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Large-scale automated assembly systems are widely used in
motive, aerospace and consumer electronics industries to ob
high quality products in less time. However, one disadvantag
these automated systems is that they are composed of too
working parameters. Since it is not possible to monitor all the
parameters during the assembly process, an undetected error
propagate and result in a more critical detected error. In th
paper, a unique way of detecting and diagnosing these type
failures by using Virtual Factories is discussed. A Virtual Facto
was developed by building and linking several software modu
to predict and diagnose propagated errors. A multi-station asse
bly system was modeled and a previously discussed ‘‘off-line
diction and recovery’’ method was applied. The obtained resu
showed that this method is capable of predicting propagated
rors, which are too complex to solve for a human expert.
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Introduction
Large-scale robotic assembly systems, which are compose

several stations, are widely used in automotive, aerospace
consumer electronics industries. The main advantage of these
tems is their performance of manufacturing high-quality produ
in less time than the manual or semi-automated assembly li
However, since these large-scale systems are composed of
automated components, there are too many working param
during the operation phase and it is not possible to monitor al
these parameters. This makes these systems vulnerable to an
turbations during the operation, which may result in unexpec
failures.

The problem of having unexpected failures arises from the
that these failures cannot be predicted easily before the ac
assembly process. These failures generally result from the pr
gation of undetected errors during the assembly process. Acc
ing to Abu-Hamdan and El-Gizawy@1#, error-propagation is de
fined as carrying an undetected error from a previous task
coupling it with another error during a proceeding task. It is a
stated in@2# that, when a failure is detected during an operati
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the operation that failed may not be the source of failu
The source of failure may have been propagated from ea
operations.

On-line diagnosis of these types of failures by human exp
causes costly downtime and maintenance. It was reported
these unplanned maintenances cost around 200 billion dollar
the United States in 1990@3#. The aim of this paper is to discus
an efficient way of predicting and diagnosing propagated error
robotic assembly systems usingVirtual Factoriesusing ‘‘off-line
programming.’’ Inoff-line programming, any robotic system can
be modeled virtually in 3D and the performance of the system
be evaluated accurately from the simulations. Previous disc
sions on the off-line error prediction, diagnosis and recovery w
made in@4–7# and a method was proposed and evaluated us
this approach. This study involves the integration of this meth
by using a commercial assembly simulation software with sev
developed modules to build aVirtual Factory. This structure will
enable us to predict unexpected propagated errors before th
tual assembly operation takes place thus providing efficient me
of diagnosis and recovery for these types of failures when t
happen. In this study, five different types of failures are un
consideration and these are: grasping failures, sensor failures
lision errors, flawed parts and misplacement errors.

Previous Work
Prevention of the propagated errors has been a great intere

the automated recovery of robotic assembly systems. The es
lished techniques of Failure Mode and Effect Analysis~FMEA!,
Fault Tree Analysis~FTA! and Event Tree Analysis~ETA! are
used widely@8,9#. FMEA is used to examine all possible comp
nent failure modes and to identify their first order and final effe
on the system. It is an important method to assure quality. F
and ETA may be applied at various levels for examining the err
and failures in a system. FTA is a top-down technique for ass
ing the way in which several failures can cause a single outco
or a system failure. ETA is a ‘forward’ technique, which may
used to examine the propagation of an initiating event~or failure!
with the presence of a number of other events, failures, fault
conditions. These methods are used during the design stage o
assembly system in order to predict possible propagated fa
situations.

Probability theory is also used to analyze failure uncertain
Fuzzy methodology has been applied in fault diagnosis, safety
risk engineering and structural reliability. A qualitative approa
to the analysis of a failure~assuming the failure is a fuzzy ele
ment! is presented in@10# by Cai. Rather than defining succes
and failure in binary states, a probability of failure is introduc
for each event.

Ishii concentrated on examining the life-cycle engineering
sign @11,12#. He proposed an effective representation scheme
assembly tasks by using a semantic network structure. The
work is composed of components and subassemblies~nodes! and
the relationships between the nodes~link!. This representation
supports to conduct service mode analysis~SMA! and life-cycle
analysis since it expresses the relations of the objects in an as
bly explicitly.

