1. Using AISI/CARS'96_GAS or equivalent software such as UNIGRAPHICS if you are familiar with, find the geometric property of the following four cross sections. To do this, the thickness of the sheet metal to form the frames is assumed to be 1 mm . If a specific material characterization is required, you may pick up it from the database in AISI/CARS'96 for structural steel commonly used in automotive body. Since the geometry is given in approximately, you will determine the input to AISI/CARS' 96 based on your judgement for details.
(a)

GAS - CARS Geometric Analysis of Sections
Version 5.0
Date: Apr 221998 Time: 16:35:04
Units : N, mm, MPa
Database : D:\CARS96\USER\HW2A
Section Name: Section A
Description:

Cross Section Geometry:

Point No.	X	Y
1	0	2
2	2	2
3	2	12
4	44	14
5	50	20
6	76	68
7	70	74
8	64	76
9	62	78
10	54	80
11	54	90
12	16	94
13	16	102
14	2	92

Line Start End							Material					Line
No.	Pt.	Pt.	Length	Thickness		Archive	No.					

Material Description:
Archive Mat'l No. E Fy Archive Location asdm. 1203000234.422 d:\cars96\
*** Results ***

Nominal Properties:

```
Area = 311.36
cx = 28.801
cy = 53.287
Ixx = 3.2029E+05
Iyy = 2.078E+05
Ixy = 40064
Sx+ = 6575
Sy+ = 4362
Sx- = -6184.8
Sy- = -7215.1
Theta = -17.731
Iuu = 3.331E+05
Ivv = 1.9499E+05
Su+ = 7722.6
Sv+ = 4759.6
Su- = -5733.4
Sv- = -5159.3
rx = 32.073
ry = 25.834
J = 3.189E+05
Cw}=
ex = 32.5
ey = 53.336
Cuu = 2.8026
Cvv = 2.1508
Jopen = 48.667
Jc = 3.1885E+05
tomax = 2
tcmin = 1
Ao = 4668
```

(b)

GAS - CARS Geometric Analysis of Sections
 Version 5.0

Date: Apr 221998 Time: 16:47:11
Units : N, mm, MPa
Database : D:\CARS96\USER\HW2A
Section Name: Section B
Description :

Cross Section Geometry:

Point No.	X	Y
1	0	28
2	10	28
3	14	7
4	32	7
5	36	0
6	70	0
7	82	26
8	92	26
9	80	34
10	14	36

Line Start End			Material		Line
No.	Pt. Pt.	Length	Thickness	ess Archive	No. Type
1	12	10	2 as	asdm. 1	Segment
2	23	21.3776	1	asdm. 1	Segment
3	34	18	1 as	asdm. 1	Segment
4	45	8.06226	1	asdm. 1	Segment
5	56	34	1 as	asdm. 1	Segment
6	67	28.6356	1	asdm.	Segment
7	78	10	2 as	asdm. 1	Segment
8	79	8.24621	1	asdm.	Segment
9	910	66.0303	1	asdm.	Segment
10	102	8.94427	1	asdm. 1	Segment

Material Description:

| Archive | Mat'l No. | E | Fy | Archive Location |
| :--- | :---: | :---: | :---: | :---: | :---: |
| asdm. | 1 | 203000 | 234.422 | d:lcars961 |

Nominal Properties:

$$
\begin{aligned}
& \text { Area }=233.3 \\
& \mathrm{cx}=45.614 \\
& \text { cy }=20.683 \\
& \text { Ixx }=41804 \\
& \text { Iyy }=1.7901 \mathrm{E}+05 \\
& \text { Ixy }=-3466.9
\end{aligned}
$$

```
Sx+ = 2643
Sy+ = 3859.2
Sx- = -1973.5
Sy- = -3924.5
Theta = -1.4465
Iuu = 41716
Ivv = 1.791E+05
Su+ = 2778.5
Sv+ = 3871.4
Su- = -1947.6
Sv- = -3909.7
rx = 13.386
ry = 27.701
J = 94115
Cw}=
ex = 47.163
ey = 18.106
Cuu = 1.8753
Cvv = 3.9716
Jopen = 53.333
Jc = 94061
tomax = 2
tcmin = 1
Ao = 2132
```

(c)

GAS - CARS Geometric Analysis of Sections
Version 5.0
Date: Apr 221998 Time: 16:54:24
Units : N, mm, MPa
Database : D:ICARS96\USER\HW2A
Section Name: Section C
Description :

Cross Section Geometry:

Point No.	X	Y
1	0	52
2	10	52
3	10	30
4	32	6
5	36	6
6	40	0
7	46	28
8	44	32
9	50	32
10	40	42
11	26	52

