Summary for ME599 Automotive Body Structures

I Nomenclature for primary body beams and panels

II Body Requirements

Sources of Requirements Locate and Retain Bending Moments Twist Ditch Suspension Loads Other Subsystems (powertrain, seat...) Enable Vehicle Functions Safety Ride and Handling Noise and Vibration

Classification of Structural Requirements Stiffness, Strength, Energy Absorbing Global to Local

III Global Bending

Moment Diagram and Equivalent Single Load

Planar model and relationship to actual body

Free-body analysis to show basic side frame loads

FEM model of side frame (initially with rigid joints) Importance of Including flexible joints Relation of strain energy to deformation

IV Global Torsion

Load cases for torsion- a) twist ditch, b) stiff relative to suspension rate

Importance of panels for torsional stiffness, Analysis of box Non-redundancy of shear-box

Windshield / adhesive effectivness

Torsional stiffness via lower load path-ladder frame, tube, x frame V Body Topology

Efficiency measures: body mass relative to gross vehicle mass body mass relative to plan view area

Major load cases defining topology Global bending, Global torsion Front Barrier, Rear Barrier, Side Barrier Suspension lateral, vertical

Constraints on topology packaging manufacturing secondary load cases

Body Structure Elements

VI Thin Walled beams

Used because of efficiency in providing high stiffness

Deflection and Stress distribution when loaded at angle to principle axis

Compressive Buckling of walls of beams Basic Buckling Equation Use of effective width Use of "CARS" for effective section calculations Axial Collapse of Beam/Columns Means to inhibit buckling

VII Joints

Desirable geometry for joints Free-body analysis of joints Section / beam model for transverse section stiffness Distortion in curved sections

VIII Panels

Panel Requirements Oil Canning and Dent Resistance Panel Vibration Effect of Ribs and Crown on natural frequency Effective Rib Patterns

Membrane model for panels Loads define panel shape

IX Local Stiffness

Section / beam model for transverse section stiffness Examples of effective local stiffness designs

X Barrier Modeling using Plastic hinge / limit analysis

XI Spot weld

Shear vs peel loading Stress concentration at weld Between weld buckling of flange Deflection of weld flange under shear loads and effect on section stiffness

XII Vehicle Vibration

Source-Path-Receiver Model Modeling a body mode with a modal model Effect of mass placement on body frequency