Several systems were developed in the literature based on
anticipated error propagation scenarios. Chang and DiCesar@2#
proposed an algorithm for constructing and pruning failure pro
gation trees in manufacturing systems. The purpose of buildin
failure propagation tree is to identify possible failure causes
failure sources to allow for a planning process to recover from
error. A computer-aided monitoring system for assembly was
veloped by Abu-Hamdan and El-Gizawy@1#. The implemented
expert system for detection is composed of task precondition
task execution monitoring parts and no assembly task is allo
to proceed unless the preceding task has been successfully
pleted. It was claimed that error propagation was totally elim
nated with this approach. However, this system is inefficient wh
there is a failure among the detection system components.
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The systems and methods discussed above depend on the
diction of failures by human experts so they do not cover mos
the propagation situations.

An off-line error prediction, diagnosis and recovery techniq
was discussed previously in@4–7#. This method uses a comme
cial robotic assembly simulation software and Monte-Carlo sim
lation @13# to predict possible failures during the assembly ope
tion. It also uses Bayesian Reasoning@14# to infer on the possible
type of failure~s! and provide recovery logic based on the detec
symptoms. The method is composed of five steps:

1 3D modeling of the assembly line using a commercial so
ware package.

2 Prediction of the error cases by using Monte-Carlo simu
tion based on the statistical model of sensors, robots
products.

3 Off-line error diagnosis using Bayesian Reasoning.
4 Off-line generation of robust error recovery logic using G

netic Programming@15#.
5 Downloading the generated codes to the system controlle

prepare the system for automated recovery.

The main advantage of this approach is that it provides su
cient means of gathering information about the probable e
situations during an assembly process and uses this informa
correctly to develop robust recovery plans. Since propagated
rors cannot be predicted easily before the actual assembly pro
this method can be used to predict and diagnose possiblepropa-
gated errorsin large-scale assembly systems.

Proposed Approach
The proposed system uses the previously discussed off-line

ror prediction, diagnosis and recovery method by building sev
software modules and linking them to establish a Virtual Facto
First, the assembly system is modeled in 3D. This model and
process parameters are inputted to the commercial software p
age. After that, possible error situations are identified by perfo
ing Monte Carlo simulation. These obtained situations are sto
in a file in order to be used in the diagnosis stage. The next s
is generating recovery codes. In this step, Genetic Programm
@15# is used to generate controller codes@4–6# in robot’s lan-
guage. Final stage is developing modules for the Virtual Fact

The main module is the Virtual Assembly software, which
responsible for simulating the complete assembly process.
second module is the Virtual Detection module, which is used
detecting the component failures~gripper failures, sensor failures
etc.!. Third module is the Virtual Diagnosis module for diagnosi
errors. Fourth module is the Virtual Recovery module for apply
the generated recovery codes. The factory structure is give
Fig. 1 and the detailed explanation of each module is as follo

Structure of Virtual Factory. ~a! Virtual assembly software
module. This module is the commercial robotic simulation pac
age and it includes the 3D model of the assembly system
assembly process codes. It also contains the realistic mode
assembly robots, fixtures and products to simulate the pro
accurately. It is also possible to detect collision errors dur
the assembly process since this is an implemented feature in
package.

~b! Virtual detection module. Virtual Detection module is used
for detecting the errors occurred during the assembly proces
assembly systems, there are two different monitoring types.
first type is called continuous monitoring, which a paramete
monitored continuously throughout the complete assembly p
cess. As an example, torque/force sensors are checked con
ously for collision detection. The second type is called discr
monitoring, which a parameter is monitored at certain steps of
assembly process. For example grasping sensors are checke
ing the part picking or releasing steps to ensure the proces
completed successfully. Both types of monitoring are imp
262 Õ Vol. 1, SEPTEMBER 2001
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mented in this module. A sensor array is defined and it conta
information about each sensor’s state. When an error is dete
current condition of the sensor array is passed to the diagn
module to analyze the detected error.

