Emerging Technology in Optimization An Image Based Approach for CAE

Noboru Kikuchi

Major Collaborators

Alejandro Diaz Michigan State University Scott Hollister University of Michigan and Keizo Ishii **QUINT** Corporation

Graduate Students in CML *current*

Emilio Silva Shinji Nishiwaki & Susumu Ejima J.H. Yoo Bing-Chung Chen Daichi Fujii Minako Sekiguchi

CAE at Present

An Introduction to Image Based CAE

Current Approach in CAE

• Parametric (Geometry Based) CAD / CAE

- Standard CAD Software is based on computational geometry by using parametric spline representation to define shape of a structure/domain
- All of the existing CAD software are geometry based : Pro-E, UNIGRAPHICS, I-DEAS, CATIA,
- In FEA, automatic mesh generation methods are also based on parametric representation of geometry

Lots of Sophistication and Big Success (2D,3D?)

Realization of importance and profitability of Parametric Geometry Based CAD and CAE

Industry Standard in CAD

Automotive Industry

– UNIGRAPHICS in GM

- I-DEAS in FORD
- CATIA in CHRYSLER

 Leading companies have given up In-House CAD/CAE software

CAD/CAE Acceptance Not Yet

- 2D CAD is widely accepted, but 3D CAD is too sophisticated for majority of designers and manufacturers
- CAE becomes an accepted tool for single disciplinary analysis, but not sufficient to create new value except few areas (crash, forming, etc)

MCAE+FCAE=CAE

MCAE(Mechanical CAE) FCAE(Fluid CAE)

 Two separated CAE, Two separated Preprocessing Software, Two separated CAE analysis specialistsDifficulty of Integration for Design and Manufacturing

Trend in (M)CAE

Major Software Houses

- MSC/NASTRAN, PATRAN, ABAQUS (US, Europe, Japan)

-ESI/PAMCRASH,PAMSTAMP,COMPOSIC

(Europe, Japan, US)

Linear Nonlinear Impact (Multi-Body) Design Optimization

- Others : Swanson/ANSYS, LS/DYNA, ALGOR,MDI/ADAMS,

The University of Michigan, Department of Mechanical Engineering Computational Mechanics Laboratory

Consolidation

Two Paths for Survival

Total Consolidated MCAE/FCAE

- Analysis(Linear, Nonlinear, Impact, Multi-body),
 Design Optimization, Simulation of
 Manufacturing Processes : *Total CAE*
- -ESI is a typical example : European's Approach
- MSC may follow : US for survival

Integration with (Imbedding to) CAD

- -CAD software absorb linear CAE for **Design**
- -MCAE is a part of major CAD software

CAD Imbedded MCAE

- CAD absorbs CAE software
- Simulation of Design Feasibility
 - Based on only Linear Analysis
 - users are Designers rather than Analysts
 - Less Accuracy but user oriented
 - possibly Design Optimization capability

DESIGN ORIENTED Short Turn Around Time

Effort in MCAE

- For Shortening of Turn Around Time by Simplifying FE Modeling Methods
 - CAD Linked Automatic Mesh Generation
 - Adaptive FE Methods (h and p elements)
 - Meshless FE Methods (ANALYSIS)
- Integration with Design Optimization
 - Design Sensitivity Analysis
 - Size, Shape, and Topology Optimization

Importance

- Shortening of *Modeling Time*
- Integration of MCAE and FCAE for

- Design and Simulation of Manufacturing Process

PARADIGM CHANGE !

- Automatic Mesh Generation ? How?

Image Based CAE

Originated From/Based On OPTISHAPE Topology Optimization

Topology Design Method

 Shape and Topology Design of Structures is transferred to Material Distribution Design (Bendsoe and Kikuchi, 1986)

TDM : 3D Shaping

Truly Three-dimensional shaping of a structure for optimum

Without parametric shape definition by splines

Closely Related to Rapid Prototype

Layer by Layer Operation Link with CAD for pixel operation Utility of STL (SLC) file

Typical Layerd Manufacturing Processes

Sintering

Fused Deposition Modeling

What we have done at University of Michigan in a DARPA Project ?