Line Start End			Material	Line
No.	Pt. Pt.	Length	Thickness Archive	No. Type
1	12	10	2 asdm. 1	Segment
2	23	22	1 asdm. 1	Segment
3	34	32.5576	1 asdm. 1	Segment
4	45	4	1 asdm. 1	Segment
5	56	7.2111	2 asdm. 1	Segment
6	57	24.1661	asdm. 1	Segment
7	78	4.47214	1 asdm. 1	Segment
8	89	6	2 asdm. 1	Segment
9	810	10.7703	1 asdm. 1	Segment
10	1011	17.2047	1 asdm. 1	Segment
11	112	16	1 asdm. 1	Segment

Material Description:

| Archive | Mat'l No. E | Fy | Archive Location | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| asdm. | 1 | 203000 | 234.422 | d:lcars96\ |

Nominal Properties:
$\begin{array}{lll}\text { Area }= & 177.59 \\ \text { cx } & = & 26.757 \\ \text { cy }= & 31.327\end{array}$

```
Ixx = 50635
Iyy = 36855
Ixy = -21803
Sx+ = 2336.3
Sy+ = 1585.7
Sx- = -1588.2
Sy- = -1377.4
Theta = 36.231
Iuu = 66610
Ivv = 20880
Su+ = 2000.5
Sv+ = 1057.9
Su- = -2009.9
Sv- = -1410.9
rx = 16.885
ry = 14.406
J = 37499
Cw}=
ex = 28.054
ey = 33.36
Cuu = 3.6849
Cvv = 2.0309
Jopen = 61.896
Jc = 37437
tomax = 2
tcmin = 1
Ao = 1108
```

(d)

GAS - CARS Geometric Analysis of Sections
Version 5.0

Date: Apr 221998 Time: 17:00:46
Units : N, mm, MPa
Database : D:\CARS96\USER\HW2A
Section Name: Section D
Description:

Cross Section Geometry:

Point No.		X	
1	0		32
2	4		16
3	20		20
4	25	6	
4	44	8	
5	46	0	
6	48	12	
7	43	30	
8	24	42	
9	28	52	
10	20	40	
11	6	46	

Line Start End					Material					Line							
No.									Pt.	Pt.	Length		Thickness		Archive	No.	Type
1	1	2	16.4924	1	asdm.	1	Segment										
2	2	3	16.4924	1	asdm.	1	Segment										
3	3	4	14.8661	1	asdm.	1	Segment										
4	4	5	19.105	1	asdm.	1	Segment										
5	5	6	8.24621	2	asdm.	1	Segment										
6	5	7	5.65685	1	asdm.	1	Segment										
7	7	8	18.6815	1	asdm.	1	Segment										
8	8	9	22.4722	1	asdm.	1	Segment										
9	9	10	10.7703	2	asdm.	1	Segment										
10	9	11	4.47214	1	asdm.	1	Segment										
11	11	12	15.2315	1	asdm.	1	Segment										
12	12	1	15.2315	1	asdm.	1	Segment										

Material Description:
Archive

Mat'l	No.	E	Fy	Archive Location
asdm.	1	203000	234.422	d:lcars96

*** Results ***

Nominal Properties:
$\begin{array}{ll}\text { Area }= & 186.73 \\ \text { cx }= & 25.34\end{array}$

```
cy = 25.642
Ixx = 42109
Iyy = 43555
Ixy = -17376
Sx+ = 1575.4
Sy+ = 1882.1
Sx- = -1626.8
Sy- = -1686.5
Theta = -43.809
Iuu = 25441
Ivv = 60223
Su+ = 1197.9
Sv+ = 1814.4
Su- = -1148.3
Sv- = -2111.8
rx = 15.017
ry = 15.272
J = 36685
Cw}=
ex = 25.057
ey = 28.127
Cuu = 2.2934
Cvv = 1.7485
Jopen = 50.711
Jc = 36634
tomax = 2
tcmin = 1
Ao = 1167
```

2. Assuming the cross section given in 1-(a), we consider a cantilever beam shown in the following figure.

Although this cantilever should be regarded as a short beam, assuming that this is modeled as a beam we have studied so far,
(a) Find the axial stress distribution on the cross section at the fixed end of the cantilever, and
(b) Find the horizontal and vertical deflections as well as the angle of twist of the beam at the free end.

To do so, you may model this cantilever by a beam element. Since the one end is fixed, you will end up a 6×6 matrix equation that can be solved by MATLAB. Unknowns are the two transverse deflections of the shear center, the average axial displacement, three rotations about the x, y, and z axes, respectively, where x and y are the principal axes of the cross section. For your analysis, you should specify what material constants are applied for structural steel. Here, we expect that Young's modulus is about 200 Gpa (30 M psi), and Poisson's ratio is about 0.29 .

