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east Squares Method

Discrete Case
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Example : Curve Fitting
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Remarks

Degree of polynomials is small, then the values need not be
Recovered by the least squares

Degree of polynomials is large, it becomes interpolation

When the degree is larger than the number of sampling, then
Use pinv or Pseudolnverse instead of inv or Inverse



Weighted Least Squares
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Result : Not Much Use

We can equally distribute the approximation error



Constrained Least Squares
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Appliction of Lagrange Multiplier Method



Result : Great




east Squares Method

Continuous Case

Without Constraint

nlm%Hf -1, :nliin— f —Zcigq(x)

With Constraint
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Example

LA Aot NA
LR TATE

Function itself Its First derivative



Discrete & Continuous

How to make continuous least squares from
discrete data? Origin of SPH

minZ S w ()1, - (x))

Taking the first variation in a(x) yields
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SPH with “1”
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Property of SPH Basis Functions

When the parameter a is very large
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When the parameter a is reasonably small, then
These basis functions are similar with fem

n.5

Functions w;(x) Basis Functions @(x)



Choice of FEM Shape Functions

@(x)

Xi-1 X Xl41 X

Then the moving least squares implies piecewise linear
Interpolation as in the finite element method.



Belytschko’s EFG Method

p(x)' :{1, X, o, xk}

Moving Least Squares Method
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w(x):exp(—axﬁ) , a,B >0



Necessary Condition
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Approximation



Application 1
Constant SPH

furve Tit




Application 2

Linear Polynomial




Application 3

quadratic polynomial




Constant SPH with Constraint




However !

+1
Using f (X) = nZCiWi (x) directly

i 1 EIIOT

Do we need extra calculation for its approximation ?



SPH Basis Functions

Parameter alpha is small
Bezier Type Spline

Parameter alpha is large
B-spline Type Spline




Different Derivation

Recovering global polynomial form
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Application

Linear Recovering
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Nothing special Is required

Simplest is the best !

Put more nodes In the discrete form.
his 1S the best choice.




