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History of RSM

What’s RSM

Why is RSM

|_east square method

Design Of Experiment (DOE)

Its application to automotive suspension
designs




|. Introduction and Basis of
Response surface Methodology
(RSM)



I 1951 Box & Wilson
Contributed RSM of Quadratic Polynomials

E 1988 ~ 1990 Design Of Experiments (DOE)
Taguchi DOE (Taguchi Method)
Myers & Montgomery DOE - RSM

F 1992 ~ 1994 Quality engineering
The Process of a semiconductor ... etc

F 1995 Optimization for Numerical Analysis
Composite Wing Structural Optimization




I Approximation Function = Response surface

I Response surface
Least square method & Design of Experiments
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Optimization Problem setup Huge calculation
Design Variable,Objective Function,Constraint Time & Resources

[
4 { ™
I Analysis (FEM etc) C:
Optimization 4
Part . :
<« Sensitivity Calculatlon<>
. Y,
Y A solution is not obtained

Optimum Value a nonlinear large problem.



Optimization problem setup
Design Variable,Objective Function, Constraint

RES[PONSE S UliiaCe creation

A TUNCLION! IS approximated.

Optimization calculate
Using the Response Surface

Optimum value

Analysis Result

Resuponse
Surface

Objective Function

®" Optimum Value

Design Valiable

Calculation is
very early




Design of

Experiments
Parametric Design

Analysis
(FEM etc)

Response surface creation
Approximation for
Objective function & Constraint

Objective Function

Analysis Result

/ Resuponse
. Surface

" Optimum Value

Design Valiable




Design Variables: % (i=1-n)
State Variable : y=f(x--x)+e

|_east Square Method
Polynomials
Exponential - Linearized
Logarithm ... etc .

Neural Network

\




Coefficient of function
Evaluation of function

Easily obtained by Statistics

Quadratic polyng]mials

y:ﬁo-l-iZO:Bi +Zﬁll | Zﬁu 1Y
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Example of two variables for simplification
y =By + BiX, + ByX%, + 183)(12 i 184)(22 + XX,

X2 =X, , X2 =X, , XX, =X. — Linearized




y=XB+¢ Number of Experiments : n
Number of variable

[y, O O X; X Xy O 06, O [, O
yzéyzé X=% X:21 X22 X?kE Bzécfzé gz%zé
- O [t - U - 0 - 0
@/n E @' an Xn2 Xnk E @-)’n E @n E

Error Sum of Square : L=¢T £ - Minimize
Least square estimationsof 8 : b




Total Sum : T =Yy,

Sum Square of Err(i)zr1 . SSE=y'y-b'X'y

Sum Square of Regression : SSR=b" X"y -T?/n
Total Sum of Square : Syy=y'y-T?/n

Coefficient of multiple determination : R?2
R? = SSR/Syy =1 — SSE/Syy
Adjusted Coefficient of multiple determination : R,




= for obtained better regression formulation

\

Response surface by least square method
=» Minimize coefficient variance

Variance covariance matrix ( V(b)=cov(b;,b;) )
by least square estimations b
V(b)=a?(X"X)"
02 : Error Variance of state variable y > Unknown

Minimize for diagonal of (X X)-1




I Orthogonal arrays
Linear - 2-Level factorial design [ L8(27), L16(2%°) ...]
Quadratic - 3-Level factorial design [ L9(3%), L27(3%%) ...]

E Orthogonal polynomials
Chebyshev orthogonal polynomials

I Efficient for low order & no interactions
Large design number for highest-order




I Mainly used for quadratic polynomial

I Parametric design
2-level full factorial design n. = 2X
Center point n,>1
Two axial point on axis of each design Variable
at distance of design origin. ng = 2k
Total Number of design n = 2k+ 2k + n,

2 variable
model

F No direction dependability = Rotatable design




.
Moment matrix : M = % )%
Sum of diagonal value for M inverse : trace(M1)

Minimize[ trace(M1)] Found X
Consideration for diagonal value
Therefore, Not rotatable design
E D-optimality
Maximizel] M ] Found X
Consideration for Full value by M




I Zooming method
I Domain decomposition method

E Kriging model €IC  pecomposed domain

,Second domain Use‘d low order polynomial

FirstjOptimal value
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3 factors and
3 levels Design



I1. Its application to automotive
suspension designs



I Good for FF automobiles

I Advantages

E Simple structures & low cost
B No suspension frame

B High stiffness ¢,




1) Size optimization for beam stiffens
2) Size optimization for section beam property

Shear center | |

Bending




Thickness : t and Forming length : L

I Objective function
Minimize total mass

I Constraint

Torsional and Bending stiffness Section of beam

Bending



E Analysis for FEM

I Optimization used RSM
E Optimum Design variables
—> Initial design variable for next step

E Optimization used FEM




E Evaluation function
E Total volume : V
E Torsional stiffness : G;
B Bending stiffness : G

E L/r=0.0,0.5,1.0 where r=50(mm)
F t=1.0,2.5,4.0 (mm)

L9(3%) Orthogonal arrays

\ L/r t
1 0 1
2 0 2.5
3 0 4
4 0.5 1
5 0.5 2.5
6 0.5 4
I i i
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Case 1

| Initial value ( Using RSM) L/r=0.9, t=2.5(mm) |

‘ 13 iteration

‘ Optimal Solution L/r=0.987, t= 1.94(mm) ‘

Case 2

‘ Initial value (Central value) L/r=0.5, t=2.5(mm) ‘
‘ More than 80 iteration

‘ Not Converged ‘







E Design variable p
Thickness : t and Forming length : L

B Objective function
Minimize Polar moment of Inertia J

E Constraint Section of beam
y position of shear center ey=10(mm)
Second moment of Inertia ly=900,000 (mm*)




I Two 1actors, three levels In
E L/r=0.0,0.5,1.0 where r=50(mm)
F t=1.0,2.5,4.0 (mm)
E Evaluation function Shear center
B y position of shear center ey
E Second moment of Inertia ly,lz
E Polar moment of Inertia J







Optimal Solution L/r=1.0, t=2.47(mm)




Response Surface Methodology
and
Its application to automotive
suspension designs

Thank you very much !