It is also noted that the vertical load P is applied not on the shear center, it generates twist moment about the shear center. Thus, you will have three input, say, V_{x}, V_{y}, and M_{z}.
(a) From the result in 1-(a) by CARS96 we have
$I_{u u}=3.331 \times 10^{5} \mathrm{~mm}^{4} \quad, \quad I_{v v}=1.95 \times 10^{5} \mathrm{~mm}^{4} \quad, \quad J_{c}=3.2 \times 10^{5} \mathrm{~mm}^{4}$
and the principal axes is rotated clockwise 17.7 degree. Thus the vertically applied force P generates the two components of the transverse loads in the principal axis directions P_{u}
and P_{v} as well as the toque about the axis through the shear center $M_{z}=P e_{x}$, where ex is the perpendicular distance of the shear center to the line of vertical force obtained as $\mathrm{e}_{\mathrm{x}}=$ $32.5 \mathrm{~mm}-16 \mathrm{~mm}$:
$P_{u}=P \sin \theta=13.5240 \mathrm{~N}$
$P_{v}=-P \cos \theta=-42.3763 \mathrm{~N}$
$M_{z}=P e_{x}=733.9530 \mathrm{~N} . \mathrm{mm}$
The transverse loads Pu and Pv generates the bending moments at the fixed end, and they are

$$
\begin{aligned}
& M_{u}=P_{v} L=-2.1527 \times 10^{4} \mathrm{~N} . \mathrm{mm} \\
& M_{v}=P_{u} L=6.8702 \times 10^{3} \mathrm{~N} . \mathrm{mm}
\end{aligned}
$$

These generate the axial stress
$\sigma_{z}=-\frac{M_{u}}{I_{u u}} v-\frac{M_{u}}{I_{v v}} u$
where (u, v) are the coordinates of a point of the cross section from the centroid of the cross section in the u and v principal directions, respectively. Thus, using the following MATLAB program, we can compute the axial stress due to the transverse load P. Here it is noted that torque M_{z} does not contribute the axial stress.

```
% MATLAB Program for HW #2 - 2 (a)
% 599-02 Automotive Body Structures
%
% define the reference coordinate of the nodes
xr=[0,2,2,44,50,76,70,64,62,54,54,16,16,2];
yr=[2,2,12,14,20,68,74,76,78,80,90,94,102,92];
% define the line segments
ijk=[1,2;2,3;3,4;4,5;5,6;6,7;7,8;8,9;9,10;10,11;11,12;12,13;12,14;14,3];
% draw the cross section
[nelx,node]=size(ijk)
for nel=1:nelx
    xp(1)=xr(ijk(nel,1));
    xp(2)=xr(ijk(nel,2));
    yp(1)=yr(ijk(nel,1));
    yp(2)=yr(ijk(nel,2));
    plot(xp,yp)
    if nel==1, hold, end
end
hold
% location of the centroid
cx=28.8;
cy=53;
% location of the shear center
```

```
sx=32.5;
sy=53.3;
% distance between the shear center and loading line
ex=32.5-16;
% angle of the principal axes
theta=17.7*pi/180;
% applied load P = 10 lb = 44.482 N
P=44.482;
% moment due to the applied load not on the shear center
Mz=P*ex
% components of the applied force P in the principal directions
Pu=P*sin(theta)
Pv=-P*
% moment of inertia with respect to the principal axes
Iuu=3.331*10^5;
Ivv=1.95*10^5;
Jc=3.2*10^5;
% length of the cantilever
L=508;
% bending moments by the applied load
Mu=Pv*L
Mv=Pu*L
% axial stress due to the bending
xs=(xr-cx)*\operatorname{cos}(theta)-(yr-cy)*sin(theta)
ys}=(\textrm{yr}-\textrm{cy})*\operatorname{cos}(\mathrm{ theta) }+(\textrm{xr}-\textrm{cx})*\operatorname{sin}(\mathrm{ theta)
sz=-(Mu/Iuu)*ys-(Mv/Ivv)*xs
% plot the stress distribution
pause
for nel=1:nelx
    xp(1)=xr(ijk(nel,1));
    xp(2)=xr(ijk(nel,2));
    yp(1)=yr(ijk(nel,1));
    yp(2)=yr(ijk(nel,2));
    zp0(1)=0;
    zp0(2)=0;
    zp1(1)=sz(ijk(nel,1));
    zp1(2)=sz(ijk(nel,2));
    plot3(xp,yp,zp0,xp,yp,zp1)
    if nel==1, hold, end
end
hold
```

nel $x=$
node $=$

```
Mz=
    733.9530
Pu=
        13.5240
Pv=
    -42.3763
Mu=
    -2.1527e+004
Mv=
    6.8702e+003
xs=
    Columns 1 through 7
    -15.3646 -13.4593-16.4996 22.9041 26.7959 36.9715 29.4313
    Columns 8 through 14
    23.1073 20.5939 12.3645 9.3242 -28.0931 -30.5253-40.8223
ys =
    Columns 1 through 7
    -58.7526-58.1445 -48.6179 -33.9432-26.4030 27.2296 31.1213
    Columns 8 through 14
    31.2025}32.4997 31.9728 41.4994 33.7568 41.3781 27.5950
sz =
```

