Response Surface Methodology and Its application to automotive suspension designs

Tatsuyuki Amago Offspring of candidate for former general (SHOGUN)

Outline

- I. Introduction & Basis of RSM
 - 1. History of RSM
 - 2. What's RSM
 - 3. Why is RSM
 - 4. Least square method
 - 5. Design Of Experiment (DOE)
- II. Its application to automotive suspension designs
 - 1. Size optimization for beam stiffens
 - 2. Size optimization for section beam property

I. Introduction and Basis ofResponse surface Methodology (RSM)

History of RSM

1951 Box & Wilson

Contributed RSM of Quadratic Polynomials

1988 ~ 1990 Design Of Experiments (DOE)

Taguchi DOE (Taguchi Method)

Myers & Montgomery DOE \rightarrow RSM

- 1992 ~ 1994 Quality engineering The Process of a semiconductor ... etc
- 1995 Optimization for Numerical Analysis
 Haftka Composite Wing Structural Optimization
 Shiratori Design Optimization of automotive Seat frame

What's RSM

- Approximation Optimization
- Approximation Function = Response surface
- Response surface
 - Least square method & Design of Experiments

Why is R.S.M.

Response surface

Design Variables : x_i $(i = 1 \dots n)$ State Variable : $y = f(x_1 \dots x_n) + \varepsilon$

Least Square Method Polynomials Exponential Logarithm ... etc Neural Network Spline interpolation Lagrange interpolation

Least square method (1)

Used Linear function

Coefficient of function

Evaluation of function

Easily obtained by Statistics

Quadratic polynomials $y = \beta_0 + \sum_{i=0}^n \beta_i x_i + \sum_{i=0}^n \beta_{ii} x_i^2 + \sum_{i<j}^n \beta_{ij} x_i x_j$ Example of two variables for simplification $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$ $x_1^2 = x_3, x_2^2 = x_4, x_1 x_2 = x_5 \rightarrow Linearized$

Least square method (2)

 $y = X\beta + \varepsilon$ Number of Experiments : *n* Number of variable : *k*

$$\boldsymbol{y} = \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_n \end{cases} \quad \boldsymbol{X} = \begin{cases} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{cases} \quad \boldsymbol{\beta} = \begin{cases} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_n \end{cases} \quad \boldsymbol{\varepsilon} = \begin{cases} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_n \end{cases}$$

Error Sum of Square : $L = \varepsilon^T \varepsilon \rightarrow$ Minimize Least square estimations of β : *b*

$$\boldsymbol{b} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Least square method (3)

Total Sum : $T = \sum_{i=1}^{n} y_i$ Sum Square of Error : $SSE = \mathbf{v}^T \mathbf{v} - \mathbf{b}^T \mathbf{X}^T \mathbf{v}$ Sum Square of Regression : $SSR = b^T X^T y - T^2/n$ Total Sum of Square : $S_{VV} = \mathbf{y}^T \mathbf{y} - T^2/n$ Coefficient of multiple determination : R^2 $R^2 = SSR/Syy = 1 - SSE/Syy$ Adjusted Coefficient of multiple determination : R_{ad}^2 $R_{ad}^2 = 1 - \frac{SSE/(n-k-1)}{Svv/(n-1)}$

Design Of Experiments (DOE)

Parameter design for efficient experiment = for obtained better regression formulation

Response surface by least square method

Minimize coefficient variance

Variance covariance matrix ($V(\boldsymbol{b}) = cov(b_i, b_j)$) by least square estimations \boldsymbol{b} $V(\boldsymbol{b}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$

 σ^2 : Error Variance of state variable $y \rightarrow$ Unknown

> Minimize for diagonal of $(X^T X)^{-1}$

Orthogonal design

- Mainly used for linear polynomial
- Orthogonal arrays

Linear \rightarrow 2-Level factorial design [L8(2⁷), L16(2¹⁵) ...]

- Quadratic \rightarrow 3-Level factorial design [L9(3⁴), L27(3¹³) ...]
- Orthogonal polynomials Chebyshev orthogonal polynomials

Efficient for low order & no interactions Large design number for highest-order But, very easy

Central Composite Design (CCD)

Mainly used for quadratic polynomial Parametric design 2-level full factorial design $n_F = 2^k$ $n_0 > 1$ Center point 2 variable Two axial point on axis of each design Variable model at distance of design origin. $n_R = 2k$ Total Number of design $n = 2^k + 2k + n_0$ No direction dependability = Rotatable design Better design for quadratic polynomial

Computer support design

A-optimality Moment matrix : $M = X^T X_n$ Sum of diagonal value for *M* inverse : $trace(M^{-1})$ *Minimize*[*trace*(*M*⁻¹)] Found *X* Consideration for diagonal value Therefore, Not rotatable design D-optimality *Maximize*[*M*] Found *X* Consideration for Full value by M therefore, rotatable design This method best parametric design. But, difficult

Improvement of RS

- Used high order Polynomial
- Zooming method
- Domain decomposition method
- Kriging model etc Decomposed domain Used low order polynomial Second domain First Optimal value First domain Domain decomposition Method Zooming Method Toyota Central R&D Labs., Inc 17

RSM Program on Excel Program for Orthogonal design approach

3 factors and3 levels Design

II. Its application to automotive suspension designs

Trailing Twist Axle Suspension Mixture of structures and mechanisms Good for FF automobiles Advantages Simple structures & low cost No suspension frame High stiffness **Twisting Crossbeam Critical Design Part**

Examples

Size optimization for beam stiffens Size optimization for section beam property

1) Size Optimization for stiffness

Design variable

Thickness : t and Forming length : L

Objective function Minimize total mass

Constraint

Torsional and Bending stiffness

Section of beam

Bending

Toyota Central R&D Labs., Inc 22

Torsion

Optimization technique Parametric Studies Based on DOE Analysis for FEM Optimization used RSM Optimum Design variables Initial design variable for next step Optimization used FEM

Parametric Studies Based on DOE

Two factors, three levels in DOE

L/r = 0.0, 0.5, 1.0 where r = 50(mm)

■ *t*=1.0,2.5,4.0 (mm)

- Evaluation function
 - Total volume : V
 - Torsional stiffness : G_T

Bending stiffness : G_S

L9(3⁴) Orthogonal arrays

	L/r	t
1	0	1
2	0	2.5
3	0	4
4	0.5	1
5	0.5	2.5
6	0.5	4
7	1	1
8	1	2.5
9	1	4

Optimal design

Optimal design L/r = 0.987, t = 1.94(mm)

2) Optimize for Cross Section Properties

Design variable Thickness : t and Forming length : L
Objective function Minimize Polar moment of Inertia J
Constraint Set y position of shear center $ey \ge 10(mm)$ Second moment of Inertia $Iy \ge 900,000 (mm^4)$ Second moment of Inertia $Iz \ge 100,000 (mm^4)$

Section of beam

Parametric Studies Based on DOE

Two factors, three levels in DOE
 L/r = 0.0,0.5,1.0 where r=50(mm)
 t=1.0,2.5,4.0 (mm)
 Evaluation function Shear center ey
 Second moment of Inertia Iy,Iz
 Polar moment of Inertia J

Response surface

Optimal design

Optimal Solution *L*/*r*=1.0, *t*=2.47(mm)

Response Surface Methodology and Its application to automotive suspension designs

Thank you very much !