Project MAXWELL Two way communication between image and CAD data for Topology Optimization

OPTISHAPE : *Material Design*

A Homogenization Design Method for **Topology of Structures and Materials**

Ratio

- 0.5

Image

Finite Element Modeling Finite Element Analysis Design Optimization

Parametric Geometry CAD & Rapid Prototype

Image Manipulation

Gray Scale Image Adjust Level of Gray Scale Mosaic Filtering

pixel/voxel mesh

Pinching Filtering

Image Algebra for Modeling

- $C^{isa} = 253 \text{ or } 252, C^{TRR} = 255, 0 \text{ anal} < 252$
- Initial Scaffold defined by
 - <u>Accompli</u>shed in PV-Wave using Where mask

Resulted Finite Element Model

Scaffold/Bone ImageScaffold/Bone MeshThe University of Michigan, Department of Mechanical Engineering
Computational Machanics Scott Hollister using Voxelcon2.0

Image Based CAE

- Voxelcon : a Derivative of OPTISHAPE
 - CAD/CT/MRI Image Scan or Equivalent Ways
 - Image Based Automated CAE
 - Mesh Generation
 - Construction of Common Model for Multiple Analyses
 - Load/Support Condition
 - FE Analysis
 - Image Based Design & Optimization
 - **OPTISHAPE** for topology.layout design
 - Rapid Prototype by Layered Manufacturing
 - Simulation of Material Processing (Casting etc)

- Simulation of Material Processing (Casting The University of Michigan, Department of Mechanical Engineering Computational Mechanics Laboratory

Database : Image

- Rather than STL files,SLC files are considered
- SLC files are stored as **IMAGES**
- images are then compressed
- 25K/slice x 500=7.5M

Image Regenerated

Femur CT from Visible Human Data

Virtual Femur with Nail - Rendering

• **3D** Surface Rendering of femur with nail

• Only screws show through femur

• Data ready for mesh generation

VOXELCON byproduct of OPTISHAPE

VOXELCON for I-DEAS Quint Corporation

CAD Model by I-DEAS

VOXELCON for I-DEAS (2)

75M Voxel Elements

9.4 M Voxel Elements

OPTISHAPE *Quint Corporation*

Topology (NK, A. Diaz) Compliant Mechanisms (NK, S. Nishiwaki) Shape (H. Azekami) Size (H. Miura)

Extension of OPTISHAPE

- Structural Design
 - Static and Dynamic Stiffness Design
 - Control Eigen-Frequencies
 - Design Impact Loading
 - Elastic-Plastic Design
- Material Microstructure Design
 - -Young's and Shear Moduli, Poisson's Ratios
 - Thermal Expansion Coefficients
- Flexible Body Design

New Extension of OPTISHAPE

Piezocomposite and Piezoelectric Actuator Design For Creation of New Value

Introduction

Examples: Quartz (natural) Ceramic (PZT5A, PMN, etc...) Polymer (PVDF)

Applications

Pressure sensors accelerometers actuators, acoustic wave generation ultrasonic transducers, sonar, hydrophones etc...

Constitutive Equations of Piezoelectric Medium

$$\begin{cases} T_{ij} = c_{ijkl}^{E} S_{kl} - e_{kij} E_{k} & \text{Elasticity equation} \\ D_{i} = e_{ik}^{S} E_{k} + e_{ikl} S_{kl} & \text{Electrostatic equation} \end{cases}$$

 T_{ij} - stress S_{kl} - strain E_k - electric field D_i - electric displacement

 c^{E}_{ijkl} - stiffness property e_{ikl} - piezoelectric strain property e^{S}_{ik} - dielectric property

Many Approaches : MDM

Performance Characteristics 1

Hydrophones (Hydrostatic Mode)

