Homework 3

For the side frame on the following sheet
A. Compute the vehicle bending deflection Δ.

$$
\begin{aligned}
& F=1500 \mathrm{Lb} \\
& \mathrm{a}=20 \mathrm{in} \\
& \mathrm{~b}=40 \\
& \mathrm{c}=40 \\
& \mathrm{~d}=10 \\
& \mathrm{~h}=30
\end{aligned}
$$

-Dimensions in Inches

- Frame is planar
-All metal thickness are .040 in
-Material Mild Steel
- Neglect Flanges - All sections are closed
-Sections are normal to beam axis
-All joints rigid except as noted
B. If the value for Δ computed in (A) exceeds the deflection requirement, which beam would you alter first and why?
C. Compute $(\mathrm{Gt})_{\text {EFF }}$ for torsion.

Take $\mathrm{Q}=1650 \mathrm{Lb}$
D. If the value for $(\mathrm{Gt})_{\text {EfF }}$ computed in (C) is too low compared to the requirement, which beam would you alter first and why?

SIDE FRAME 20

SECTIONS

Rocker
 Pillar

Roof Rail

B Pillar
Below Belt
C Pillar
Below Belt

$\begin{array}{ll}\text { B Pillar } & \text { C Pillar } \\ \text { above Belt } & \text { above Belt }\end{array}$

JOINT RATES Kzz (Nm/rad)
A Pillar-Hinge Pillar
Hinge Pillar - Rocker
B Pillar-Rocker
C Pillar- Rocker
All Connections to Roof Rail .01E6

$(\mathrm{Gt})_{\mathrm{EFF}}=(\mathrm{Q} / \delta)(\mathrm{L} / \mathrm{H})$

