches. While sizable band gaps 
can be realized, the possibility remains that the frequency 
bandwidth of the load that is to be isolated might significantly 
exceed the size of the band gap. In this paper, genetic 
algorithms are used to design squared bi-material unit cells 
with a maximized sum of relative band-gap widths over a 
prescribed frequency range of interest. The optimized unit 
cells therefore exhibit broadband frequency isolation 
characteristics. The effects of the ratios of contrasting material 
properties are also studied. The designed cells are 
subsequently used, with varying levels of material damping, to 
form a finite vibration isolation structure, which is subjected 
to broadband loading conditions. Excellent isolation properties 
of the synthesized material are demonstrated for this structure.  

 
1. INTRODUCTION 

Wave propagation in heterogeneous media is dispersive, 
i.e., the media causes an incident wave to decompose into 
multiple waves with different frequencies. A medium with 
periodic heterogeneity has distinct frequency ranges in which 
waves are either effectively attenuated or allowed to propagate 
in space. These frequency ranges are referred to as stop bands 
(or band gaps) and pass bands (or bands), respectively, and 
are attributed to mechanisms of wave interferences within the 
scattered elastic field. From a practical perspective, it has been 
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shown that under certain conditions bounded structures 
formed from periodic materials can exhibit similar frequency-
banded wave motion characteristics (e.g., [1-4]). 

By controlling the layout of constituent material phases 
and the ratio of their properties within a unit cell, a periodic 
composite can be designed to have a desired frequency band 
structure (the size and location of stop bands and pass bands). 
In this study the interest is in the design of periodic bi-material 
composites capable of isolating a broadband vibration load or 
sound signal. Thus the goal is to generate unit cells with a 
maximized sum of band-gap frequency ranges spanning the 
first few dispersion branches. Since it is desirable to keep the 
branches low to access the low frequency content of a generic 
broadband load, the design objective is modified such that the 
sum of the relative band-gap frequency ranges is minimized. 
A relative band gap frequency range is defined as the band-
gap width divided by its central frequency. Similar studies are 
available in the literature with a focus on maximizing a single 
band gap [5-8], or multiple band gaps in the context of 1D 
problems [9,10]. 

An evolutionary optimization technique, namely genetic 
algorithms (GA), is chosen for the unit cell optimization 
problem. GA is advantageous for this type of problem because 
it simultaneously evolves multiple designs and eventually 
converges (with high probability) to near-global optimality. A 
unit cell (chosen to be squared in shape) is discretized into a 
uniform grid of pixels with the design variables being the 
material type of each pixel represented as a zero-one binary 
variable, where “zero” denotes one material type (the denser 
and stiffer phase) and “one” denotes the other (the less dense 
and less stiff phase). This choice of design variable leads to a 
zero-one integer programming formulation. In this manner, a 
string of binary variables controls both the volume fractions 
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and distributions of the two constituent materials within the 
unit cell. The materials considered are linear elastic and 
isotropic, and the model studied is that of out-plane wave 
motion. The frequency band diagrams for the designs are 
computed using Floquet-Bloch theory and the finite element 
method [e.g., 3,6,11,12]. 

The above optimization process is carried out for a range 
of material pairs with the ratio of Young’s moduli, Er, ranging 
from 1 to 8, and the ratio of densities, ρr, ranging from 1 to 4 
(i.e., a total of 31 possibilities omitting the Er=1/ρr=1 case).  

To test the vibration isolation performance of an optimal 
material in a finite structural setting, an initial boundary value 
problem (IBVP) is solved for a partially clamped structure 
(composed from the optimal material) that is subjected to a 
broadband double Gaussian displacement excitation. As an 
example, the optimal design for the Er=8 and ρr=4 case is 
employed, and the excitation load is chosen to span in 
frequency all the dispersion branches considered in the unit 
cell optimization process. The finite element method and 
explicit time integration are used to obtain the solution of the 
IBVP. Proportional material damping is also introduced and 
its effect on the maximum transmitted response is quantified. 
Finally, comparisons are made with a totally homogeneous 
structure composed from the stiff/heavy material and another 
composed from the compliant/light material. 

In the next section, the mathematical and numerical 
formulation for computing band diagrams is described, as well 
as a brief presentation of the structural analysis equations. In 
Section 3, the binary formulation is presented along with a 
description of the employed genetic algorithm. Section 4 
presents the results for both the unit cell and structure 
problems. Finally conclusions remarks are drawn in Section 5. 
 