• Hydrostatic Coupling Coefficient $(/d_h/)$:

$$|d_h| = d_{13} + d_{23} + d_{33}$$

• Figure of Merit
$$(d_h g_h)$$
:
 $d_h g_h = \frac{d_h^2}{e_{33}^T}$

• Hydrostatic Electromechanical Coupling Factor (k_h):

$$k_h = \sqrt{\frac{d_h^2}{\mathsf{e}_{33}^T \mathsf{s}_h^E}}$$

Performance Characteristics 2

Ultrasonic Transducers (Thickness Mode)

• Electromechanical Coupling Factor (k_t):

$$k_{t} = \sqrt{\frac{e_{33}^{2}}{c_{33}^{D} e_{33}^{S}}}$$

• Impedance (Z):

$$Z = \sqrt{\Gamma c_{33}^D}$$

• Longitudinal Velocity (v_t):

$$v_t = \sqrt{\frac{c_{33}^D}{r}}$$

Reference unit cell for comparison: 2-2 piezocomposite

2D Piezocomposite Unit Cell ultrasonic transducer

Initially

Optimized Microstructure

Piezocomposite

Improvement

Improvement in relation to the 2-2 piezocomposite unit cell: $|d_h|: 2.5$ times $\rho \downarrow \Rightarrow Z \downarrow$ $v_t (\cong \text{ same})$ $d_hg_h: 4.2$ timesstiffness constraint: $c_{11}^E > 8.10^8 \text{ N/m}^2$

2D Piezocomposite Unit Cell hydrophone

Improvement

Experimental Verification

• Rapid Prototyping: Stereolithography Technique

Experimental Result

Measured Performances

	$d_h(pC/N)$	$d_h g_h (f Pa^{-1})$	k _t
Reference	9.1	13.2	0.69
Optimized	246.	10400.	0.70
(Simulation)	(229.)	(10556.)	(0.66)

2D Piezocomposite Unit Cell hydrophone

Improvement

Improvement in relation to the 2-2 piezocomposite unit cell: $|d_h|$: 3. times d_hg_h : 9.22 times k_h : 3.6 timesstiffness constraint: $c_{33}^E > 1.10^{10} N/m^2$

Piezocomposite Manufacturing

Crumm and Halloran (1997)

Measured Performances

	$d_{\rm h}(p{\rm C/N})$	$d_h g_h (f Pa^{-1})$
Solid PZT	68.	220.
Optimized	308.	18400.
(Simulation)	(257.)	(19000.)

3D Piezocomposite Unit Cell hydrophone

3D Piezocomposite Unit Cell hydrophone

OPTISHAPE

Compliant Mechanism Design

A New Release

Structural Flexibility

Flexibility can provide higher performance or additional function If we can specify the flexible mode appropriately.

Kinematic Synthesis

Lumped compliant mechanism

Based on traditional rigid body kinematics

Lumped compliance (Pivot) Stress concentration

Her and Midha (1986), Howell and Midha (1994), (1996)

Continuum Synthesis

Distributed compliant mechanism

Based on the topology optimization method

Ananthasuresh et al. (1994, 1995), Frecker et al. (1997) Sigmund (1995), (1996), Larsen et al. (1996)

Flexibility and Stiffness

Compliant Mechanism Design

Multicriteria Optimization

Multi-objective Functions (1)

Typical methods to deal with multi-objective problems

- The weighting method
- The ϵ -constraint method
- The goal programming method

MMC ----> Infinite !