Columns 1 through 7

```
-3.2557 -3.2835 -2.5607 -3.0006 -2.6504 0.4572 0.9744
```

Columns 8 through 14

$$
\begin{array}{lllllll}
1.2024 & 1.3748 & 1.6307 & 2.3535 & 3.1714 & 3.7496 & 3.2216
\end{array}
$$

Current plot held
Current plot released
Therefore, the maximum stress is $3.7596 \mathrm{~N} / \mathrm{mm} 2$ at node 13 , and the minimum stress is $3.2835 \mathrm{~N} / \mathrm{mm} 2$ at node 2 , and the distribution can be obtained as follows :

Check : Under the assumption that the cross section is almost rectangular with the moment of inertia $\mathrm{Ixx}=3.2029 \times 10^{5} \mathrm{~mm}^{4}$, while the vertical load $\mathrm{P}=10 \mathrm{lb}$ is the dominant force, we shall obtain the maximum and minimum stress due to the bending moment $\mathrm{M}=\mathrm{PL}=44.482 \times 508 \mathrm{Nmm}$:
$\sigma_{+}=\frac{M}{I_{x x}} y_{+}=\frac{44.482 \times 508}{3.2029 \times 10^{5}} \times 48.7=3.436 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{-}=-\frac{M}{I_{x x}} y_{-}=-\frac{44.482 \times 508}{3.2029 \times 10^{5}} \times 52.3=3.690 \mathrm{~N} / \mathrm{mm}^{2}$

Therefore, the value we have by MATLAB can be regarded as the one we expect.
(b) Using the stiffness matrix of the 3 dimensional beam element, we can calculate the deflections as follows by using the MATLAB program :

```
% MATLAB Program : Homework 2-2(b)
%
% input data for the stiffness matrix
E=200000;
v=0.29;
G=E/(2*(1+v));
Fx=0;
Fy=0;
Ixx=3.331*10^5;
Iyy=1.9499*10^5;
Jc=3.189*10^5;
A=311.36;
L=508;
% element stiffness matrix for 3D beam element
ske=zeros(12);
ske(1,1)=12*E*Ixx/((1+Fx)*L^3);
ske(5,1)=ske(1,1)*L/2;
ske(7,1)=-ske(1,1);
ske(11,1)=ske(5,1);
ske(2,2)=12*E*Iyy/((1+Fy)*L^3);
ske(4,2)=-ske(2,2)*L/2;
ske(8,2)=-ske(2,2);
ske(10,2)=ske(4,2);
ske(3,3)=E*A/L;
ske(9,3)=-ske(3,3);
ske(4,4)=(4+Fy)*E*Iyy/((1+Fy)*L);
ske(8,4)=-ske(4,2);
ske(10,2)=(2-Fy)*E*Iyy/((1+Fy)*L);
ske(5,5)=(4+Fx)*E*Ixx/((1+Fx)*L);
ske(7,5)=-ske(5,1);
ske(11,5)=(2-Fx)*E*Ixx/((1+Fx)*L);
ske(6,6)=G*Jc/L;
ske(12,6)=-ske(6,6);
ske(7,7)=ske(1,1);
ske(11,7)=-ske(5,1);
ske(8,8)=ske(2,2);
ske(10,8)=-ske(4,2);
ske(9,9)=ske(3,3);
ske(10,10)=ske(4,4);
ske(11,11)=ske(5,5);
ske(12,12)=ske(6,6);
for i=1:11
    for j=i+1:12
        ske(i,j)=ske(j,i);
    end
end
```

```
ske;
% reduced stiffness matrix : second node is fixed
sker=ske(1:6,1:6)
fe=zeros(6,1);
% applied transverse loads and torque
fe(1)=-42.3763;
fe(2)=13.5240;
fe(6)=733.9530;
fe
% result of the transverse deflections etc
ue=inv(sker)*fe
sker =
    1.0e+008*
    0.0001 0
            0
            0
            0
    ccllllll
fe=
    -42.3763
    13.5240
            0
            0
            0
    733.9530
ue =
    -0.0278
    0.0152
            0
    0.0000
    0.0001
    0.0000
```

Noting that these values are for the principal axes, we must convert them into the horizontal and vertical components of the displacement :

Horizontal Displacement +0.0060
Vertical Displacement -0.0311

Check : Again, using the simple beam theory, the vertical deflection can be approximated by
$\delta=-\frac{P L^{3}}{3 E I}=-\frac{44.482 \times 508^{3}}{3 \times 200000 \times 3.203 \times 10^{5}}=-0.0303 \mathrm{~mm}$