~c! Virtual diagnosis module. This module uses the state of th
sensor array to infer the possible failure reason. Based on
given symptom from the sensor array, the following Bayes
Reasoning formula is used to calculate a belief value for e
failure type.

Bel~Fk!5
P~Y0\Fk!* P~Fk!

(
; l

P~Y0\Fl !* P~Fl !

(1)

In the above formula, the probability of having the specifi
symptom for each failure is calculated.Y0 indicates the given
symptom from the sensor array andFk is the type of failure from
the following failure array given in Table 1.

The failure, which has the highest belief value, is suggested
the reason after this calculation. However, in order to prev
incorrect automated recovery a threshold level for belief value
defined. If the diagnosed situation’s belief value is greater th
this threshold, system proceeds with automated recovery. If
less than the threshold, system asks for user maintenance an
most possible failures are written into a log file.

When the system asks for user maintenance, an interactive
inforced diagnosis system is initialized. This subsystem is
tended to be used on-line, after the system is prepared for
recovery process ‘‘off-line’’. It enables the user to input furth
data based on the manual diagnosis by entering the ident
working and non-working components during the manual insp
tion process. Based on this additional data, the situation can
re-diagnosed. The usage of this sub-system is demonstrate
case studies.

~d! Virtual recovery module. This module is used for applying
the recovery logic for the diagnosed failure. The outputs of
virtual diagnosis module are passed to this module and base
the failure type a strategy is followed for the recovery as shown
Table 2. Each strategy contains one or more recovery codes.
use of the appropriate code depends on the point where the
has been detected. Some failure types are dominant when mu
errors occurred~i.e., when a grasping failure occurred due to
flawed part and grasping, the system uses the recovery cod
dispose the flawed part!. Several rules are implemented to th
system to recover from this type of possible scenarios.

Case Studies
A multi-station assembly system, which is responsible

mounting and welding workpieces together, is modeled us
Workspace@16# and shown in Fig. 2.

Fig. 1 Layout of the proposed virtual factory
Transactions of the ASME
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The system is composed of three IRB 6400-type industrial
bots. The assembly process is as follows: At first, Rob-A picks
the cylindrical piece from the conveyor and inserts it into the h
of the second piece on the second station. Then, the welding r
~Rob-B! approaches the assembled two pieces and welds th
two pieces together. After that, Rob-C picks up the welded pi
and places it on the fixture and all of the parts are welded toge
by Rob-B. Finally the complete assembly is transferred on
conveyor by Rob-C. During the assembly operation, two insp
tion cameras are used for the verification process. These cam
are placed over the first station where Rob-A picks up the cy
drical piece and over the fixture respectively.

The elements in the modeled symptom array and their sig
codes are given in the following Tables 3 and 4. Each sympt
parameter, except the cameras, gets 0 or 1 depending on the s
feedback from the sensors. If there is a signal indicating an
normal situation, then the associated parameter gets 1. For
inspection cameras the following codes are implemented as sh
in Table 4.

The failure array is designed to provide information on t
possible failure types as discussed before in Table 2. As show
Table 5, all of the possible failure types of grasping and sen
failures are implemented to the model. In grasping, failure cod
is different from 7 in the sequence of failures. Since sequence
failures is also important for the appropriate recovery these
codes are different from each other.

Several parameters are sampled from the assembly proc
These parameters include robot repeatability for each robot, g
per reliability, gripper sensors reliability, sensor reliability for th
inspection cameras and dimensional tolerances of each p
Each parameter and its distribution type are given in Table 6. T
values in the parenthesis indicate the mean and the standard
ues of the associated parameter:

Complete assembly process was simulated off-line 500
times. The belief value threshold level for automated recovery
taken as 0.8. During this simulation process several types of er
propagation were observed.

Propagation Resulted in Part Jamming at the Fixture. The
actual reason for this problem is Rob-A did not pick the cylind
cal part and this was not detected either by camera-1 over the
station or the Rob-A grasping sensor, since they are both malfu
tioning. Besides, second camera over the fixture was also dea
it could not detect the incompletely assembled workpiece and
cause of this, that part could not be transferred to the conve
This type of error propagation caused part jamming at the fixt
during the next cycle.