Multi-objective Functions (2)

Multi-objective functions (3)

(2) Displacement single flexibility case

 $\begin{array}{c} \text{Minimize } \sum \text{MC} \\ MMC \clubsuit Constraint \end{array}$

(3) Multi-flexibility case

Maximize $\frac{-1/C_f \operatorname{Log}(\sum \operatorname{Exp}(-C_f^{i}MMC))}{1/C_s \operatorname{Log}(\sum \operatorname{Exp}(C_s^{j}MC))}$

Compliant Gripper (1)

Compliant Gripper (2)

Extracted image design

Torsional Compliant Mechanism

Constrained Compliant Gripper

Constrained single flexibility

Design domain

Constrained case

Optimal configurations ($\Omega_s=20\%$)

Unified Design of Structures and Mechanisms

Multi-flexibility Compliant Mechanism (1)

Multi-flexibility Compliant Mechanism (2)

Flextensional Actuator Design

Piezoceramic + Flexible coupling structure

Coupling Structure Mechanical Transform Amplify output displacement Change displacement direction Provide stiffness

OPTISHAPE

Actuator Design

A New Capability to be Implemented

Examples of Flextensional Actuators:

Low-frequency applications are considered (inertia effect is neglected)

Example 1

Computational Mechanics Laboratory

Computational Mechanics Laboratory

85

Structural Optimization in Magnetic Fields

Future OPTISHAPE Capability

Shape of H-magnet

Cross Sectional View

A quarter Model for Analysis

Optimal Shape for Maximizing Total Potential Energy

Design Domain for Optimization (324 elements) Optimal Shape with 60% Volume Constraint

Analysis of the Optimal Shape

3 11F-4

Vector Potential

Flux Density

Increase the value of Flux Densities in Design Domain (25 - 40%) Stabilize the Flux Densities

Optimal Shape for Prescribed Uniform Fields (432 element model)

- 1										
			_	-						
	_		_	_						
										-
				_		-		-		
				_		_				
	_			_						
- 1										
				_				_		
				_						
- 2	_								 	
- 1										
			_							
						-				
. 1										
- 1										
- 6	_			_						
- 1										
				-						
	-		1.1.1.1		2					
		_					 		 _	
										1.
				-			 		 	
				1.00						1
								-		
					- C - C - C - C - C - C - C - C - C - C					
					1.0	-				+ · · · ·
	-						 		 	
			10.00							
			1000		1					
			_							
. 1	1.1									

Prescribed Bx = -0.18

						1
-					-	
100 B		1.				
	C.C. T.	100				
	1.000			191		
						10
	10100					16 I I I I I I I I I I I I I I I I I I I
	19 29 11 12	10 M	110000			
			1.1			
_						

	Prescribed Bx = -0.18	Prescribed Bx = -0.18
		$\mathbf{B}\mathbf{y}=~0.05$
Ave. of x components	-0.18298E+00	-0.16645E+00
Ave. of y components	0.69363E-01	0.38788E-01
Stand. Dev. of x components	0.62515E-01	0.57342E-01
Stand. Dev. of y components	0.68198E-01	0.46641E-01

Optimal Shape of the Design Domain for Prescribed Uniform Fields (3-layer, 432 element model)

Prescribed Bx = -0.20

Prescribed **Bx** = -0.20, **By** = 0.05

	Prescribed Bx = -0.18	Prescribed Bx = -0.18
		$\mathbf{By} = 0.05$
Ave. of x components	-0.20712E+00	-0.20706E+00
Ave. of y components	-	0.44251E-01
Stand. Dev. of x components	0.87911E-01	0.69931E-01
Stand. Dev. of y components	-	0.57347E-01

Research Issue in OPTISHAPE

Material Design Optimization Young's & Shear Moduli Poisson's Ratios Thermal Exapansion Coefficients Electro-magnetic Properties

Following To Dr. O. Sigmund Technical University of Denmark

Jun Ono Fonseca and Bing-Chung Chen

Three-Phrase Material Design

• Artificial material mixing rule

$$E = r \left[m E^{(1)} + (1 - m) E^{(2)} \right]$$

a = $\left[m a^{(1)} + (1 - m) a^{(2)} \right]$

- Design layout of two solid phases and void simultaneously
- Possible overlap between two phases when $m \neq 1 \text{ or } m \neq 0$