2. DISPERSIVE WAVE MOTION IN PERIODIC 
MATERIALS AND STRUCTURES 
 

2.1. Unit Cell Analysis 
The governing equation for the elastodynamics of a linear 

isotropic, heterogeneous medium is   
 

   uuu &&ρµµλ =∇⋅∇+⋅∇+∇ )(                       (1)   
 
where u represents the displacement solution field, the 
parameters λ and µ are the Lamé constants, ∇  denotes the 
gradient operator, and a superposed dot denotes differentiation 
with respect to time t. Defining the unit coordinates as x, y and 
z, uT = (u, v, w), where u, v and w denote the displacement 
along these coordinate directions, respectively. Considering 
plane wave propagation along the x-y plane, and narrowing 
attention to out-of-plane polarization (i.e., transverse SH 
waves), Eq. (1) reduces to 
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In this study, a two-dimensional periodic medium will be 

characterized by an infinitely repeated unit cell Y, where Y 
represents a square domain as shown in Fig. 1. Within this 
domain, Eq. (2) has a Floquet-Bloch solution of the form 
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where w~  is Y-periodic, y = (x, y), and k = (kx, ky) is the wave 
vector. Substituting Eq. (3) into Eq. (2) leads to the following 
transform  

 
   ki+∇→∇ .                                (4) 

 
For SH waves, the resulting strong form is (dropping the tilda) 
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while the weak form is 
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Both operators in Eq. (6) are Hermitian by construction. The 
Galerkin method is then used to obtain the following algebraic 
problem 

 
 (K(k)-ω2M)w = 0   in Y,                          (7) 

 
which can be solved for the frequencies ωi(k), i = 1,…,nd, 
where nd denotes the number of degrees of freedom.  Further 
details of this approach are provided by Hussein et al. [3]. 
Perioidic boundary conditions are applied on Y.                                 

Equation (7) is solved for wave vector k spanning the first 
Brillouin zone k∈ [-π, π]2 over the unit cell, but with the 
utilization of symmetry it is sufficient for k to cover the 
irreducible Brillouin zone (see [13]) as shown in Fig. 1. 
Following common practice, the search space is narrowed 
even further to only considering the wave vectors pointing to 
positions along the border of this zone (triangle shown in    
Fig. 1), that is, end points along the paths Γ→X,   X→M and 
M→Γ. This process generates representative dispersion curves 
(frequency versus wave vector) for the periodic medium. In 
recent years, several methods have been developed for 
computing frequency band diagrams for periodic media. In 
this paper, the standard finite element method [e.g., 3,6,11,12] 
is used to solve the variational eigenvalue problem, in 
Galerkin form, given in Eq. (7). For computational purposes, 
ωi(k) is only evaluated at a discrete (uniformaly distributed) 
set of points nk along the entire border of the irreducible 
Brillioun zone. The discrete wave vector set is denoted kj = 
[k1,k2]j,  j = 1,…,nk. 

To highlight this process, consider the arbitrarily chosen 
periodic material design shown in Fig. 2a. The unit cell in this 
design is composed of a compliant (matrix) material “m” 
(shown in white), and a contrasting stiff (fiber) material “f” 
(shown in black).  The compliant material is chosen to have a 
Young’s modulus, Em, of 4 GPa, and density, ρm, of 1000 
kg/m3. The stiff material is chosen such that Er=Ef/Em=8 and 
ρr=ρf/ρm=4. The frequency spectrum for out-of-plane wave 
motion for this configuration is shown in Fig. 2b. The non-
dimensional frequency  
 

2/1
mm )//( ρω Ed=Ω ,                           (8) 
2 Copyright © 2007 by ASME 



 
and the non-dimensional wave vector  
                                       

kξ ⋅= d                                      (9) 
 

define the ordinate and abscissa, respectively. The first, 
second and third vertical segments of the plot (separated by 
dotted lines) represent wave vectors pointing to positions 
along Γ→X, X→M and M→Γ, respectively. Only two narrow 
band gaps exist over the displayed frequency range for this 
design. 
 