In this case, a collision error is detected at the fixture. T
sensor array passes the information to the diagnosis module,

Table 1 Failure array parameters

Table 2 Failure recovery strategies
Journal of Computing and Information Science in Engineering
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Fig. 2 Modeled assembly system

Table 3 Symptom array parameters

Table 4 Camera codes

Table 5 Failure codes
SEPTEMBER 2001, Vol. 1 Õ 263
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Table 6 Sampled parameters and values Table 7 Output of virtual diagnosis module
cating that torque/force sensor of Rob-C detected collision. T
state of the assembly system is shown in Fig. 3. At this point, i
difficult for a human expert to diagnose the situation. The on
input is from the torque/force sensor and there are other par
eters to check thus there may be several different reasons for
problem.

Information from the sensor array is diagnosed by the Virtu
Diagnosis module. The diagnosed failure reason and its be
value are given in Table 7. As it can be seen from the table,
calculated belief value is less than the threshold value. If this c
arises during the actual assembly operation, the system stops
asks for user maintenance and interactive reinforced diagn
system is initiated. At this step, further obtained data can be
putted to the system. In order to simulate the situation, it is
sumed that Rob-C gripper has been checked according to the
tially proposed diagnose failure and it was found out th
component is working properly. Re-diagnosing based on this
ther data revealed another reason of failure as shown in Tabl

As it can be observed from Table 8, this time the correct rea
for the failure has been found. The belief value is 0.8817. A
though it is less than the threshold, the system is already
manual recovery mode so it can be recovered.

This case study revealed the fact that although propagated
rors occur in less likelihood, they cannot be avoided. Although
modeled system is composed of relatively fewer compone
when compared to the large-scale auto-body assembly or
sumer electronics lines, it is still difficult to analyze the syste
Therefore, the developed Virtual Factory aids in prediction, dia
nosis and recovery of the complex errors, which may be pro
gated during the assembly process.

Conclusions
Large-scale robotic assembly systems are used in industry

tensively. However, these systems are composed of many com
nents and it is not possible to monitor all the parameters of th
components during the assembly process. For example, an u

Fig. 3 Part jamming at the fixture
264 Õ Vol. 1, SEPTEMBER 2001
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tected error in upstream of the line can cause a detectable err
further downstream of a line which is called the ‘‘error-
propagation.’’

The diagnosis and recovery of propagated errors are com
since they cannot be predicted easily prior to the operation of
assembly line. Several methods are used in the literature to pre
the possible propagation of undetected errors using failure pro
gation trees, failure mode and effect analysis or using fuzzy log
However, these methods are not adequate since they do not in
porate the 3D model of the system and they do not cover all of
possible error scenarios.

The advancements in both hardware and software techno
revealed the concept of usingVirtual Factoriesbefore building the
real-lines. These systems can simulate the process repetitive
less time to predict the unpredictable, propagated errors be
they occur. They can also be used for developing and verify
diagnosis and recovery logic.

A Virtual Factory was developed to predict and diagnose th
type of failures before they happen. Several modules are de
oped as parts of this factory. The system is capable of detect
diagnosing and recovering possible failures, which may occur d
ing the real process.

In order to demonstrate the validity and the effectiveness of
proposed system, a multi-station assembly system is modeled
a previously discussed ‘‘off-line prediction and recovery’’ metho
was applied. The obtained results showed that the method is
pable of predicting propagated errors, which are too complex
solve for a human expert. Following advantages of using a Virt
Factory are identified after conducting case studies:

• The developed Virtual Factory is capable of predicting a
diagnosing propagated errors, which may cause problems
though their likelihood of occurrence may be less.

• The Virtual Diagnosis module can be embedded into the r
line and used for automated diagnosis.

• The developed interactive reinforced diagnosis system
help reducing downtime of the assembly system wh
manual diagnosis is required.

It is believed that this approach will decrease the costly dow
time for failure inspection and recovery. The future work w
involve examining the complex failure scenarios, which requ
the coordination of multiple agents for recovery and automa
generation of recovery logic for this type of failures.
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