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Homogenization Design Method

• Shape and Topology Design of Structures is
transferred to Material Distribution Design
(Bendsoe and Kikuchi, 1986)
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HDM : 3D Shaping

Truly Three-dimensional
shaping of a structure for
optimum

Requirement of emerging
manufacturing methods
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Extension of HDM

• Structural Design
• Static and Dynamic Stiffness Design

• Control Eigen-Frequencies

• Design Impact Loading

• Elastic-Plastic Design

• Material Microstructure Design
• Young’s and Shear Moduli, Poisson’s Ratios

• Thermal Expansion Coefficients

• Flexible Body Design
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New Extension of HDM

Piezocomposite

and

Piezoelectric Actuator
Design



7

The University of Michigan

Computational Mechanics Laboratory

Force

Displacement

Electric potential

Electric charge

Introduction

Mechanical 
Energy

Electrical 
  Energy

Piezoelectric 
   Material

Examples: Quartz (natural)
                  Ceramic (PZT5A, PMN, etc…)
                  Polymer (PVDF)
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Applications

Pressure sensors
accelerometers
actuators,
acoustic wave generation 

ultrasonic transducers, sonar, hydrophones
etc...
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cE
ijkl - stiffness property

eikl   - piezoelectric strain
             property
εS

ik   - dielectric property

Tij - stress

Skl - strain

Ek - electric field

Di - electric displacement

Constitutive Equations of Piezoelectric
Medium
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Elasticity equation

Electrostatic equation
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Introduction - Piezocomposites

1-3 piezocomposite2-2 piezocomposite
xy

z

polymer
piezoceramic

Electrodes

piezoceramic polymer

Advantages: high energy conversion, low acoustic 
                     impedance, etc...

Combination of a piezoelectric material with other 
non-piezoelectric materials (ex.: holes)
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Design Practice : Parametric

L1 L2

Piezocomposite Moonie transducer

PZT

D

h1

h2

Coupling 
Structure

  Change 
parameter

Verify improvement
  (FEA, experiment)
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Mathematician Changes Design Practice

• Influence of volume fraction, Poisson’s ratio, etc…:
   Smith (1993), Avellaneda and Swart (1994)
• Use of negative Poisson’s ratio material: Smith (1991),
   Avellaneda and Swart (1994)
• Porosity in the matrix polymer: Avellaneda and
    Swart (1994)

Using Parametric Analysis:
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Topology
Optimization

Change the
topology of 

microstructure
(material)

or structure 
(transducer)

Improvement in
the performance

of piezocomposite
materials;

design of new kinds
of transducers for

different applications

PZT

holes

holes

Topology Design
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x2

x1

Ω

t

Structure
  Design
 Domain

1

1
y2

y1

θa

b

Material Design

Many Approaches : HDM

E x Eijkl
p

ijkl= 0

property

fraction of material 
     in each point

       Simple:
 Density Method

            General:
Homogenization Method

A point with no material

A point with material

microstructure

Structure Design
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hTelega (1990), Galka et al. (1992), and Turbé and Maugin (1991)
hAsymptotic analysis
hPeriodic microstructures, scale of microstructure
   very small compared to the size of the part
• Acoustic wavelength larger than unit cell dimensions

Homogenization in Piezoelectricity

Component                  Enlarged
Periodic Microstructure

x y

          Enlarged
Unit Cell (Microscale)
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Maximize: F(x), where x=[x1,x2,…,xn,…,xNDV]
    x
subject to: cE

ijkl      clow, i, j, k, l are specified values
                 0<xlow      xn      1

                 symmetry conditions

F(x) - function of dh, dhgh, kh, or kt

x  - design variables
W - constraint to reduce intermediate densities 
(Vn - volume of each element)

Optimization Problem 

≤ ≤
W x V Wn

p

n

NDV

n low= >
=

∑
1

≥
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Converged?

Initial Guess

Final Topology

Y

N

Plotting Results

Optimizing (SLP)
with respect to x

Initializing and
Data Input

Obtaining
Homogenized

Properties

Updating
Material

Distribution

Calculating
Sensitivity
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(Poled in the
  3 direction)

Reference unit cell for comparison: 2-2 piezocomposite

PZT5A
Polymer 
(Spurr)
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air 

P
Z
T
5
A

P
Z
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polymer 

2D Piezocomposite Unit Cell
hydrophone

Suggested 
Transducer

polymer 

P
Z
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1

3

Initially                    Optimized Microstructure             Piezocomposite 
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Improvement

Improvement in relation to the 2-2 piezocomposite unit cell:
  |dh|:  2.8   times             ρ           Z               vt (    same)
dhgh:  7.1   times
    kt:  1.13 times         stiffness constraint: cE

11>8.108N/m2

⇒ ≅
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Experimental Verification

• Rapid Prototyping: Stereolithography Technique

Optimized Transducer

Reference Transducer

10 mm

10 mm
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Experimental Result
bar of

PZT5Apolymer part

           Measured Performances  
                 dh(pC/N) dhgh (fPa-1)    kt

Reference         9.1          13.2          0.69
Optimized       246.        10400.       0.70
(Simulation)   (229.)      (10556.)    (0.66)
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PZT5A

air

2D Piezocomposite Unit Cell
hydrophone

PZT5A

1

3

Initially                 Optimized Microstructure                 Piezocomposite 

“optimized porous ceramic”
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Improvement

Improvement in relation to the 2-2 piezocomposite unit cell:
  |dh|:   3.    times
dhgh:  9.22 times
    kh:  3.6  times           stiffness constraint: cE

33>1.1010N/m2
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Piezocomposite Manufacturing

Theoretical 
unit cell 

Fugitive

Ceramic

Microfabrication by coextrusion technique
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Ceramic

Feedrod

Reduction 
Zone

Extrudate
SEM Image

Crumm and Halloran (1997)
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z
y

x

piezoceramic

3D Piezocomposite Unit Cell
hydrophone

Poled in 
the z direction
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xy

z

piezoceramic

Polarized in 
the z direction

3D Piezocomposite Unit Cell
hydrophone
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Summary

We have shown that 
Layered Manufacturing Method 
open up possibility of 
topology design of piezoceramic composites 
and piezoelectric actuators 
for large scale performance improvement 
by the homogenization design method


