Seat mount Cross Member Number 3 Bar

a) Find maximum stress and deflection at the load point for simply supported end conditions
b) Find maximum stress and deflection at the load point for fixed end conditions
c) For the simply supported case with requirements
$\cdot \mathrm{k} \geq 100 \mathrm{~N} / \mathrm{mm}$
$-P_{\text {yield }} \geq 2000 \mathrm{~N}$
Determine the required thickness; consider only yielding behavior Which requirement dominates? (i.e. which requires the greater thickness)

Frame Cross Member
Exercise 1.3

The rear powertrain mount is at the center of a cross member. The maximum vertical load is 1000 N. The end condition for the cross member at the frame rails is simply supported. Calculate the deflection at the load point, and maximum direct stress and its location for:
a) closed rectangular cross section with load applied at centroid
b) rear facing C section with load applied at the web with warping unconstrained
c) Same as b) but with warping constrained-use $C_{w}=h^{2} b^{3} t(2 h+3 b)$ where h height
$12(\mathrm{~h}+6 \mathrm{~b}) \quad \mathrm{b}$ flange length

Steering column mount

Exercise 1.5

C section

a) Determine stiffness for the above conditions

Geometrical Analysis of Sections
 GAS

Exercise 1.6
a) By scaling the drawings, calculate the nominal section properties for Neon. Use the vertical and horizontal orientation in the drawing for the axis system.

Rocker
A Pillar
Roof Rail
B Pillar -Lower
Hinge Pillar
C Pillar -Upper
b) Calculate the Effective section properties for the Neon at a uniform compressive load at yield
c) Compare the Effective to Nominal Moments of inertia about the horizontal axis by taking the ratio $\mathrm{I}_{\text {eff }} / \mathrm{I}_{\text {nom }}$ for each section

Vision Obscuration Versus A Pillar Size
Exercise 1.7

Plot A Pillar I_{xx} vs. vision angle for Neon. Hold rear vision line and increase section along windshield curvature. Maintain weld flange length. Use your judgement otherwise. Go from base section -2° to $+2^{\circ}$. Results should look similar to the sketch at right.

Step Over Height versus Rocker Size
Exercise 1.8

Plot rocker I_{xx} vs. step over height for Neon. Hold bottom flange and increase section at top. Maintain weld flange length. Use your judgement otherwise. Go from base section -20 mm to +20 mm . Results should look similar to the sketch at right.

General Buckling Width-to-Thickness Ratio
 Exercise 1.9

a) At what b/t ratio will $\sigma_{\text {yield }}$ and $\sigma_{\text {crit }}$ be equal?
b) For mild steel $\sigma_{\text {yield }}=30000 \mathrm{psi}$, what is the numerical b/t ratio at which this occurs?
c) A typical Aluminum alloy has $\sigma_{\text {yield }}=50000$ psi and $\mathrm{E}=10 \times 10^{6} \mathrm{psi}$ what is b / t ratio where $\sigma_{\text {yield }}$ and $\sigma_{\text {crit }}$ are equal?

General Buckling Coefficient

a) Show that when

$$
w=A_{m n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)
$$

the edge constraints are $M_{x}=0, M_{y}=0$, and $M_{x y}=0$.
b) Show that when w is given as above, the plate equation yields

$$
f_{c r}=\frac{D \pi^{2}}{t b^{2}}\left[m\left(\frac{b}{a}\right)+\frac{n^{2}}{m}\left(\frac{a}{b}\right)\right]^{2}
$$

c) Plot the result of b) as [term in brackets above] vs b / a for $n=1, m=1,2,3$ and for $n=2, m=1,2,3$ and show that the term in brackets has a lower limit of 4 for these n and m values.

Rear Rail with Bumper Loading

a) At what bumper load will the plate elements in the rear rail buckle?
b) The flat sides of the section are replaced with curved elements of
$\mathrm{R}=200 \mathrm{~mm}$. Compute the new bumper load where the plate elements buckle.

General Buckling Effective Width

Exercise 1.14

a) Assume the stress is distributed in a cosine function with the maximum stress σ_{s} and minimum stress $\sigma_{\text {crit }}$ as shown above. Determine the effective width assuming the maximum stress acts uniformly over the effective width w and both elements react the same force P.

$$
w\left(\sigma_{s}\right)=\frac{b}{2}\left(1+\frac{\sigma_{c r i t}}{\sigma_{s}}\right)
$$

b) Plot the effective width w versus the maximum stress-to-critical stress ratio.
c) For a flat plate with simply supported edges where $\mathrm{b}=100 \mathrm{~mm}$ and $\mathrm{t}=.86 \mathrm{~mm}$, plot the effective width versus applied compressive stress.

Using hand calculations,
a) At what bending moment, $\mathrm{M}_{\text {crit }}$, will top cap just buckle?
b) What is the effective width of the top cap at $1.1 \sigma_{\text {crit }}, 1.5 \sigma_{\text {crit }}, 2.0 \sigma_{\text {crit }}$?
c) What is the effective I_{xx} at $2.0 \sigma_{\text {crit }}$?
d) What is the moment at which the effective section is at yield?

Effective Properties after Buckling

Determine the moment-tip deflection curve for the beam shown. The result should look similar to the graph below. Consider only plate buckling behavior of the upper cap of the section.
Plot the range $0<M<5 \mathrm{M}_{\text {crit }}$.