2.2. Structural Analysis 

For the bounded structure problem, Eq. (1) is transformed 
to the following algebraic equation using a standard finite 
element method: 

 
FKDDCDM =++ &&& ,                           (10) 

 
where M, C and K are the stiffness, damping and consistent 
mass matrices, respectively, and D and F are the nodal 
displacement and force vectors, respectively. The type of 
damping considered is discussed later. In this study, the time 
dependent set of ordinary differential equations, Eq. (10), with 
appropriate boundary and initial conditions are solved using 
the standard explicit central difference scheme. In the 
integration process, a stable solution is obtained if the discrete 
time step (denoted ∆t) is chosen to be less or equal to the 
Courant-Friedricks-Levy (CFL) number throughout the finite 
element mesh, i.e., )(/∆ j

p
e cht =  where he denotes size of 

element e and )( j
pc  denotes out-of-plane shear wave speed for 

the material phase “j” occupying element e. 
 
3. OPTIMIZATION OF BAND-GAP MATERIAL 
3.1. Unit Cell Design Problem Formulation 

The square unit cell Y is composed of ll nn ×  pixels 
forming a matrix G. Each of the pixels can be either assigned 
the stiff/heavy material (fiber) or the compliant/light one 
(matrix). Varying the distribution of these material phases 
within the unit cell allows for shaping the frequency spectrum 
of the periodic medium. In this manner, designs can be 
generated to achieve a target dynamical performance. Details 
of the measure for the performance are given in Section 4. The 
general form of the cell design problem is given as: 
 

Maximize )(GPerfomancef = ,                   (11) 
 
where lij njig ,...,1,:}{ ==G  is an ll nn ×  binary matrix, with 

}1,0{∈ijg . When 1=ijg , the fiber material is assigned to the 
pixel ij, and when 0=ijg , the matrix material is assigned to 
the pixel ij.  

Since the chosen type of material periodicity enforces 
symmetry about both axes and the diagonals, the lower 
triangle of one quarter of the matrix G is a sufficient 
representation of all the independent decision variables in G. 
Thus, the optimization problem can be re-written as 
 

 

Maximize )(bPerfomancef = ,                   (12) 
 
where var}1,0{ n∈b  is the vector of independent decision 
variables in the matrix G and nvar is the number of independent 
decision variables. When ln  is an even number (as adopted in 
this study),  
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3.2. Genetic Algorithm 

The objective function of the general case of the cell 
design problem is rarely guaranteed to be unimodal with 
respect to the design variables. Thus local search based 
optimization can easily get trapped at a local optimum that is 
short of the best achievable performance. Furthermore, for a 
practical unit cell resolution the number of independent 
decision variables is excessively large to allow exhaustive 
enumeration. For example, the results in this paper are 
generated via a unit cell of 20=ln  (20×20 pixels), which has 
55 independent decision variables. Exhaustive enumeration 
would require 1655 106.32 ×≈  objective evaluations.  

To overcome the above limitations, a genetic algorithm 
[14] is employed in this study. A genetic algorithm is a 
heuristic optimization technique that attempts to mimic the 
process of natural evolution. Studies in the literature have 
shown genetic algorithms to be capable of tackling difficult 
problems and generating near-global optimal solutions [14, 
15]. The steps of the adopted algorithm are described as 
follows: 
 
1. Create a population P of p random 

designs and evaluate their object-
tive function values. Also create 
empty set Q. 

2. Pass a copy of the best design in P 
to Q. 
3. Select two designs gi and gj in P 

via binary tournament selection 
[15]. 
4. Crossover gi and gj to generate 

new design(s) with a certain 
probability. Since the dec-
ision variables in the vector 
b can be nonlinearly depen-
dent, a geometric graph based 
crossover [16] is employed. 

5. Mutate the new design(s) with 
a certain probability. 

6. Evaluate the objective func-
tion values of the new 
design(s) and store in Q. If 
the size of Q is less than p, 
go to 3. 

7. Replace P with Q, empty Q, and 
increment the generation coun-
3 Copyright © 2007 by ASME 



ter. If the generation counter 
has reached a pre-specified 
number, terminate the process. 
Otherwise go to 2. 

8. Run a short local search from the 
best design in P to fine-tune the 
result. The local search is perf-
ormed by accepting a new design 
only if a single bit flip of the 
vector b produces a better design. 