Benchmarking with existing 2-phase bound

$$E^{(1)} = 10, n^{(1)} = 0.3, a^{(1)} = 1.0, V = 50\%$$

$$E^{(2)} = 1.0, n^{(2)} = 0.3, a^{(2)} = 10.0, V = 50\%$$

 "Good" expansion material surrounded by "Bad" expansion material results in the "Worst" expansion composite

$$a^{H} = \begin{bmatrix} 6.5 & 0 \\ 0 & 6.48 \end{bmatrix}$$

Negative Expansion *in the vertical direction*

$E^{(1)} = 10, n^{(1)} = 0.3, a^{(1)} = 1.0, V = 25\%$ $E^{(2)} = 1.0, n^{(2)} = 0.3, a^{(2)} = 10.0, V = 10\%$ Void
$a^{H} = \begin{bmatrix} 2.0 & 0 \\ 0 & -1.1 \end{bmatrix}$ Re-entrant structure

Near Zero Expansion *in the Horizontal Direction*

- Almost disconnected in the y
- Again, very complicated structure in terms of manufacturing

Construction of three-phase material by two stage design

- Given distribution of phase 1, design phase 2 distribution, excluding the domain occupied by phase 1
- Mark phase 2 as exclusion, design phase 1
- The final micro-structure should be noncomplex and easy to manufacture.

Example: Reinforcement Design

The U Comp

Find the Optimal Distribution of Reinforcement. Phase 2

The Optimal Distribution of Reinforcement

 The reinforcement phase is nonoverlapping with the original phase

Superimpose the two non-overlapping phases

Negative expansion in the horizontal direction

 $E^{(1)} = 10, n^{(1)} = 0.3, a^{(1)} = 1.0, V = 30\%$ $E^{(2)} = 10, n^{(2)} = 0.3, a^{(2)} = 10.0, V = 25\%$ Void

- Stretch in the y due to temperature rise
- Shrink in the x due to Poisson's effect
- Unusual CTE material must encompass structure-like mechanism

Negative expansion in the vertical direction

Near zero Thermal Expansion

Topology Optimization Algorithm Examination / Research

Various Filtering Schemes Proposed using SLP

Example 1

Computational Mechanics Laboratory

Example 3

Maximization of Attractive Force

$$g = \sum_{i=1}^{N} \sum_{k=1}^{4} \frac{\mathsf{r}_{i} \mathsf{r}_{k}}{r_{ik}^{2}} \to \max$$

$$\begin{array}{c|c} \mathbf{r}_{2} \\ \mathbf{r}_{1} \\ \mathbf{r}_{i} \\ \mathbf{r}_{3} \\ \mathbf{r}_{4} \\ \end{array}$$

 r_{ik} :distance

 $r_i = 1 - a_i b_i$

N: number of element

$$w_g$$
: weight $\overline{g} = g / g_{ini}$

Objective
$$f = C\sqrt{1 - (w_g \overline{g})^2}$$

Example 1A $w_g = 0.1$ D Design 24 Domain 10 Va: 10% Va: 20% Va: 30%

Gray Scale Penalty

Example 2B

Perimeter Control (Muriel BECKERS, 1997)

$$p_{r} = \sum_{i=1}^{N} \sum_{k=1}^{4} l_{ik} |\mathbf{r}_{i} - \mathbf{r}_{k}| \rightarrow \min$$

$$\boxed{\mathbf{r}_{2}} \qquad \mathbf{r}_{i} = 1 - \mathbf{a}_{i} \mathbf{b}_{i}$$

$$\boxed{\mathbf{r}_{1}} \mathbf{r}_{i} \mathbf{r}_{3} \qquad l_{ik} : \text{Length of Common Boundary}$$

$$N : \text{number of element}$$

$$w_{g} : weight(g), w_{p} : weight(p_{r}), \overline{g} = g / g_{ini}, \overline{p}_{r} = p_{r} / L$$
Objective $f = C\sqrt{1 - (w_{g}\overline{g})^{2} + (w_{p}\overline{p}_{r})^{2}}$