 
4. OPTIMIZATION STUDIES 
 

4.1. Objective Function and Optimal Unit Cell 
Designs 

The objective is to design a unit cell consisting of two 
contrasting material phases and whose frequency spectrum 
exhibits multiple band gaps with the sum of their relative 
widths maximized. The considered frequency range of interest 
is the range spanning the first six dispersion branches. From a 
practical perspective, a finite structure composed of several 
cells of such a design could be used to attenuate the 
propagation of a broadband shock or sound pulse [4,10,12], as 
will be demonstrated in Section 4.2.  

With such target dynamical characteristics in mind, the 
objective function is specifically defined as the sum of the 
widths to central frequency ratio of the first five band gaps (if 
any). The objective is numerically evaluated for a given 
design b  of the unit cell using the finite element method as 
described earlier. The equation for the objective is given as 
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where ),(( 2

1 bk ji
n
j

kmin ω= and )),(( 2
1 bk ji

n
j

kmax ω=  denote the 
minimum, and maximum, respectively, of the ith eigenvalue 
over the entire discrete wave vector set. When the minimum of 
the i+1th eigenvalue is greater than the maximum of the ith 
eigenvalue, a band gap exists; otherwise no band gap exists 
and the ith term in the objective is equal to zero. 

The genetic algorithm described in Section 3.2 was 
applied to this problem using the execution parameters given 
in Table 1. Final tuning of the cell design was attained by 
running local search as mentioned earlier. In all cases, the 
local search converged in only two to three iterations, which 
indicates that the genetic algorithm arrived close to an 
optimum.  

The optimization process mentioned above was carried out 
for a range of material properties (i.e., Young’s modulus ratio 
and density ratio) to gain insights into the effects of the 
material property ratios on the topology and objective value of 
the optimal designs. Fig. 3 shows a matrix of optimal designs 
(shown in the form of 3x3 unit cells) for the value of Er 
ranging from 1 to 8, and the value of ρr ranging from 1 to 4 
(i.e., a total of 31 possibilities omitting the homogeneous case 
of Er=1/ρr=1). It is challenging to extract any particular pattern 
 

from this design mosaic other than that the lower contrast 
cases consist of hollow fiber phase “reinforcements” while the 
higher contrast cases produce solid “reinforcements”. Clearly 
the evolution of the optimal topology with varying material 
contrasts is qualitative in nature. The corresponding dispersion 
curves are shown in Fig. 4. Most apparent is the expected 
increase in the total band gap frequency ranges with increasing 
material contrasts. Less intuitive is how the optimal design 
band diagrams transform from single to double, and 
subsequently to triple, band-gaps as the material contrasts 
increase. In particular, an increase in density ratio tend to be 
more effective in producing multiple gaps than an increase in 
the Young’s modulus which is effective in producing wide 
single gaps. Finally, the objective values for the optimal 
design is plotted as a function of material property ratios in 
Fig. 5. The objective is observed to increase almost linearly 
with Er and ρr with the rate of increase with Er growing as ρr is 
increased and vice versa. In the same figure, dashed curves are 
included to represent an evaluation of the objective function 
based on the optimal design for Er=4 and ρr=4 (i.e., Design A 
in the figure, which is associated with the best reported 
objective value). These curves show that the optimal design is 
strongly dependent on the material ratios, which is attributed 
to the inherent complexities of the band-gap generating 
interference mechanisms within the scattered wave fields.  
 
4.2. Performance of Structure Composed of Optimal 
Band-Gap Material 

In this section one of the optimal composite material 
designs (namely the high contrast Er=8/ρr=4 one) is used to 
form a portion of a finite structure in order to examine shock-
resistance performance at the structural level, and as an 
additional aim, to study the effect of damping. The material 
properties used are identical to those used in Section 2.1. 

The structure considered is shown in Fig. 6. Its bottom 
half is composed of the periodic material with a 6x3 cell 
layout. Using the definition given in Eq. (8), and with the 
material properties known, the cell dimensions in this finite 
structure are chosen in a manner such that the excitation 
frequency is mapped to the frequency range of the first six 
dispersion branches. The structure has a square shape with a 
side length of 0.12m. With regard to damping, the type chosen 
is simple proportional (Raleigh) damping, i.e.,  

 
MKC βα += .                            (15) 

 
In this study α=0 and β is varied from 0 to 200×103. A finite 
element model was generated for this structure as shown in 
Fig. 6. A total of 14400 4-noded bilinear quadrilateral 
elements were used. 