Perimeter Length

Example 1C

$$w_g = 0.1, p = 0.8, w_p = 0.01$$

Example 2C

Post Processing of OPTISHAPE

Smooth Surface Extruction

Example : Caliper

OPTISHAPE

Mesh From CT Scan 150,000 3-D Elements

9% Weight Reduction

Comparison by Sections

Interpolation Functions Meshless Approach

$$f(\mathbf{x}) = \sum_{j=1}^{n} c_j \Phi_j(\mathbf{x}) \qquad \text{with}$$

where
$$c_j = f(x_j)$$

 $\Phi_j(x)$ is defined with non-polynomial function: $\Phi_j(x) = a_o(x) w_j(x)$

where
$$W_j(x) = w(x - x_j)$$
 and $w(x) = \exp(-ax^2)$

Approximation Functions (2) $f(x) = \sum_{j=1}^{n} c_{j} \Phi_{j}(x)$

To Determine $\Phi_j(x)$ which yield *k*-th degree polynomial, let's assume:

$$\Phi_{j}(x) = \left\{ a_{o}(x) + x_{j}a_{1}(x) + \dots + x_{j}^{k}a_{k}(x) \right\} W_{j}(x)$$

$$= \left\{ 1 \dots x_{j}^{k} \right\} \left\{ \begin{array}{c} a_{o}(x) \\ \vdots \\ a_{k}(x) \end{array} \right\} W_{j}(x)$$

$$f(x) = f_{o} + f_{1}x + \dots + f_{k}x^{k}$$

Solve for $\{a_o(x) \dots a_k(x)\}$ The University of Michigan, Department of Mechanical Engineering Computational Mechanics Laboratory

Approximation Functions (3)

$$\begin{cases} a_{o}(x) \\ \vdots \\ a_{k}(x) \end{cases} = \begin{bmatrix} \sum_{j=1}^{n} W_{j}(x) & \cdots & \sum_{j=1}^{n} x_{j}^{k} W_{j}(x) \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ \vdots \\ \sum_{j=1}^{n} x_{j}^{k} W_{j}(x) & \cdots & \sum_{j=1}^{n} x_{j}^{2k} W_{j}(x) \end{bmatrix}^{-1} \begin{cases} x^{k} \\ \vdots \\ x^{k} \end{bmatrix}$$

Recall: $\Phi_j(x) = a_o(x)w_j(x)$

$$\Phi_{j}(x) = \left\{ 1 \ \dots \ x_{j}^{k} \right\} \left\{ \begin{array}{ccc} \sum_{j=1}^{n} w_{j}(x) & \cdots & \sum_{j=1}^{n} x_{j}^{k} w_{j}(x) \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} x_{j}^{k} w_{j}(x) & \cdots & \sum_{j=1}^{n} x_{j}^{2k} w_{j}(x) \end{array} \right\}^{-1} \left\{ \begin{array}{c} 1 \\ \vdots \\ x^{k} \end{array} \right\} w_{j}(x)$$

Reconstruction of a 3-D Model

$$C_{\Omega}^{h}(x, y, z) = \sum_{k=1}^{k_{max}} \underbrace{C_{\Omega,k}^{h}(x, y)}_{k} \Phi_{k}(z)$$
2D image Basis Functions
$$C_{\Omega,k}^{h}: Characteristic function of each image
Greyscale values (0-255)$$

$$\Phi_{k}(z): Approximation functions$$

Brake Caliper

Analysis Result

/ low stress

Optimization

Prototypes

Summary

Concept of OPTISHAPE : Topology Optimization is continuously extended not only to structures but also materials, mechanisms, electro-magnetic fields, and others

VOXELCON for I-DEAS OPTISHAPE for I-DEAS

NASTRAN-OPTISHAPE

Toward Image Based CAE