At the point marked “X” an excitation representing a 
shock load is applied as a prescribed displacement. This 
prescribed displacement was chosen to take the form of a 
double-Gaussian function 

 
,)(

22 )()(
DG

dbtacbta eetf −−−− −=                       (16) 
 

where a, b, c and d are parameters. In order to synthesize a fDG  
signal with a frequency content that approximately spans the 
range of interest, the parameters were chosen as follows:  
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a = 200, b = 1x104, c = 0.25, d = 0.26.             (17) 

 
This signal was chosen to demonstrate the feasibility of the 
proposed broadband frequency isolation design approach. 

Explicit time integration was carried out using a time step 
of ∆t = 1.447×10-7s over 500 steps. The displacement time 
history at a downstream point representing an “output” 
location (marked with a thick dot in Fig. 6) was recorded over 
the total time space of the simulation. It should be noted that 
the homogeneous region at the top side of the structure is 
included so that no wave interferences, at the output point, 
resulting from boundary reflections are experienced during the 
simulation time. This condition is imposed since the aim of 
this exercise is to test the transmissibility of only the 
synthesized periodic region of the structure.  

In addition to examining the band-gap structure shown in 
Fig. 6, two parallel sets of simulations were carried out on 
totally homogeneous structures made out of the two extreme 
material phases, i.e., one has low stiffness/density, and the 
other has high stiffness/density. These simulations are used as 
benchmark cases to compare the performance of the designed 
structures with. 

A summary of the results for all simulations performed is 
presented in Fig. 7. Shown is the maximum output 
displacement uo,max, normalized by the maximum output 
displacement in the high stiffness/density structure, H

max,ou . 
The figure clearly shows that the optimal band-gap structure 
produces significantly less output vibration response 
compared to the two homogeneous structures with extreme 
properties. Damping improves the isolation capacity of all 
structures, with the optimal and low stiffness/density 
homogeneous structures matching in capacity at high damping 
values (within the range considered).  
 
5. CONCLUDING REMARKS 

A genetic algorithm was employed for the design of two-
dimensional periodic materials for a maximized sum of SH-
mode band-gap widths across the first six branches. An array 
of optimal unit cell designs was generated for a range of 
Young’s modulus and density ratios. The lower contrast cases 
tend to consist of hollow high stiffness/density inclusions 
while the higher contrast cases tend to produce solid 
inclusions. An increase in the density ratio is more effective in 
producing multiple band gaps than an increase in the Young’s 
modulus which is effective in producing wide single band 
gaps. With regard to the landscape of the objective values, the 
total sum of the relative band-gap widths increases with 
material contrast. The increase takes place almost linearly with 
Er and ρr with the rate of increase with Er growing as ρr is 
increase and vice versa. 

The optimal cell for the highest material contrast case was 
used to test broadband vibration isolation performance at the 
structural level. The effects of material damping were also 
considered. The results clearly demonstrate that enhanced 
structural performance will be attained when optimal band-gap 
materials such as those generated in this study are used for 
applications requiring broadband frequency isolation.   
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Table 1. Summary of genetic algorithm run parameters 

 
Population Size 50 
Number of Generations 30 
Crossover Probability 0.99 
Mutation Probability 0.02 
Maximum iterations of local search 5 
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Figure 1. Unit cell domain and irreducible 
Brillouin zone (triangle) with the border 
symmetry points Γ, X and M marked. 
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Figure 2. a. Periodic composite material consisting of a low (white) and a high (black) stiffness/density 
material, respectively. A unit cell is marked. b. Frequency spectrum for out-of-plane SH-mode wave 
motion.  
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Figure 5. Optimal value of objective function for all the Young’s modulus ratio and density ratio 
combinations considered. The dashed curves present an evaluation of the objective function based 
on Design A, which is the optimal design for Er=4 and ρr=4. 
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Figure 6. Finite structure with finite element mesh superimposed. The cell design used is the optimal 
design for Er=8/ρr=4. The structure is clamped at the left and right edges and free at the remaining two 
edges. The excitation is applied at the point “X” and the response is measured at the pointed marked with 
a thick dot. 

Figure 7. Maximum temporal response at the output point versus damping strength for a structure 
partially consisting of the designed band-gap composite (as shown in Fig. 6) and for a homogeneous 
structure composed of the low stiffness/density material and the high stiffness/density material, 
respectively. The response is normalized with respect the maximum temporal response at the output 
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point for the high stiffness/density structure. 


